tcp_cubic.c 10.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
/*
 * TCP CUBIC: Binary Increase Congestion control for TCP v2.0
 *
 * This is from the implementation of CUBIC TCP in
 * Injong Rhee, Lisong Xu.
 *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant
 *  in PFLDnet 2005
 * Available from:
 *  http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf
 *
 * Unless CUBIC is enabled and congestion window is large
 * this behaves the same as the original Reno.
 */

#include <linux/config.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <net/tcp.h>
#include <asm/div64.h>

#define BICTCP_BETA_SCALE    1024	/* Scale factor beta calculation
					 * max_cwnd = snd_cwnd * beta
					 */
#define BICTCP_B		4	 /*
					  * In binary search,
					  * go to point (max+min)/N
					  */
#define	BICTCP_HZ		10	/* BIC HZ 2^10 = 1024 */

static int fast_convergence = 1;
static int max_increment = 16;
static int beta = 819;		/* = 819/1024 (BICTCP_BETA_SCALE) */
static int initial_ssthresh = 100;
static int bic_scale = 41;
static int tcp_friendliness = 1;

static u32 cube_rtt_scale;
static u32 beta_scale;
static u64 cube_factor;

/* Note parameters that are used for precomputing scale factors are read-only */
module_param(fast_convergence, int, 0644);
MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
module_param(max_increment, int, 0644);
MODULE_PARM_DESC(max_increment, "Limit on increment allowed during binary search");
module_param(beta, int, 0444);
MODULE_PARM_DESC(beta, "beta for multiplicative increase");
module_param(initial_ssthresh, int, 0644);
MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
module_param(bic_scale, int, 0444);
MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
module_param(tcp_friendliness, int, 0644);
MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");

#include <asm/div64.h>

/* BIC TCP Parameters */
struct bictcp {
	u32	cnt;		/* increase cwnd by 1 after ACKs */
	u32 	last_max_cwnd;	/* last maximum snd_cwnd */
	u32	loss_cwnd;	/* congestion window at last loss */
	u32	last_cwnd;	/* the last snd_cwnd */
	u32	last_time;	/* time when updated last_cwnd */
	u32	bic_origin_point;/* origin point of bic function */
	u32	bic_K;		/* time to origin point from the beginning of the current epoch */
	u32	delay_min;	/* min delay */
	u32	epoch_start;	/* beginning of an epoch */
	u32	ack_cnt;	/* number of acks */
	u32	tcp_cwnd;	/* estimated tcp cwnd */
#define ACK_RATIO_SHIFT	4
	u32	delayed_ack;	/* estimate the ratio of Packets/ACKs << 4 */
};

static inline void bictcp_reset(struct bictcp *ca)
{
	ca->cnt = 0;
	ca->last_max_cwnd = 0;
	ca->loss_cwnd = 0;
	ca->last_cwnd = 0;
	ca->last_time = 0;
	ca->bic_origin_point = 0;
	ca->bic_K = 0;
	ca->delay_min = 0;
	ca->epoch_start = 0;
	ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
	ca->ack_cnt = 0;
	ca->tcp_cwnd = 0;
}

static void bictcp_init(struct sock *sk)
{
	bictcp_reset(inet_csk_ca(sk));
	if (initial_ssthresh)
		tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
}

/* 64bit divisor, dividend and result. dynamic precision */
static inline u_int64_t div64_64(u_int64_t dividend, u_int64_t divisor)
{
	u_int32_t d = divisor;

	if (divisor > 0xffffffffULL) {
		unsigned int shift = fls(divisor >> 32);

		d = divisor >> shift;
		dividend >>= shift;
	}

	/* avoid 64 bit division if possible */
	if (dividend >> 32)
		do_div(dividend, d);
	else
		dividend = (uint32_t) dividend / d;

	return dividend;
}

/*
 * calculate the cubic root of x using Newton-Raphson
 */
static u32 cubic_root(u64 a)
{
	u32 x, x1;

	/* Initial estimate is based on:
	 * cbrt(x) = exp(log(x) / 3)
	 */
	x = 1u << (fls64(a)/3);

	/*
	 * Iteration based on:
	 *                         2
	 * x    = ( 2 * x  +  a / x  ) / 3
	 *  k+1          k         k
	 */
	do {
		x1 = x;
		x = (2 * x + (uint32_t) div64_64(a, x*x)) / 3;
	} while (abs(x1 - x) > 1);

	return x;
}

/*
 * Compute congestion window to use.
 */
static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
{
	u64 offs;
	u32 delta, t, bic_target, min_cnt, max_cnt;

	ca->ack_cnt++;	/* count the number of ACKs */

	if (ca->last_cwnd == cwnd &&
	    (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
		return;

	ca->last_cwnd = cwnd;
	ca->last_time = tcp_time_stamp;

	if (ca->epoch_start == 0) {
		ca->epoch_start = tcp_time_stamp;	/* record the beginning of an epoch */
		ca->ack_cnt = 1;			/* start counting */
		ca->tcp_cwnd = cwnd;			/* syn with cubic */

		if (ca->last_max_cwnd <= cwnd) {
			ca->bic_K = 0;
			ca->bic_origin_point = cwnd;
		} else {
			/* Compute new K based on
			 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
			 */
			ca->bic_K = cubic_root(cube_factor
					       * (ca->last_max_cwnd - cwnd));
			ca->bic_origin_point = ca->last_max_cwnd;
		}
	}

        /* cubic function - calc*/
        /* calculate c * time^3 / rtt,
         *  while considering overflow in calculation of time^3
	 * (so time^3 is done by using 64 bit)
	 * and without the support of division of 64bit numbers
	 * (so all divisions are done by using 32 bit)
         *  also NOTE the unit of those veriables
         *	  time  = (t - K) / 2^bictcp_HZ
         *	  c = bic_scale >> 10
	 * rtt  = (srtt >> 3) / HZ
	 * !!! The following code does not have overflow problems,
	 * if the cwnd < 1 million packets !!!
         */

	/* change the unit from HZ to bictcp_HZ */
        t = ((tcp_time_stamp + ca->delay_min - ca->epoch_start)
	     << BICTCP_HZ) / HZ;

        if (t < ca->bic_K)		/* t - K */
		offs = ca->bic_K - t;
        else
                offs = t - ca->bic_K;

	/* c/rtt * (t-K)^3 */
	delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
        if (t < ca->bic_K)                                	/* below origin*/
                bic_target = ca->bic_origin_point - delta;
        else                                                	/* above origin*/
                bic_target = ca->bic_origin_point + delta;

        /* cubic function - calc bictcp_cnt*/
        if (bic_target > cwnd) {
		ca->cnt = cwnd / (bic_target - cwnd);
        } else {
                ca->cnt = 100 * cwnd;              /* very small increment*/
        }

	if (ca->delay_min > 0) {
		/* max increment = Smax * rtt / 0.1  */
		min_cnt = (cwnd * HZ * 8)/(10 * max_increment * ca->delay_min);
		if (ca->cnt < min_cnt)
			ca->cnt = min_cnt;
	}

        /* slow start and low utilization  */
	if (ca->loss_cwnd == 0)		/* could be aggressive in slow start */
		ca->cnt = 50;

	/* TCP Friendly */
	if (tcp_friendliness) {
		u32 scale = beta_scale;
		delta = (cwnd * scale) >> 3;
	        while (ca->ack_cnt > delta) {		/* update tcp cwnd */
	                ca->ack_cnt -= delta;
        	        ca->tcp_cwnd++;
		}

		if (ca->tcp_cwnd > cwnd){	/* if bic is slower than tcp */
			delta = ca->tcp_cwnd - cwnd;
			max_cnt = cwnd / delta;
			if (ca->cnt > max_cnt)
				ca->cnt = max_cnt;
		}
        }

	ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
	if (ca->cnt == 0)			/* cannot be zero */
		ca->cnt = 1;
}


/* Keep track of minimum rtt */
static inline void measure_delay(struct sock *sk)
{
	const struct tcp_sock *tp = tcp_sk(sk);
	struct bictcp *ca = inet_csk_ca(sk);
	u32 delay;

	/* No time stamp */
	if (!(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) ||
	     /* Discard delay samples right after fast recovery */
	    (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
		return;

	delay = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
	if (delay == 0)
		delay = 1;

	/* first time call or link delay decreases */
	if (ca->delay_min == 0 || ca->delay_min > delay)
		ca->delay_min = delay;
}

static void bictcp_cong_avoid(struct sock *sk, u32 ack,
			      u32 seq_rtt, u32 in_flight, int data_acked)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct bictcp *ca = inet_csk_ca(sk);

	if (data_acked)
		measure_delay(sk);

	if (!tcp_is_cwnd_limited(sk, in_flight))
		return;

	if (tp->snd_cwnd <= tp->snd_ssthresh)
		tcp_slow_start(tp);
	else {
		bictcp_update(ca, tp->snd_cwnd);

		/* In dangerous area, increase slowly.
		 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
		 */
		if (tp->snd_cwnd_cnt >= ca->cnt) {
			if (tp->snd_cwnd < tp->snd_cwnd_clamp)
				tp->snd_cwnd++;
			tp->snd_cwnd_cnt = 0;
		} else
			tp->snd_cwnd_cnt++;
	}

}

static u32 bictcp_recalc_ssthresh(struct sock *sk)
{
	const struct tcp_sock *tp = tcp_sk(sk);
	struct bictcp *ca = inet_csk_ca(sk);

	ca->epoch_start = 0;	/* end of epoch */

	/* Wmax and fast convergence */
	if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
		ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
			/ (2 * BICTCP_BETA_SCALE);
	else
		ca->last_max_cwnd = tp->snd_cwnd;

	ca->loss_cwnd = tp->snd_cwnd;

	return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
}

static u32 bictcp_undo_cwnd(struct sock *sk)
{
	struct bictcp *ca = inet_csk_ca(sk);

	return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
}

static void bictcp_state(struct sock *sk, u8 new_state)
{
	if (new_state == TCP_CA_Loss)
		bictcp_reset(inet_csk_ca(sk));
}

/* Track delayed acknowledgment ratio using sliding window
 * ratio = (15*ratio + sample) / 16
 */
static void bictcp_acked(struct sock *sk, u32 cnt)
{
	const struct inet_connection_sock *icsk = inet_csk(sk);

	if (cnt > 0 && icsk->icsk_ca_state == TCP_CA_Open) {
		struct bictcp *ca = inet_csk_ca(sk);
		cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;
		ca->delayed_ack += cnt;
	}
}


static struct tcp_congestion_ops cubictcp = {
	.init		= bictcp_init,
	.ssthresh	= bictcp_recalc_ssthresh,
	.cong_avoid	= bictcp_cong_avoid,
	.set_state	= bictcp_state,
	.undo_cwnd	= bictcp_undo_cwnd,
	.pkts_acked     = bictcp_acked,
	.owner		= THIS_MODULE,
	.name		= "cubic",
};

static int __init cubictcp_register(void)
{
	BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);

	/* Precompute a bunch of the scaling factors that are used per-packet
	 * based on SRTT of 100ms
	 */

	beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);

	cube_rtt_scale = (bic_scale << 3) / 10;	/* 1024*c/rtt */

	/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
	 *  so K = cubic_root( (wmax-cwnd)*rtt/c )
	 * the unit of K is bictcp_HZ=2^10, not HZ
	 *
	 *  c = bic_scale >> 10
	 *  rtt = 100ms
	 *
	 * the following code has been designed and tested for
	 * cwnd < 1 million packets
	 * RTT < 100 seconds
	 * HZ < 1,000,00  (corresponding to 10 nano-second)
	 */

	/* 1/c * 2^2*bictcp_HZ * srtt */
	cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */

	/* divide by bic_scale and by constant Srtt (100ms) */
	do_div(cube_factor, bic_scale * 10);

	return tcp_register_congestion_control(&cubictcp);
}

static void __exit cubictcp_unregister(void)
{
	tcp_unregister_congestion_control(&cubictcp);
}

module_init(cubictcp_register);
module_exit(cubictcp_unregister);

MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("CUBIC TCP");
MODULE_VERSION("2.0");