blk-core.c 48 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 1991, 1992 Linus Torvalds
 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
 *	-  July2000
 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
 */

/*
 * This handles all read/write requests to block devices
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/blk-pm.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/kernel_stat.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/fault-inject.h>
#include <linux/list_sort.h>
#include <linux/delay.h>
#include <linux/ratelimit.h>
#include <linux/pm_runtime.h>
#include <linux/blk-cgroup.h>
#include <linux/t10-pi.h>
#include <linux/debugfs.h>
#include <linux/bpf.h>
#include <linux/psi.h>
#include <linux/sched/sysctl.h>
#include <linux/blk-crypto.h>

#define CREATE_TRACE_POINTS
#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-sched.h"
#include "blk-pm.h"
#include "blk-rq-qos.h"

struct dentry *blk_debugfs_root;

EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);

DEFINE_IDA(blk_queue_ida);

/*
 * For queue allocation
 */
struct kmem_cache *blk_requestq_cachep;

/*
 * Controlling structure to kblockd
 */
static struct workqueue_struct *kblockd_workqueue;

/**
 * blk_queue_flag_set - atomically set a queue flag
 * @flag: flag to be set
 * @q: request queue
 */
void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
{
	set_bit(flag, &q->queue_flags);
}
EXPORT_SYMBOL(blk_queue_flag_set);

/**
 * blk_queue_flag_clear - atomically clear a queue flag
 * @flag: flag to be cleared
 * @q: request queue
 */
void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
{
	clear_bit(flag, &q->queue_flags);
}
EXPORT_SYMBOL(blk_queue_flag_clear);

/**
 * blk_queue_flag_test_and_set - atomically test and set a queue flag
 * @flag: flag to be set
 * @q: request queue
 *
 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 * the flag was already set.
 */
bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
{
	return test_and_set_bit(flag, &q->queue_flags);
}
EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);

void blk_rq_init(struct request_queue *q, struct request *rq)
{
	memset(rq, 0, sizeof(*rq));

	INIT_LIST_HEAD(&rq->queuelist);
	rq->q = q;
	rq->__sector = (sector_t) -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->tag = BLK_MQ_NO_TAG;
	rq->internal_tag = BLK_MQ_NO_TAG;
	rq->start_time_ns = ktime_get_ns();
	rq->part = NULL;
	refcount_set(&rq->ref, 1);
	blk_crypto_rq_set_defaults(rq);
}
EXPORT_SYMBOL(blk_rq_init);

#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
static const char *const blk_op_name[] = {
	REQ_OP_NAME(READ),
	REQ_OP_NAME(WRITE),
	REQ_OP_NAME(FLUSH),
	REQ_OP_NAME(DISCARD),
	REQ_OP_NAME(SECURE_ERASE),
	REQ_OP_NAME(ZONE_RESET),
	REQ_OP_NAME(ZONE_RESET_ALL),
	REQ_OP_NAME(ZONE_OPEN),
	REQ_OP_NAME(ZONE_CLOSE),
	REQ_OP_NAME(ZONE_FINISH),
	REQ_OP_NAME(ZONE_APPEND),
	REQ_OP_NAME(WRITE_SAME),
	REQ_OP_NAME(WRITE_ZEROES),
	REQ_OP_NAME(SCSI_IN),
	REQ_OP_NAME(SCSI_OUT),
	REQ_OP_NAME(DRV_IN),
	REQ_OP_NAME(DRV_OUT),
};
#undef REQ_OP_NAME

/**
 * blk_op_str - Return string XXX in the REQ_OP_XXX.
 * @op: REQ_OP_XXX.
 *
 * Description: Centralize block layer function to convert REQ_OP_XXX into
 * string format. Useful in the debugging and tracing bio or request. For
 * invalid REQ_OP_XXX it returns string "UNKNOWN".
 */
inline const char *blk_op_str(unsigned int op)
{
	const char *op_str = "UNKNOWN";

	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
		op_str = blk_op_name[op];

	return op_str;
}
EXPORT_SYMBOL_GPL(blk_op_str);

static const struct {
	int		errno;
	const char	*name;
} blk_errors[] = {
	[BLK_STS_OK]		= { 0,		"" },
	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },

	/* device mapper special case, should not leak out: */
	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },

	/* zone device specific errors */
	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },

	/* everything else not covered above: */
	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
};

blk_status_t errno_to_blk_status(int errno)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
		if (blk_errors[i].errno == errno)
			return (__force blk_status_t)i;
	}

	return BLK_STS_IOERR;
}
EXPORT_SYMBOL_GPL(errno_to_blk_status);

int blk_status_to_errno(blk_status_t status)
{
	int idx = (__force int)status;

	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
		return -EIO;
	return blk_errors[idx].errno;
}
EXPORT_SYMBOL_GPL(blk_status_to_errno);

static void print_req_error(struct request *req, blk_status_t status,
		const char *caller)
{
	int idx = (__force int)status;

	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
		return;

	printk_ratelimited(KERN_ERR
		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
		"phys_seg %u prio class %u\n",
		caller, blk_errors[idx].name,
		req->rq_disk ? req->rq_disk->disk_name : "?",
		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
		req->cmd_flags & ~REQ_OP_MASK,
		req->nr_phys_segments,
		IOPRIO_PRIO_CLASS(req->ioprio));
}

static void req_bio_endio(struct request *rq, struct bio *bio,
			  unsigned int nbytes, blk_status_t error)
{
	if (error)
		bio->bi_status = error;

	if (unlikely(rq->rq_flags & RQF_QUIET))
		bio_set_flag(bio, BIO_QUIET);

	bio_advance(bio, nbytes);

	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
		/*
		 * Partial zone append completions cannot be supported as the
		 * BIO fragments may end up not being written sequentially.
		 */
		if (bio->bi_iter.bi_size)
			bio->bi_status = BLK_STS_IOERR;
		else
			bio->bi_iter.bi_sector = rq->__sector;
	}

	/* don't actually finish bio if it's part of flush sequence */
	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
		bio_endio(bio);
}

void blk_dump_rq_flags(struct request *rq, char *msg)
{
	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
		rq->rq_disk ? rq->rq_disk->disk_name : "?",
		(unsigned long long) rq->cmd_flags);

	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
	       (unsigned long long)blk_rq_pos(rq),
	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
	       rq->bio, rq->biotail, blk_rq_bytes(rq));
}
EXPORT_SYMBOL(blk_dump_rq_flags);

/**
 * blk_sync_queue - cancel any pending callbacks on a queue
 * @q: the queue
 *
 * Description:
 *     The block layer may perform asynchronous callback activity
 *     on a queue, such as calling the unplug function after a timeout.
 *     A block device may call blk_sync_queue to ensure that any
 *     such activity is cancelled, thus allowing it to release resources
 *     that the callbacks might use. The caller must already have made sure
 *     that its ->submit_bio will not re-add plugging prior to calling
 *     this function.
 *
 *     This function does not cancel any asynchronous activity arising
 *     out of elevator or throttling code. That would require elevator_exit()
 *     and blkcg_exit_queue() to be called with queue lock initialized.
 *
 */
void blk_sync_queue(struct request_queue *q)
{
	del_timer_sync(&q->timeout);
	cancel_work_sync(&q->timeout_work);
}
EXPORT_SYMBOL(blk_sync_queue);

/**
 * blk_set_pm_only - increment pm_only counter
 * @q: request queue pointer
 */
void blk_set_pm_only(struct request_queue *q)
{
	atomic_inc(&q->pm_only);
}
EXPORT_SYMBOL_GPL(blk_set_pm_only);

void blk_clear_pm_only(struct request_queue *q)
{
	int pm_only;

	pm_only = atomic_dec_return(&q->pm_only);
	WARN_ON_ONCE(pm_only < 0);
	if (pm_only == 0)
		wake_up_all(&q->mq_freeze_wq);
}
EXPORT_SYMBOL_GPL(blk_clear_pm_only);

/**
 * blk_put_queue - decrement the request_queue refcount
 * @q: the request_queue structure to decrement the refcount for
 *
 * Decrements the refcount of the request_queue kobject. When this reaches 0
 * we'll have blk_release_queue() called.
 *
 * Context: Any context, but the last reference must not be dropped from
 *          atomic context.
 */
void blk_put_queue(struct request_queue *q)
{
	kobject_put(&q->kobj);
}
EXPORT_SYMBOL(blk_put_queue);

void blk_set_queue_dying(struct request_queue *q)
{
	blk_queue_flag_set(QUEUE_FLAG_DYING, q);

	/*
	 * When queue DYING flag is set, we need to block new req
	 * entering queue, so we call blk_freeze_queue_start() to
	 * prevent I/O from crossing blk_queue_enter().
	 */
	blk_freeze_queue_start(q);

	if (queue_is_mq(q))
		blk_mq_wake_waiters(q);

	/* Make blk_queue_enter() reexamine the DYING flag. */
	wake_up_all(&q->mq_freeze_wq);
}
EXPORT_SYMBOL_GPL(blk_set_queue_dying);

/**
 * blk_cleanup_queue - shutdown a request queue
 * @q: request queue to shutdown
 *
 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 * put it.  All future requests will be failed immediately with -ENODEV.
 *
 * Context: can sleep
 */
void blk_cleanup_queue(struct request_queue *q)
{
	/* cannot be called from atomic context */
	might_sleep();

	WARN_ON_ONCE(blk_queue_registered(q));

	/* mark @q DYING, no new request or merges will be allowed afterwards */
	blk_set_queue_dying(q);

	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);

	/*
	 * Drain all requests queued before DYING marking. Set DEAD flag to
	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
	 * after draining finished.
	 */
	blk_freeze_queue(q);

	rq_qos_exit(q);

	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);

	/* for synchronous bio-based driver finish in-flight integrity i/o */
	blk_flush_integrity();

	/* @q won't process any more request, flush async actions */
	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
	blk_sync_queue(q);

	if (queue_is_mq(q))
		blk_mq_exit_queue(q);

	/*
	 * In theory, request pool of sched_tags belongs to request queue.
	 * However, the current implementation requires tag_set for freeing
	 * requests, so free the pool now.
	 *
	 * Queue has become frozen, there can't be any in-queue requests, so
	 * it is safe to free requests now.
	 */
	mutex_lock(&q->sysfs_lock);
	if (q->elevator)
		blk_mq_sched_free_requests(q);
	mutex_unlock(&q->sysfs_lock);

	percpu_ref_exit(&q->q_usage_counter);

	/* @q is and will stay empty, shutdown and put */
	blk_put_queue(q);
}
EXPORT_SYMBOL(blk_cleanup_queue);

/**
 * blk_queue_enter() - try to increase q->q_usage_counter
 * @q: request queue pointer
 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
 */
int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
{
	const bool pm = flags & BLK_MQ_REQ_PM;

	while (true) {
		bool success = false;

		rcu_read_lock();
		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
			/*
			 * The code that increments the pm_only counter is
			 * responsible for ensuring that that counter is
			 * globally visible before the queue is unfrozen.
			 */
			if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
			    !blk_queue_pm_only(q)) {
				success = true;
			} else {
				percpu_ref_put(&q->q_usage_counter);
			}
		}
		rcu_read_unlock();

		if (success)
			return 0;

		if (flags & BLK_MQ_REQ_NOWAIT)
			return -EBUSY;

		/*
		 * read pair of barrier in blk_freeze_queue_start(),
		 * we need to order reading __PERCPU_REF_DEAD flag of
		 * .q_usage_counter and reading .mq_freeze_depth or
		 * queue dying flag, otherwise the following wait may
		 * never return if the two reads are reordered.
		 */
		smp_rmb();

		wait_event(q->mq_freeze_wq,
			   (!q->mq_freeze_depth &&
			    blk_pm_resume_queue(pm, q)) ||
			   blk_queue_dying(q));
		if (blk_queue_dying(q))
			return -ENODEV;
	}
}

static inline int bio_queue_enter(struct bio *bio)
{
	struct request_queue *q = bio->bi_disk->queue;
	bool nowait = bio->bi_opf & REQ_NOWAIT;
	int ret;

	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
	if (unlikely(ret)) {
		if (nowait && !blk_queue_dying(q))
			bio_wouldblock_error(bio);
		else
			bio_io_error(bio);
	}

	return ret;
}

void blk_queue_exit(struct request_queue *q)
{
	percpu_ref_put(&q->q_usage_counter);
}

static void blk_queue_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, q_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
}

static void blk_rq_timed_out_timer(struct timer_list *t)
{
	struct request_queue *q = from_timer(q, t, timeout);

	kblockd_schedule_work(&q->timeout_work);
}

static void blk_timeout_work(struct work_struct *work)
{
}

struct request_queue *blk_alloc_queue(int node_id)
{
	struct request_queue *q;
	int ret;

	q = kmem_cache_alloc_node(blk_requestq_cachep,
				GFP_KERNEL | __GFP_ZERO, node_id);
	if (!q)
		return NULL;

	q->last_merge = NULL;

	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
	if (q->id < 0)
		goto fail_q;

	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
	if (ret)
		goto fail_id;

	q->backing_dev_info = bdi_alloc(node_id);
	if (!q->backing_dev_info)
		goto fail_split;

	q->stats = blk_alloc_queue_stats();
	if (!q->stats)
		goto fail_stats;

	q->node = node_id;

	atomic_set(&q->nr_active_requests_shared_sbitmap, 0);

	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
		    laptop_mode_timer_fn, 0);
	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
	INIT_WORK(&q->timeout_work, blk_timeout_work);
	INIT_LIST_HEAD(&q->icq_list);
#ifdef CONFIG_BLK_CGROUP
	INIT_LIST_HEAD(&q->blkg_list);
#endif

	kobject_init(&q->kobj, &blk_queue_ktype);

	mutex_init(&q->debugfs_mutex);
	mutex_init(&q->sysfs_lock);
	mutex_init(&q->sysfs_dir_lock);
	spin_lock_init(&q->queue_lock);

	init_waitqueue_head(&q->mq_freeze_wq);
	mutex_init(&q->mq_freeze_lock);

	/*
	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
	 * See blk_register_queue() for details.
	 */
	if (percpu_ref_init(&q->q_usage_counter,
				blk_queue_usage_counter_release,
				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
		goto fail_bdi;

	if (blkcg_init_queue(q))
		goto fail_ref;

	blk_queue_dma_alignment(q, 511);
	blk_set_default_limits(&q->limits);
	q->nr_requests = BLKDEV_MAX_RQ;

	return q;

fail_ref:
	percpu_ref_exit(&q->q_usage_counter);
fail_bdi:
	blk_free_queue_stats(q->stats);
fail_stats:
	bdi_put(q->backing_dev_info);
fail_split:
	bioset_exit(&q->bio_split);
fail_id:
	ida_simple_remove(&blk_queue_ida, q->id);
fail_q:
	kmem_cache_free(blk_requestq_cachep, q);
	return NULL;
}
EXPORT_SYMBOL(blk_alloc_queue);

/**
 * blk_get_queue - increment the request_queue refcount
 * @q: the request_queue structure to increment the refcount for
 *
 * Increment the refcount of the request_queue kobject.
 *
 * Context: Any context.
 */
bool blk_get_queue(struct request_queue *q)
{
	if (likely(!blk_queue_dying(q))) {
		__blk_get_queue(q);
		return true;
	}

	return false;
}
EXPORT_SYMBOL(blk_get_queue);

/**
 * blk_get_request - allocate a request
 * @q: request queue to allocate a request for
 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
 */
struct request *blk_get_request(struct request_queue *q, unsigned int op,
				blk_mq_req_flags_t flags)
{
	struct request *req;

	WARN_ON_ONCE(op & REQ_NOWAIT);
	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));

	req = blk_mq_alloc_request(q, op, flags);
	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
		q->mq_ops->initialize_rq_fn(req);

	return req;
}
EXPORT_SYMBOL(blk_get_request);

void blk_put_request(struct request *req)
{
	blk_mq_free_request(req);
}
EXPORT_SYMBOL(blk_put_request);

static void handle_bad_sector(struct bio *bio, sector_t maxsector)
{
	char b[BDEVNAME_SIZE];

	pr_info_ratelimited("attempt to access beyond end of device\n"
			    "%s: rw=%d, want=%llu, limit=%llu\n",
			    bio_devname(bio, b), bio->bi_opf,
			    bio_end_sector(bio), maxsector);
}

#ifdef CONFIG_FAIL_MAKE_REQUEST

static DECLARE_FAULT_ATTR(fail_make_request);

static int __init setup_fail_make_request(char *str)
{
	return setup_fault_attr(&fail_make_request, str);
}
__setup("fail_make_request=", setup_fail_make_request);

static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
{
	return part->make_it_fail && should_fail(&fail_make_request, bytes);
}

static int __init fail_make_request_debugfs(void)
{
	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
						NULL, &fail_make_request);

	return PTR_ERR_OR_ZERO(dir);
}

late_initcall(fail_make_request_debugfs);

#else /* CONFIG_FAIL_MAKE_REQUEST */

static inline bool should_fail_request(struct hd_struct *part,
					unsigned int bytes)
{
	return false;
}

#endif /* CONFIG_FAIL_MAKE_REQUEST */

static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
{
	const int op = bio_op(bio);

	if (part->policy && op_is_write(op)) {
		char b[BDEVNAME_SIZE];

		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
			return false;

		WARN_ONCE(1,
		       "Trying to write to read-only block-device %s (partno %d)\n",
			bio_devname(bio, b), part->partno);
		/* Older lvm-tools actually trigger this */
		return false;
	}

	return false;
}

static noinline int should_fail_bio(struct bio *bio)
{
	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
		return -EIO;
	return 0;
}
ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);

/*
 * Check whether this bio extends beyond the end of the device or partition.
 * This may well happen - the kernel calls bread() without checking the size of
 * the device, e.g., when mounting a file system.
 */
static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
{
	unsigned int nr_sectors = bio_sectors(bio);

	if (nr_sectors && maxsector &&
	    (nr_sectors > maxsector ||
	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
		handle_bad_sector(bio, maxsector);
		return -EIO;
	}
	return 0;
}

/*
 * Remap block n of partition p to block n+start(p) of the disk.
 */
static inline int blk_partition_remap(struct bio *bio)
{
	struct hd_struct *p;
	int ret = -EIO;

	rcu_read_lock();
	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
	if (unlikely(!p))
		goto out;
	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
		goto out;
	if (unlikely(bio_check_ro(bio, p)))
		goto out;

	if (bio_sectors(bio)) {
		if (bio_check_eod(bio, part_nr_sects_read(p)))
			goto out;
		bio->bi_iter.bi_sector += p->start_sect;
		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
				      bio->bi_iter.bi_sector - p->start_sect);
	}
	bio->bi_partno = 0;
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
}

/*
 * Check write append to a zoned block device.
 */
static inline blk_status_t blk_check_zone_append(struct request_queue *q,
						 struct bio *bio)
{
	sector_t pos = bio->bi_iter.bi_sector;
	int nr_sectors = bio_sectors(bio);

	/* Only applicable to zoned block devices */
	if (!blk_queue_is_zoned(q))
		return BLK_STS_NOTSUPP;

	/* The bio sector must point to the start of a sequential zone */
	if (pos & (blk_queue_zone_sectors(q) - 1) ||
	    !blk_queue_zone_is_seq(q, pos))
		return BLK_STS_IOERR;

	/*
	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
	 * split and could result in non-contiguous sectors being written in
	 * different zones.
	 */
	if (nr_sectors > q->limits.chunk_sectors)
		return BLK_STS_IOERR;

	/* Make sure the BIO is small enough and will not get split */
	if (nr_sectors > q->limits.max_zone_append_sectors)
		return BLK_STS_IOERR;

	bio->bi_opf |= REQ_NOMERGE;

	return BLK_STS_OK;
}

static noinline_for_stack bool submit_bio_checks(struct bio *bio)
{
	struct request_queue *q = bio->bi_disk->queue;
	blk_status_t status = BLK_STS_IOERR;
	struct blk_plug *plug;

	might_sleep();

	plug = blk_mq_plug(q, bio);
	if (plug && plug->nowait)
		bio->bi_opf |= REQ_NOWAIT;

	/*
	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
	 * if queue does not support NOWAIT.
	 */
	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
		goto not_supported;

	if (should_fail_bio(bio))
		goto end_io;

	if (bio->bi_partno) {
		if (unlikely(blk_partition_remap(bio)))
			goto end_io;
	} else {
		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
			goto end_io;
		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
			goto end_io;
	}

	/*
	 * Filter flush bio's early so that bio based drivers without flush
	 * support don't have to worry about them.
	 */
	if (op_is_flush(bio->bi_opf) &&
	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
		if (!bio_sectors(bio)) {
			status = BLK_STS_OK;
			goto end_io;
		}
	}

	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		bio->bi_opf &= ~REQ_HIPRI;

	switch (bio_op(bio)) {
	case REQ_OP_DISCARD:
		if (!blk_queue_discard(q))
			goto not_supported;
		break;
	case REQ_OP_SECURE_ERASE:
		if (!blk_queue_secure_erase(q))
			goto not_supported;
		break;
	case REQ_OP_WRITE_SAME:
		if (!q->limits.max_write_same_sectors)
			goto not_supported;
		break;
	case REQ_OP_ZONE_APPEND:
		status = blk_check_zone_append(q, bio);
		if (status != BLK_STS_OK)
			goto end_io;
		break;
	case REQ_OP_ZONE_RESET:
	case REQ_OP_ZONE_OPEN:
	case REQ_OP_ZONE_CLOSE:
	case REQ_OP_ZONE_FINISH:
		if (!blk_queue_is_zoned(q))
			goto not_supported;
		break;
	case REQ_OP_ZONE_RESET_ALL:
		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
			goto not_supported;
		break;
	case REQ_OP_WRITE_ZEROES:
		if (!q->limits.max_write_zeroes_sectors)
			goto not_supported;
		break;
	default:
		break;
	}

	/*
	 * Various block parts want %current->io_context, so allocate it up
	 * front rather than dealing with lots of pain to allocate it only
	 * where needed. This may fail and the block layer knows how to live
	 * with it.
	 */
	if (unlikely(!current->io_context))
		create_task_io_context(current, GFP_ATOMIC, q->node);

	if (blk_throtl_bio(bio)) {
		blkcg_bio_issue_init(bio);
		return false;
	}

	blk_cgroup_bio_start(bio);
	blkcg_bio_issue_init(bio);

	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
		trace_block_bio_queue(q, bio);
		/* Now that enqueuing has been traced, we need to trace
		 * completion as well.
		 */
		bio_set_flag(bio, BIO_TRACE_COMPLETION);
	}
	return true;

not_supported:
	status = BLK_STS_NOTSUPP;
end_io:
	bio->bi_status = status;
	bio_endio(bio);
	return false;
}

static blk_qc_t __submit_bio(struct bio *bio)
{
	struct gendisk *disk = bio->bi_disk;
	blk_qc_t ret = BLK_QC_T_NONE;

	if (blk_crypto_bio_prep(&bio)) {
		if (!disk->fops->submit_bio)
			return blk_mq_submit_bio(bio);
		ret = disk->fops->submit_bio(bio);
	}
	blk_queue_exit(disk->queue);
	return ret;
}

/*
 * The loop in this function may be a bit non-obvious, and so deserves some
 * explanation:
 *
 *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
 *    that), so we have a list with a single bio.
 *  - We pretend that we have just taken it off a longer list, so we assign
 *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
 *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
 *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
 *    non-NULL value in bio_list and re-enter the loop from the top.
 *  - In this case we really did just take the bio of the top of the list (no
 *    pretending) and so remove it from bio_list, and call into ->submit_bio()
 *    again.
 *
 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
 * bio_list_on_stack[1] contains bios that were submitted before the current
 *	->submit_bio_bio, but that haven't been processed yet.
 */
static blk_qc_t __submit_bio_noacct(struct bio *bio)
{
	struct bio_list bio_list_on_stack[2];
	blk_qc_t ret = BLK_QC_T_NONE;

	BUG_ON(bio->bi_next);

	bio_list_init(&bio_list_on_stack[0]);
	current->bio_list = bio_list_on_stack;

	do {
		struct request_queue *q = bio->bi_disk->queue;
		struct bio_list lower, same;

		if (unlikely(bio_queue_enter(bio) != 0))
			continue;

		/*
		 * Create a fresh bio_list for all subordinate requests.
		 */
		bio_list_on_stack[1] = bio_list_on_stack[0];
		bio_list_init(&bio_list_on_stack[0]);

		ret = __submit_bio(bio);

		/*
		 * Sort new bios into those for a lower level and those for the
		 * same level.
		 */
		bio_list_init(&lower);
		bio_list_init(&same);
		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
			if (q == bio->bi_disk->queue)
				bio_list_add(&same, bio);
			else
				bio_list_add(&lower, bio);

		/*
		 * Now assemble so we handle the lowest level first.
		 */
		bio_list_merge(&bio_list_on_stack[0], &lower);
		bio_list_merge(&bio_list_on_stack[0], &same);
		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));

	current->bio_list = NULL;
	return ret;
}

static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
{
	struct bio_list bio_list[2] = { };
	blk_qc_t ret = BLK_QC_T_NONE;

	current->bio_list = bio_list;

	do {
		struct gendisk *disk = bio->bi_disk;

		if (unlikely(bio_queue_enter(bio) != 0))
			continue;

		if (!blk_crypto_bio_prep(&bio)) {
			blk_queue_exit(disk->queue);
			ret = BLK_QC_T_NONE;
			continue;
		}

		ret = blk_mq_submit_bio(bio);
	} while ((bio = bio_list_pop(&bio_list[0])));

	current->bio_list = NULL;
	return ret;
}

/**
 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
 * @bio:  The bio describing the location in memory and on the device.
 *
 * This is a version of submit_bio() that shall only be used for I/O that is
 * resubmitted to lower level drivers by stacking block drivers.  All file
 * systems and other upper level users of the block layer should use
 * submit_bio() instead.
 */
blk_qc_t submit_bio_noacct(struct bio *bio)
{
	if (!submit_bio_checks(bio))
		return BLK_QC_T_NONE;

	/*
	 * We only want one ->submit_bio to be active at a time, else stack
	 * usage with stacked devices could be a problem.  Use current->bio_list
	 * to collect a list of requests submited by a ->submit_bio method while
	 * it is active, and then process them after it returned.
	 */
	if (current->bio_list) {
		bio_list_add(&current->bio_list[0], bio);
		return BLK_QC_T_NONE;
	}

	if (!bio->bi_disk->fops->submit_bio)
		return __submit_bio_noacct_mq(bio);
	return __submit_bio_noacct(bio);
}
EXPORT_SYMBOL(submit_bio_noacct);

/**
 * submit_bio - submit a bio to the block device layer for I/O
 * @bio: The &struct bio which describes the I/O
 *
 * submit_bio() is used to submit I/O requests to block devices.  It is passed a
 * fully set up &struct bio that describes the I/O that needs to be done.  The
 * bio will be send to the device described by the bi_disk and bi_partno fields.
 *
 * The success/failure status of the request, along with notification of
 * completion, is delivered asynchronously through the ->bi_end_io() callback
 * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
 * been called.
 */
blk_qc_t submit_bio(struct bio *bio)
{
	if (blkcg_punt_bio_submit(bio))
		return BLK_QC_T_NONE;

	/*
	 * If it's a regular read/write or a barrier with data attached,
	 * go through the normal accounting stuff before submission.
	 */
	if (bio_has_data(bio)) {
		unsigned int count;

		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
		else
			count = bio_sectors(bio);

		if (op_is_write(bio_op(bio))) {
			count_vm_events(PGPGOUT, count);
		} else {
			task_io_account_read(bio->bi_iter.bi_size);
			count_vm_events(PGPGIN, count);
		}

		if (unlikely(block_dump)) {
			char b[BDEVNAME_SIZE];
			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
			current->comm, task_pid_nr(current),
				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
				(unsigned long long)bio->bi_iter.bi_sector,
				bio_devname(bio, b), count);
		}
	}

	/*
	 * If we're reading data that is part of the userspace workingset, count
	 * submission time as memory stall.  When the device is congested, or
	 * the submitting cgroup IO-throttled, submission can be a significant
	 * part of overall IO time.
	 */
	if (unlikely(bio_op(bio) == REQ_OP_READ &&
	    bio_flagged(bio, BIO_WORKINGSET))) {
		unsigned long pflags;
		blk_qc_t ret;

		psi_memstall_enter(&pflags);
		ret = submit_bio_noacct(bio);
		psi_memstall_leave(&pflags);

		return ret;
	}

	return submit_bio_noacct(bio);
}
EXPORT_SYMBOL(submit_bio);

/**
 * blk_cloned_rq_check_limits - Helper function to check a cloned request
 *                              for the new queue limits
 * @q:  the queue
 * @rq: the request being checked
 *
 * Description:
 *    @rq may have been made based on weaker limitations of upper-level queues
 *    in request stacking drivers, and it may violate the limitation of @q.
 *    Since the block layer and the underlying device driver trust @rq
 *    after it is inserted to @q, it should be checked against @q before
 *    the insertion using this generic function.
 *
 *    Request stacking drivers like request-based dm may change the queue
 *    limits when retrying requests on other queues. Those requests need
 *    to be checked against the new queue limits again during dispatch.
 */
static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
				      struct request *rq)
{
	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));

	if (blk_rq_sectors(rq) > max_sectors) {
		/*
		 * SCSI device does not have a good way to return if
		 * Write Same/Zero is actually supported. If a device rejects
		 * a non-read/write command (discard, write same,etc.) the
		 * low-level device driver will set the relevant queue limit to
		 * 0 to prevent blk-lib from issuing more of the offending
		 * operations. Commands queued prior to the queue limit being
		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
		 * errors being propagated to upper layers.
		 */
		if (max_sectors == 0)
			return BLK_STS_NOTSUPP;

		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
			__func__, blk_rq_sectors(rq), max_sectors);
		return BLK_STS_IOERR;
	}

	/*
	 * queue's settings related to segment counting like q->bounce_pfn
	 * may differ from that of other stacking queues.
	 * Recalculate it to check the request correctly on this queue's
	 * limitation.
	 */
	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
	if (rq->nr_phys_segments > queue_max_segments(q)) {
		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
			__func__, rq->nr_phys_segments, queue_max_segments(q));
		return BLK_STS_IOERR;
	}

	return BLK_STS_OK;
}

/**
 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
 * @q:  the queue to submit the request
 * @rq: the request being queued
 */
blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
{
	blk_status_t ret;

	ret = blk_cloned_rq_check_limits(q, rq);
	if (ret != BLK_STS_OK)
		return ret;

	if (rq->rq_disk &&
	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
		return BLK_STS_IOERR;

	if (blk_crypto_insert_cloned_request(rq))
		return BLK_STS_IOERR;

	if (blk_queue_io_stat(q))
		blk_account_io_start(rq);

	/*
	 * Since we have a scheduler attached on the top device,
	 * bypass a potential scheduler on the bottom device for
	 * insert.
	 */
	return blk_mq_request_issue_directly(rq, true);
}
EXPORT_SYMBOL_GPL(blk_insert_cloned_request);

/**
 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
 * @rq: request to examine
 *
 * Description:
 *     A request could be merge of IOs which require different failure
 *     handling.  This function determines the number of bytes which
 *     can be failed from the beginning of the request without
 *     crossing into area which need to be retried further.
 *
 * Return:
 *     The number of bytes to fail.
 */
unsigned int blk_rq_err_bytes(const struct request *rq)
{
	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
	unsigned int bytes = 0;
	struct bio *bio;

	if (!(rq->rq_flags & RQF_MIXED_MERGE))
		return blk_rq_bytes(rq);

	/*
	 * Currently the only 'mixing' which can happen is between
	 * different fastfail types.  We can safely fail portions
	 * which have all the failfast bits that the first one has -
	 * the ones which are at least as eager to fail as the first
	 * one.
	 */
	for (bio = rq->bio; bio; bio = bio->bi_next) {
		if ((bio->bi_opf & ff) != ff)
			break;
		bytes += bio->bi_iter.bi_size;
	}

	/* this could lead to infinite loop */
	BUG_ON(blk_rq_bytes(rq) && !bytes);
	return bytes;
}
EXPORT_SYMBOL_GPL(blk_rq_err_bytes);

static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
{
	unsigned long stamp;
again:
	stamp = READ_ONCE(part->stamp);
	if (unlikely(stamp != now)) {
		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
	}
	if (part->partno) {
		part = &part_to_disk(part)->part0;
		goto again;
	}
}

static void blk_account_io_completion(struct request *req, unsigned int bytes)
{
	if (req->part && blk_do_io_stat(req)) {
		const int sgrp = op_stat_group(req_op(req));
		struct hd_struct *part;

		part_stat_lock();
		part = req->part;
		part_stat_add(part, sectors[sgrp], bytes >> 9);
		part_stat_unlock();
	}
}

void blk_account_io_done(struct request *req, u64 now)
{
	/*
	 * Account IO completion.  flush_rq isn't accounted as a
	 * normal IO on queueing nor completion.  Accounting the
	 * containing request is enough.
	 */
	if (req->part && blk_do_io_stat(req) &&
	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
		const int sgrp = op_stat_group(req_op(req));
		struct hd_struct *part;

		part_stat_lock();
		part = req->part;

		update_io_ticks(part, jiffies, true);
		part_stat_inc(part, ios[sgrp]);
		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
		part_stat_unlock();

		hd_struct_put(part);
	}
}

void blk_account_io_start(struct request *rq)
{
	if (!blk_do_io_stat(rq))
		return;

	rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));

	part_stat_lock();
	update_io_ticks(rq->part, jiffies, false);
	part_stat_unlock();
}

static unsigned long __part_start_io_acct(struct hd_struct *part,
					  unsigned int sectors, unsigned int op)
{
	const int sgrp = op_stat_group(op);
	unsigned long now = READ_ONCE(jiffies);

	part_stat_lock();
	update_io_ticks(part, now, false);
	part_stat_inc(part, ios[sgrp]);
	part_stat_add(part, sectors[sgrp], sectors);
	part_stat_local_inc(part, in_flight[op_is_write(op)]);
	part_stat_unlock();

	return now;
}

unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
				 struct bio *bio)
{
	*part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);

	return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
}
EXPORT_SYMBOL_GPL(part_start_io_acct);

unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
				 unsigned int op)
{
	return __part_start_io_acct(&disk->part0, sectors, op);
}
EXPORT_SYMBOL(disk_start_io_acct);

static void __part_end_io_acct(struct hd_struct *part, unsigned int op,
			       unsigned long start_time)
{
	const int sgrp = op_stat_group(op);
	unsigned long now = READ_ONCE(jiffies);
	unsigned long duration = now - start_time;

	part_stat_lock();
	update_io_ticks(part, now, true);
	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
	part_stat_local_dec(part, in_flight[op_is_write(op)]);
	part_stat_unlock();
}

void part_end_io_acct(struct hd_struct *part, struct bio *bio,
		      unsigned long start_time)
{
	__part_end_io_acct(part, bio_op(bio), start_time);
	hd_struct_put(part);
}
EXPORT_SYMBOL_GPL(part_end_io_acct);

void disk_end_io_acct(struct gendisk *disk, unsigned int op,
		      unsigned long start_time)
{
	__part_end_io_acct(&disk->part0, op, start_time);
}
EXPORT_SYMBOL(disk_end_io_acct);

/*
 * Steal bios from a request and add them to a bio list.
 * The request must not have been partially completed before.
 */
void blk_steal_bios(struct bio_list *list, struct request *rq)
{
	if (rq->bio) {
		if (list->tail)
			list->tail->bi_next = rq->bio;
		else
			list->head = rq->bio;
		list->tail = rq->biotail;

		rq->bio = NULL;
		rq->biotail = NULL;
	}

	rq->__data_len = 0;
}
EXPORT_SYMBOL_GPL(blk_steal_bios);

/**
 * blk_update_request - Special helper function for request stacking drivers
 * @req:      the request being processed
 * @error:    block status code
 * @nr_bytes: number of bytes to complete @req
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 *     the request structure even if @req doesn't have leftover.
 *     If @req has leftover, sets it up for the next range of segments.
 *
 *     This special helper function is only for request stacking drivers
 *     (e.g. request-based dm) so that they can handle partial completion.
 *     Actual device drivers should use blk_mq_end_request instead.
 *
 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 *     %false return from this function.
 *
 * Note:
 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
 *	blk_rq_bytes() and in blk_update_request().
 *
 * Return:
 *     %false - this request doesn't have any more data
 *     %true  - this request has more data
 **/
bool blk_update_request(struct request *req, blk_status_t error,
		unsigned int nr_bytes)
{
	int total_bytes;

	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);

	if (!req->bio)
		return false;

#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
	    error == BLK_STS_OK)
		req->q->integrity.profile->complete_fn(req, nr_bytes);
#endif

	if (unlikely(error && !blk_rq_is_passthrough(req) &&
		     !(req->rq_flags & RQF_QUIET)))
		print_req_error(req, error, __func__);

	blk_account_io_completion(req, nr_bytes);

	total_bytes = 0;
	while (req->bio) {
		struct bio *bio = req->bio;
		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);

		if (bio_bytes == bio->bi_iter.bi_size)
			req->bio = bio->bi_next;

		/* Completion has already been traced */
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
		req_bio_endio(req, bio, bio_bytes, error);

		total_bytes += bio_bytes;
		nr_bytes -= bio_bytes;

		if (!nr_bytes)
			break;
	}

	/*
	 * completely done
	 */
	if (!req->bio) {
		/*
		 * Reset counters so that the request stacking driver
		 * can find how many bytes remain in the request
		 * later.
		 */
		req->__data_len = 0;
		return false;
	}

	req->__data_len -= total_bytes;

	/* update sector only for requests with clear definition of sector */
	if (!blk_rq_is_passthrough(req))
		req->__sector += total_bytes >> 9;

	/* mixed attributes always follow the first bio */
	if (req->rq_flags & RQF_MIXED_MERGE) {
		req->cmd_flags &= ~REQ_FAILFAST_MASK;
		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
	}

	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
		/*
		 * If total number of sectors is less than the first segment
		 * size, something has gone terribly wrong.
		 */
		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
			blk_dump_rq_flags(req, "request botched");
			req->__data_len = blk_rq_cur_bytes(req);
		}

		/* recalculate the number of segments */
		req->nr_phys_segments = blk_recalc_rq_segments(req);
	}

	return true;
}
EXPORT_SYMBOL_GPL(blk_update_request);

#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
/**
 * rq_flush_dcache_pages - Helper function to flush all pages in a request
 * @rq: the request to be flushed
 *
 * Description:
 *     Flush all pages in @rq.
 */
void rq_flush_dcache_pages(struct request *rq)
{
	struct req_iterator iter;
	struct bio_vec bvec;

	rq_for_each_segment(bvec, rq, iter)
		flush_dcache_page(bvec.bv_page);
}
EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
#endif

/**
 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
 * @q : the queue of the device being checked
 *
 * Description:
 *    Check if underlying low-level drivers of a device are busy.
 *    If the drivers want to export their busy state, they must set own
 *    exporting function using blk_queue_lld_busy() first.
 *
 *    Basically, this function is used only by request stacking drivers
 *    to stop dispatching requests to underlying devices when underlying
 *    devices are busy.  This behavior helps more I/O merging on the queue
 *    of the request stacking driver and prevents I/O throughput regression
 *    on burst I/O load.
 *
 * Return:
 *    0 - Not busy (The request stacking driver should dispatch request)
 *    1 - Busy (The request stacking driver should stop dispatching request)
 */
int blk_lld_busy(struct request_queue *q)
{
	if (queue_is_mq(q) && q->mq_ops->busy)
		return q->mq_ops->busy(q);

	return 0;
}
EXPORT_SYMBOL_GPL(blk_lld_busy);

/**
 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
 * @rq: the clone request to be cleaned up
 *
 * Description:
 *     Free all bios in @rq for a cloned request.
 */
void blk_rq_unprep_clone(struct request *rq)
{
	struct bio *bio;

	while ((bio = rq->bio) != NULL) {
		rq->bio = bio->bi_next;

		bio_put(bio);
	}
}
EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);

/**
 * blk_rq_prep_clone - Helper function to setup clone request
 * @rq: the request to be setup
 * @rq_src: original request to be cloned
 * @bs: bio_set that bios for clone are allocated from
 * @gfp_mask: memory allocation mask for bio
 * @bio_ctr: setup function to be called for each clone bio.
 *           Returns %0 for success, non %0 for failure.
 * @data: private data to be passed to @bio_ctr
 *
 * Description:
 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
 *     Also, pages which the original bios are pointing to are not copied
 *     and the cloned bios just point same pages.
 *     So cloned bios must be completed before original bios, which means
 *     the caller must complete @rq before @rq_src.
 */
int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
		      struct bio_set *bs, gfp_t gfp_mask,
		      int (*bio_ctr)(struct bio *, struct bio *, void *),
		      void *data)
{
	struct bio *bio, *bio_src;

	if (!bs)
		bs = &fs_bio_set;

	__rq_for_each_bio(bio_src, rq_src) {
		bio = bio_clone_fast(bio_src, gfp_mask, bs);
		if (!bio)
			goto free_and_out;

		if (bio_ctr && bio_ctr(bio, bio_src, data))
			goto free_and_out;

		if (rq->bio) {
			rq->biotail->bi_next = bio;
			rq->biotail = bio;
		} else {
			rq->bio = rq->biotail = bio;
		}
		bio = NULL;
	}

	/* Copy attributes of the original request to the clone request. */
	rq->__sector = blk_rq_pos(rq_src);
	rq->__data_len = blk_rq_bytes(rq_src);
	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
		rq->special_vec = rq_src->special_vec;
	}
	rq->nr_phys_segments = rq_src->nr_phys_segments;
	rq->ioprio = rq_src->ioprio;

	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
		goto free_and_out;

	return 0;

free_and_out:
	if (bio)
		bio_put(bio);
	blk_rq_unprep_clone(rq);

	return -ENOMEM;
}
EXPORT_SYMBOL_GPL(blk_rq_prep_clone);

int kblockd_schedule_work(struct work_struct *work)
{
	return queue_work(kblockd_workqueue, work);
}
EXPORT_SYMBOL(kblockd_schedule_work);

int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
				unsigned long delay)
{
	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
}
EXPORT_SYMBOL(kblockd_mod_delayed_work_on);

/**
 * blk_start_plug - initialize blk_plug and track it inside the task_struct
 * @plug:	The &struct blk_plug that needs to be initialized
 *
 * Description:
 *   blk_start_plug() indicates to the block layer an intent by the caller
 *   to submit multiple I/O requests in a batch.  The block layer may use
 *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
 *   is called.  However, the block layer may choose to submit requests
 *   before a call to blk_finish_plug() if the number of queued I/Os
 *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
 *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
 *   the task schedules (see below).
 *
 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
 *   pending I/O should the task end up blocking between blk_start_plug() and
 *   blk_finish_plug(). This is important from a performance perspective, but
 *   also ensures that we don't deadlock. For instance, if the task is blocking
 *   for a memory allocation, memory reclaim could end up wanting to free a
 *   page belonging to that request that is currently residing in our private
 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
 *   this kind of deadlock.
 */
void blk_start_plug(struct blk_plug *plug)
{
	struct task_struct *tsk = current;

	/*
	 * If this is a nested plug, don't actually assign it.
	 */
	if (tsk->plug)
		return;

	INIT_LIST_HEAD(&plug->mq_list);
	INIT_LIST_HEAD(&plug->cb_list);
	plug->rq_count = 0;
	plug->multiple_queues = false;
	plug->nowait = false;

	/*
	 * Store ordering should not be needed here, since a potential
	 * preempt will imply a full memory barrier
	 */
	tsk->plug = plug;
}
EXPORT_SYMBOL(blk_start_plug);

static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
{
	LIST_HEAD(callbacks);

	while (!list_empty(&plug->cb_list)) {
		list_splice_init(&plug->cb_list, &callbacks);

		while (!list_empty(&callbacks)) {
			struct blk_plug_cb *cb = list_first_entry(&callbacks,
							  struct blk_plug_cb,
							  list);
			list_del(&cb->list);
			cb->callback(cb, from_schedule);
		}
	}
}

struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
				      int size)
{
	struct blk_plug *plug = current->plug;
	struct blk_plug_cb *cb;

	if (!plug)
		return NULL;

	list_for_each_entry(cb, &plug->cb_list, list)
		if (cb->callback == unplug && cb->data == data)
			return cb;

	/* Not currently on the callback list */
	BUG_ON(size < sizeof(*cb));
	cb = kzalloc(size, GFP_ATOMIC);
	if (cb) {
		cb->data = data;
		cb->callback = unplug;
		list_add(&cb->list, &plug->cb_list);
	}
	return cb;
}
EXPORT_SYMBOL(blk_check_plugged);

void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	flush_plug_callbacks(plug, from_schedule);

	if (!list_empty(&plug->mq_list))
		blk_mq_flush_plug_list(plug, from_schedule);
}

/**
 * blk_finish_plug - mark the end of a batch of submitted I/O
 * @plug:	The &struct blk_plug passed to blk_start_plug()
 *
 * Description:
 * Indicate that a batch of I/O submissions is complete.  This function
 * must be paired with an initial call to blk_start_plug().  The intent
 * is to allow the block layer to optimize I/O submission.  See the
 * documentation for blk_start_plug() for more information.
 */
void blk_finish_plug(struct blk_plug *plug)
{
	if (plug != current->plug)
		return;
	blk_flush_plug_list(plug, false);

	current->plug = NULL;
}
EXPORT_SYMBOL(blk_finish_plug);

void blk_io_schedule(void)
{
	/* Prevent hang_check timer from firing at us during very long I/O */
	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;

	if (timeout)
		io_schedule_timeout(timeout);
	else
		io_schedule();
}
EXPORT_SYMBOL_GPL(blk_io_schedule);

int __init blk_dev_init(void)
{
	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
			sizeof_field(struct request, cmd_flags));
	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
			sizeof_field(struct bio, bi_opf));

	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
	kblockd_workqueue = alloc_workqueue("kblockd",
					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
	if (!kblockd_workqueue)
		panic("Failed to create kblockd\n");

	blk_requestq_cachep = kmem_cache_create("request_queue",
			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);

	blk_debugfs_root = debugfs_create_dir("block", NULL);

	return 0;
}