bitmap.c 38.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
// SPDX-License-Identifier: GPL-2.0-only
/*
 * lib/bitmap.c
 * Helper functions for bitmap.h.
 */
#include <linux/export.h>
#include <linux/thread_info.h>
#include <linux/ctype.h>
#include <linux/errno.h>
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/uaccess.h>

#include <asm/page.h>

#include "kstrtox.h"

/**
 * DOC: bitmap introduction
 *
 * bitmaps provide an array of bits, implemented using an
 * array of unsigned longs.  The number of valid bits in a
 * given bitmap does _not_ need to be an exact multiple of
 * BITS_PER_LONG.
 *
 * The possible unused bits in the last, partially used word
 * of a bitmap are 'don't care'.  The implementation makes
 * no particular effort to keep them zero.  It ensures that
 * their value will not affect the results of any operation.
 * The bitmap operations that return Boolean (bitmap_empty,
 * for example) or scalar (bitmap_weight, for example) results
 * carefully filter out these unused bits from impacting their
 * results.
 *
 * The byte ordering of bitmaps is more natural on little
 * endian architectures.  See the big-endian headers
 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
 * for the best explanations of this ordering.
 */

int __bitmap_equal(const unsigned long *bitmap1,
		const unsigned long *bitmap2, unsigned int bits)
{
	unsigned int k, lim = bits/BITS_PER_LONG;
	for (k = 0; k < lim; ++k)
		if (bitmap1[k] != bitmap2[k])
			return 0;

	if (bits % BITS_PER_LONG)
		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
			return 0;

	return 1;
}
EXPORT_SYMBOL(__bitmap_equal);

bool __bitmap_or_equal(const unsigned long *bitmap1,
		       const unsigned long *bitmap2,
		       const unsigned long *bitmap3,
		       unsigned int bits)
{
	unsigned int k, lim = bits / BITS_PER_LONG;
	unsigned long tmp;

	for (k = 0; k < lim; ++k) {
		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
			return false;
	}

	if (!(bits % BITS_PER_LONG))
		return true;

	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
}

void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
{
	unsigned int k, lim = BITS_TO_LONGS(bits);
	for (k = 0; k < lim; ++k)
		dst[k] = ~src[k];
}
EXPORT_SYMBOL(__bitmap_complement);

/**
 * __bitmap_shift_right - logical right shift of the bits in a bitmap
 *   @dst : destination bitmap
 *   @src : source bitmap
 *   @shift : shift by this many bits
 *   @nbits : bitmap size, in bits
 *
 * Shifting right (dividing) means moving bits in the MS -> LS bit
 * direction.  Zeros are fed into the vacated MS positions and the
 * LS bits shifted off the bottom are lost.
 */
void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
			unsigned shift, unsigned nbits)
{
	unsigned k, lim = BITS_TO_LONGS(nbits);
	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
	for (k = 0; off + k < lim; ++k) {
		unsigned long upper, lower;

		/*
		 * If shift is not word aligned, take lower rem bits of
		 * word above and make them the top rem bits of result.
		 */
		if (!rem || off + k + 1 >= lim)
			upper = 0;
		else {
			upper = src[off + k + 1];
			if (off + k + 1 == lim - 1)
				upper &= mask;
			upper <<= (BITS_PER_LONG - rem);
		}
		lower = src[off + k];
		if (off + k == lim - 1)
			lower &= mask;
		lower >>= rem;
		dst[k] = lower | upper;
	}
	if (off)
		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
}
EXPORT_SYMBOL(__bitmap_shift_right);


/**
 * __bitmap_shift_left - logical left shift of the bits in a bitmap
 *   @dst : destination bitmap
 *   @src : source bitmap
 *   @shift : shift by this many bits
 *   @nbits : bitmap size, in bits
 *
 * Shifting left (multiplying) means moving bits in the LS -> MS
 * direction.  Zeros are fed into the vacated LS bit positions
 * and those MS bits shifted off the top are lost.
 */

void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
			unsigned int shift, unsigned int nbits)
{
	int k;
	unsigned int lim = BITS_TO_LONGS(nbits);
	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
	for (k = lim - off - 1; k >= 0; --k) {
		unsigned long upper, lower;

		/*
		 * If shift is not word aligned, take upper rem bits of
		 * word below and make them the bottom rem bits of result.
		 */
		if (rem && k > 0)
			lower = src[k - 1] >> (BITS_PER_LONG - rem);
		else
			lower = 0;
		upper = src[k] << rem;
		dst[k + off] = lower | upper;
	}
	if (off)
		memset(dst, 0, off*sizeof(unsigned long));
}
EXPORT_SYMBOL(__bitmap_shift_left);

/**
 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
 * @dst: destination bitmap, might overlap with src
 * @src: source bitmap
 * @first: start bit of region to be removed
 * @cut: number of bits to remove
 * @nbits: bitmap size, in bits
 *
 * Set the n-th bit of @dst iff the n-th bit of @src is set and
 * n is less than @first, or the m-th bit of @src is set for any
 * m such that @first <= n < nbits, and m = n + @cut.
 *
 * In pictures, example for a big-endian 32-bit architecture:
 *
 * The @src bitmap is::
 *
 *   31                                   63
 *   |                                    |
 *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
 *                   |  |              |                                    |
 *                  16  14             0                                   32
 *
 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
 *
 *   31                                   63
 *   |                                    |
 *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
 *                      |              |                                    |
 *                      14 (bit 17     0                                   32
 *                          from @src)
 *
 * Note that @dst and @src might overlap partially or entirely.
 *
 * This is implemented in the obvious way, with a shift and carry
 * step for each moved bit. Optimisation is left as an exercise
 * for the compiler.
 */
void bitmap_cut(unsigned long *dst, const unsigned long *src,
		unsigned int first, unsigned int cut, unsigned int nbits)
{
	unsigned int len = BITS_TO_LONGS(nbits);
	unsigned long keep = 0, carry;
	int i;

	if (first % BITS_PER_LONG) {
		keep = src[first / BITS_PER_LONG] &
		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
	}

	memmove(dst, src, len * sizeof(*dst));

	while (cut--) {
		for (i = first / BITS_PER_LONG; i < len; i++) {
			if (i < len - 1)
				carry = dst[i + 1] & 1UL;
			else
				carry = 0;

			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
		}
	}

	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
	dst[first / BITS_PER_LONG] |= keep;
}
EXPORT_SYMBOL(bitmap_cut);

int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
				const unsigned long *bitmap2, unsigned int bits)
{
	unsigned int k;
	unsigned int lim = bits/BITS_PER_LONG;
	unsigned long result = 0;

	for (k = 0; k < lim; k++)
		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
	if (bits % BITS_PER_LONG)
		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
			   BITMAP_LAST_WORD_MASK(bits));
	return result != 0;
}
EXPORT_SYMBOL(__bitmap_and);

void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
				const unsigned long *bitmap2, unsigned int bits)
{
	unsigned int k;
	unsigned int nr = BITS_TO_LONGS(bits);

	for (k = 0; k < nr; k++)
		dst[k] = bitmap1[k] | bitmap2[k];
}
EXPORT_SYMBOL(__bitmap_or);

void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
				const unsigned long *bitmap2, unsigned int bits)
{
	unsigned int k;
	unsigned int nr = BITS_TO_LONGS(bits);

	for (k = 0; k < nr; k++)
		dst[k] = bitmap1[k] ^ bitmap2[k];
}
EXPORT_SYMBOL(__bitmap_xor);

int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
				const unsigned long *bitmap2, unsigned int bits)
{
	unsigned int k;
	unsigned int lim = bits/BITS_PER_LONG;
	unsigned long result = 0;

	for (k = 0; k < lim; k++)
		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
	if (bits % BITS_PER_LONG)
		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
			   BITMAP_LAST_WORD_MASK(bits));
	return result != 0;
}
EXPORT_SYMBOL(__bitmap_andnot);

void __bitmap_replace(unsigned long *dst,
		      const unsigned long *old, const unsigned long *new,
		      const unsigned long *mask, unsigned int nbits)
{
	unsigned int k;
	unsigned int nr = BITS_TO_LONGS(nbits);

	for (k = 0; k < nr; k++)
		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
}
EXPORT_SYMBOL(__bitmap_replace);

int __bitmap_intersects(const unsigned long *bitmap1,
			const unsigned long *bitmap2, unsigned int bits)
{
	unsigned int k, lim = bits/BITS_PER_LONG;
	for (k = 0; k < lim; ++k)
		if (bitmap1[k] & bitmap2[k])
			return 1;

	if (bits % BITS_PER_LONG)
		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
			return 1;
	return 0;
}
EXPORT_SYMBOL(__bitmap_intersects);

int __bitmap_subset(const unsigned long *bitmap1,
		    const unsigned long *bitmap2, unsigned int bits)
{
	unsigned int k, lim = bits/BITS_PER_LONG;
	for (k = 0; k < lim; ++k)
		if (bitmap1[k] & ~bitmap2[k])
			return 0;

	if (bits % BITS_PER_LONG)
		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
			return 0;
	return 1;
}
EXPORT_SYMBOL(__bitmap_subset);

int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
{
	unsigned int k, lim = bits/BITS_PER_LONG;
	int w = 0;

	for (k = 0; k < lim; k++)
		w += hweight_long(bitmap[k]);

	if (bits % BITS_PER_LONG)
		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));

	return w;
}
EXPORT_SYMBOL(__bitmap_weight);

void __bitmap_set(unsigned long *map, unsigned int start, int len)
{
	unsigned long *p = map + BIT_WORD(start);
	const unsigned int size = start + len;
	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);

	while (len - bits_to_set >= 0) {
		*p |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_LONG;
		mask_to_set = ~0UL;
		p++;
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
		*p |= mask_to_set;
	}
}
EXPORT_SYMBOL(__bitmap_set);

void __bitmap_clear(unsigned long *map, unsigned int start, int len)
{
	unsigned long *p = map + BIT_WORD(start);
	const unsigned int size = start + len;
	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);

	while (len - bits_to_clear >= 0) {
		*p &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_LONG;
		mask_to_clear = ~0UL;
		p++;
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
		*p &= ~mask_to_clear;
	}
}
EXPORT_SYMBOL(__bitmap_clear);

/**
 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
 * @map: The address to base the search on
 * @size: The bitmap size in bits
 * @start: The bitnumber to start searching at
 * @nr: The number of zeroed bits we're looking for
 * @align_mask: Alignment mask for zero area
 * @align_offset: Alignment offset for zero area.
 *
 * The @align_mask should be one less than a power of 2; the effect is that
 * the bit offset of all zero areas this function finds plus @align_offset
 * is multiple of that power of 2.
 */
unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
					     unsigned long size,
					     unsigned long start,
					     unsigned int nr,
					     unsigned long align_mask,
					     unsigned long align_offset)
{
	unsigned long index, end, i;
again:
	index = find_next_zero_bit(map, size, start);

	/* Align allocation */
	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;

	end = index + nr;
	if (end > size)
		return end;
	i = find_next_bit(map, end, index);
	if (i < end) {
		start = i + 1;
		goto again;
	}
	return index;
}
EXPORT_SYMBOL(bitmap_find_next_zero_area_off);

/*
 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
 * second version by Paul Jackson, third by Joe Korty.
 */

/**
 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
 *
 * @ubuf: pointer to user buffer containing string.
 * @ulen: buffer size in bytes.  If string is smaller than this
 *    then it must be terminated with a \0.
 * @maskp: pointer to bitmap array that will contain result.
 * @nmaskbits: size of bitmap, in bits.
 */
int bitmap_parse_user(const char __user *ubuf,
			unsigned int ulen, unsigned long *maskp,
			int nmaskbits)
{
	char *buf;
	int ret;

	buf = memdup_user_nul(ubuf, ulen);
	if (IS_ERR(buf))
		return PTR_ERR(buf);

	ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);

	kfree(buf);
	return ret;
}
EXPORT_SYMBOL(bitmap_parse_user);

/**
 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
 * @list: indicates whether the bitmap must be list
 * @buf: page aligned buffer into which string is placed
 * @maskp: pointer to bitmap to convert
 * @nmaskbits: size of bitmap, in bits
 *
 * Output format is a comma-separated list of decimal numbers and
 * ranges if list is specified or hex digits grouped into comma-separated
 * sets of 8 digits/set. Returns the number of characters written to buf.
 *
 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
 * area and that sufficient storage remains at @buf to accommodate the
 * bitmap_print_to_pagebuf() output. Returns the number of characters
 * actually printed to @buf, excluding terminating '\0'.
 */
int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
			    int nmaskbits)
{
	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);

	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
}
EXPORT_SYMBOL(bitmap_print_to_pagebuf);

/*
 * Region 9-38:4/10 describes the following bitmap structure:
 * 0	   9  12    18			38
 * .........****......****......****......
 *	    ^  ^     ^			 ^
 *      start  off   group_len	       end
 */
struct region {
	unsigned int start;
	unsigned int off;
	unsigned int group_len;
	unsigned int end;
};

static int bitmap_set_region(const struct region *r,
				unsigned long *bitmap, int nbits)
{
	unsigned int start;

	if (r->end >= nbits)
		return -ERANGE;

	for (start = r->start; start <= r->end; start += r->group_len)
		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));

	return 0;
}

static int bitmap_check_region(const struct region *r)
{
	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
		return -EINVAL;

	return 0;
}

static const char *bitmap_getnum(const char *str, unsigned int *num)
{
	unsigned long long n;
	unsigned int len;

	len = _parse_integer(str, 10, &n);
	if (!len)
		return ERR_PTR(-EINVAL);
	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
		return ERR_PTR(-EOVERFLOW);

	*num = n;
	return str + len;
}

static inline bool end_of_str(char c)
{
	return c == '\0' || c == '\n';
}

static inline bool __end_of_region(char c)
{
	return isspace(c) || c == ',';
}

static inline bool end_of_region(char c)
{
	return __end_of_region(c) || end_of_str(c);
}

/*
 * The format allows commas and whitespaces at the beginning
 * of the region.
 */
static const char *bitmap_find_region(const char *str)
{
	while (__end_of_region(*str))
		str++;

	return end_of_str(*str) ? NULL : str;
}

static const char *bitmap_find_region_reverse(const char *start, const char *end)
{
	while (start <= end && __end_of_region(*end))
		end--;

	return end;
}

static const char *bitmap_parse_region(const char *str, struct region *r)
{
	str = bitmap_getnum(str, &r->start);
	if (IS_ERR(str))
		return str;

	if (end_of_region(*str))
		goto no_end;

	if (*str != '-')
		return ERR_PTR(-EINVAL);

	str = bitmap_getnum(str + 1, &r->end);
	if (IS_ERR(str))
		return str;

	if (end_of_region(*str))
		goto no_pattern;

	if (*str != ':')
		return ERR_PTR(-EINVAL);

	str = bitmap_getnum(str + 1, &r->off);
	if (IS_ERR(str))
		return str;

	if (*str != '/')
		return ERR_PTR(-EINVAL);

	return bitmap_getnum(str + 1, &r->group_len);

no_end:
	r->end = r->start;
no_pattern:
	r->off = r->end + 1;
	r->group_len = r->end + 1;

	return end_of_str(*str) ? NULL : str;
}

/**
 * bitmap_parselist - convert list format ASCII string to bitmap
 * @buf: read user string from this buffer; must be terminated
 *    with a \0 or \n.
 * @maskp: write resulting mask here
 * @nmaskbits: number of bits in mask to be written
 *
 * Input format is a comma-separated list of decimal numbers and
 * ranges.  Consecutively set bits are shown as two hyphen-separated
 * decimal numbers, the smallest and largest bit numbers set in
 * the range.
 * Optionally each range can be postfixed to denote that only parts of it
 * should be set. The range will divided to groups of specific size.
 * From each group will be used only defined amount of bits.
 * Syntax: range:used_size/group_size
 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
 *
 * Returns: 0 on success, -errno on invalid input strings. Error values:
 *
 *   - ``-EINVAL``: wrong region format
 *   - ``-EINVAL``: invalid character in string
 *   - ``-ERANGE``: bit number specified too large for mask
 *   - ``-EOVERFLOW``: integer overflow in the input parameters
 */
int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
{
	struct region r;
	long ret;

	bitmap_zero(maskp, nmaskbits);

	while (buf) {
		buf = bitmap_find_region(buf);
		if (buf == NULL)
			return 0;

		buf = bitmap_parse_region(buf, &r);
		if (IS_ERR(buf))
			return PTR_ERR(buf);

		ret = bitmap_check_region(&r);
		if (ret)
			return ret;

		ret = bitmap_set_region(&r, maskp, nmaskbits);
		if (ret)
			return ret;
	}

	return 0;
}
EXPORT_SYMBOL(bitmap_parselist);


/**
 * bitmap_parselist_user()
 *
 * @ubuf: pointer to user buffer containing string.
 * @ulen: buffer size in bytes.  If string is smaller than this
 *    then it must be terminated with a \0.
 * @maskp: pointer to bitmap array that will contain result.
 * @nmaskbits: size of bitmap, in bits.
 *
 * Wrapper for bitmap_parselist(), providing it with user buffer.
 */
int bitmap_parselist_user(const char __user *ubuf,
			unsigned int ulen, unsigned long *maskp,
			int nmaskbits)
{
	char *buf;
	int ret;

	buf = memdup_user_nul(ubuf, ulen);
	if (IS_ERR(buf))
		return PTR_ERR(buf);

	ret = bitmap_parselist(buf, maskp, nmaskbits);

	kfree(buf);
	return ret;
}
EXPORT_SYMBOL(bitmap_parselist_user);

static const char *bitmap_get_x32_reverse(const char *start,
					const char *end, u32 *num)
{
	u32 ret = 0;
	int c, i;

	for (i = 0; i < 32; i += 4) {
		c = hex_to_bin(*end--);
		if (c < 0)
			return ERR_PTR(-EINVAL);

		ret |= c << i;

		if (start > end || __end_of_region(*end))
			goto out;
	}

	if (hex_to_bin(*end--) >= 0)
		return ERR_PTR(-EOVERFLOW);
out:
	*num = ret;
	return end;
}

/**
 * bitmap_parse - convert an ASCII hex string into a bitmap.
 * @start: pointer to buffer containing string.
 * @buflen: buffer size in bytes.  If string is smaller than this
 *    then it must be terminated with a \0 or \n. In that case,
 *    UINT_MAX may be provided instead of string length.
 * @maskp: pointer to bitmap array that will contain result.
 * @nmaskbits: size of bitmap, in bits.
 *
 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 * bits of the resultant bitmask.  No chunk may specify a value larger
 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
 * Leading, embedded and trailing whitespace accepted.
 */
int bitmap_parse(const char *start, unsigned int buflen,
		unsigned long *maskp, int nmaskbits)
{
	const char *end = strnchrnul(start, buflen, '\n') - 1;
	int chunks = BITS_TO_U32(nmaskbits);
	u32 *bitmap = (u32 *)maskp;
	int unset_bit;
	int chunk;

	for (chunk = 0; ; chunk++) {
		end = bitmap_find_region_reverse(start, end);
		if (start > end)
			break;

		if (!chunks--)
			return -EOVERFLOW;

#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
#else
		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
#endif
		if (IS_ERR(end))
			return PTR_ERR(end);
	}

	unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
	if (unset_bit < nmaskbits) {
		bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
		return 0;
	}

	if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
		return -EOVERFLOW;

	return 0;
}
EXPORT_SYMBOL(bitmap_parse);


#ifdef CONFIG_NUMA
/**
 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
 *	@buf: pointer to a bitmap
 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
 *	@nbits: number of valid bit positions in @buf
 *
 * Map the bit at position @pos in @buf (of length @nbits) to the
 * ordinal of which set bit it is.  If it is not set or if @pos
 * is not a valid bit position, map to -1.
 *
 * If for example, just bits 4 through 7 are set in @buf, then @pos
 * values 4 through 7 will get mapped to 0 through 3, respectively,
 * and other @pos values will get mapped to -1.  When @pos value 7
 * gets mapped to (returns) @ord value 3 in this example, that means
 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 *
 * The bit positions 0 through @bits are valid positions in @buf.
 */
static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
{
	if (pos >= nbits || !test_bit(pos, buf))
		return -1;

	return __bitmap_weight(buf, pos);
}

/**
 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
 *	@buf: pointer to bitmap
 *	@ord: ordinal bit position (n-th set bit, n >= 0)
 *	@nbits: number of valid bit positions in @buf
 *
 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
 * >= weight(buf), returns @nbits.
 *
 * If for example, just bits 4 through 7 are set in @buf, then @ord
 * values 0 through 3 will get mapped to 4 through 7, respectively,
 * and all other @ord values returns @nbits.  When @ord value 3
 * gets mapped to (returns) @pos value 7 in this example, that means
 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 *
 * The bit positions 0 through @nbits-1 are valid positions in @buf.
 */
unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
{
	unsigned int pos;

	for (pos = find_first_bit(buf, nbits);
	     pos < nbits && ord;
	     pos = find_next_bit(buf, nbits, pos + 1))
		ord--;

	return pos;
}

/**
 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 *	@dst: remapped result
 *	@src: subset to be remapped
 *	@old: defines domain of map
 *	@new: defines range of map
 *	@nbits: number of bits in each of these bitmaps
 *
 * Let @old and @new define a mapping of bit positions, such that
 * whatever position is held by the n-th set bit in @old is mapped
 * to the n-th set bit in @new.  In the more general case, allowing
 * for the possibility that the weight 'w' of @new is less than the
 * weight of @old, map the position of the n-th set bit in @old to
 * the position of the m-th set bit in @new, where m == n % w.
 *
 * If either of the @old and @new bitmaps are empty, or if @src and
 * @dst point to the same location, then this routine copies @src
 * to @dst.
 *
 * The positions of unset bits in @old are mapped to themselves
 * (the identify map).
 *
 * Apply the above specified mapping to @src, placing the result in
 * @dst, clearing any bits previously set in @dst.
 *
 * For example, lets say that @old has bits 4 through 7 set, and
 * @new has bits 12 through 15 set.  This defines the mapping of bit
 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 * bit positions unchanged.  So if say @src comes into this routine
 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 * 13 and 15 set.
 */
void bitmap_remap(unsigned long *dst, const unsigned long *src,
		const unsigned long *old, const unsigned long *new,
		unsigned int nbits)
{
	unsigned int oldbit, w;

	if (dst == src)		/* following doesn't handle inplace remaps */
		return;
	bitmap_zero(dst, nbits);

	w = bitmap_weight(new, nbits);
	for_each_set_bit(oldbit, src, nbits) {
		int n = bitmap_pos_to_ord(old, oldbit, nbits);

		if (n < 0 || w == 0)
			set_bit(oldbit, dst);	/* identity map */
		else
			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
	}
}

/**
 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 *	@oldbit: bit position to be mapped
 *	@old: defines domain of map
 *	@new: defines range of map
 *	@bits: number of bits in each of these bitmaps
 *
 * Let @old and @new define a mapping of bit positions, such that
 * whatever position is held by the n-th set bit in @old is mapped
 * to the n-th set bit in @new.  In the more general case, allowing
 * for the possibility that the weight 'w' of @new is less than the
 * weight of @old, map the position of the n-th set bit in @old to
 * the position of the m-th set bit in @new, where m == n % w.
 *
 * The positions of unset bits in @old are mapped to themselves
 * (the identify map).
 *
 * Apply the above specified mapping to bit position @oldbit, returning
 * the new bit position.
 *
 * For example, lets say that @old has bits 4 through 7 set, and
 * @new has bits 12 through 15 set.  This defines the mapping of bit
 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 * returns 13.
 */
int bitmap_bitremap(int oldbit, const unsigned long *old,
				const unsigned long *new, int bits)
{
	int w = bitmap_weight(new, bits);
	int n = bitmap_pos_to_ord(old, oldbit, bits);
	if (n < 0 || w == 0)
		return oldbit;
	else
		return bitmap_ord_to_pos(new, n % w, bits);
}

/**
 * bitmap_onto - translate one bitmap relative to another
 *	@dst: resulting translated bitmap
 * 	@orig: original untranslated bitmap
 * 	@relmap: bitmap relative to which translated
 *	@bits: number of bits in each of these bitmaps
 *
 * Set the n-th bit of @dst iff there exists some m such that the
 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 * (If you understood the previous sentence the first time your
 * read it, you're overqualified for your current job.)
 *
 * In other words, @orig is mapped onto (surjectively) @dst,
 * using the map { <n, m> | the n-th bit of @relmap is the
 * m-th set bit of @relmap }.
 *
 * Any set bits in @orig above bit number W, where W is the
 * weight of (number of set bits in) @relmap are mapped nowhere.
 * In particular, if for all bits m set in @orig, m >= W, then
 * @dst will end up empty.  In situations where the possibility
 * of such an empty result is not desired, one way to avoid it is
 * to use the bitmap_fold() operator, below, to first fold the
 * @orig bitmap over itself so that all its set bits x are in the
 * range 0 <= x < W.  The bitmap_fold() operator does this by
 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 *
 * Example [1] for bitmap_onto():
 *  Let's say @relmap has bits 30-39 set, and @orig has bits
 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 *  @dst will have bits 31, 33, 35, 37 and 39 set.
 *
 *  When bit 0 is set in @orig, it means turn on the bit in
 *  @dst corresponding to whatever is the first bit (if any)
 *  that is turned on in @relmap.  Since bit 0 was off in the
 *  above example, we leave off that bit (bit 30) in @dst.
 *
 *  When bit 1 is set in @orig (as in the above example), it
 *  means turn on the bit in @dst corresponding to whatever
 *  is the second bit that is turned on in @relmap.  The second
 *  bit in @relmap that was turned on in the above example was
 *  bit 31, so we turned on bit 31 in @dst.
 *
 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 *  because they were the 4th, 6th, 8th and 10th set bits
 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 *
 *  When bit 11 is set in @orig, it means turn on the bit in
 *  @dst corresponding to whatever is the twelfth bit that is
 *  turned on in @relmap.  In the above example, there were
 *  only ten bits turned on in @relmap (30..39), so that bit
 *  11 was set in @orig had no affect on @dst.
 *
 * Example [2] for bitmap_fold() + bitmap_onto():
 *  Let's say @relmap has these ten bits set::
 *
 *		40 41 42 43 45 48 53 61 74 95
 *
 *  (for the curious, that's 40 plus the first ten terms of the
 *  Fibonacci sequence.)
 *
 *  Further lets say we use the following code, invoking
 *  bitmap_fold() then bitmap_onto, as suggested above to
 *  avoid the possibility of an empty @dst result::
 *
 *	unsigned long *tmp;	// a temporary bitmap's bits
 *
 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 *	bitmap_onto(dst, tmp, relmap, bits);
 *
 *  Then this table shows what various values of @dst would be, for
 *  various @orig's.  I list the zero-based positions of each set bit.
 *  The tmp column shows the intermediate result, as computed by
 *  using bitmap_fold() to fold the @orig bitmap modulo ten
 *  (the weight of @relmap):
 *
 *      =============== ============== =================
 *      @orig           tmp            @dst
 *      0                0             40
 *      1                1             41
 *      9                9             95
 *      10               0             40 [#f1]_
 *      1 3 5 7          1 3 5 7       41 43 48 61
 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
 *      0 9 18 27        0 9 8 7       40 61 74 95
 *      0 10 20 30       0             40
 *      0 11 22 33       0 1 2 3       40 41 42 43
 *      0 12 24 36       0 2 4 6       40 42 45 53
 *      78 102 211       1 2 8         41 42 74 [#f1]_
 *      =============== ============== =================
 *
 * .. [#f1]
 *
 *     For these marked lines, if we hadn't first done bitmap_fold()
 *     into tmp, then the @dst result would have been empty.
 *
 * If either of @orig or @relmap is empty (no set bits), then @dst
 * will be returned empty.
 *
 * If (as explained above) the only set bits in @orig are in positions
 * m where m >= W, (where W is the weight of @relmap) then @dst will
 * once again be returned empty.
 *
 * All bits in @dst not set by the above rule are cleared.
 */
void bitmap_onto(unsigned long *dst, const unsigned long *orig,
			const unsigned long *relmap, unsigned int bits)
{
	unsigned int n, m;	/* same meaning as in above comment */

	if (dst == orig)	/* following doesn't handle inplace mappings */
		return;
	bitmap_zero(dst, bits);

	/*
	 * The following code is a more efficient, but less
	 * obvious, equivalent to the loop:
	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
	 *		n = bitmap_ord_to_pos(orig, m, bits);
	 *		if (test_bit(m, orig))
	 *			set_bit(n, dst);
	 *	}
	 */

	m = 0;
	for_each_set_bit(n, relmap, bits) {
		/* m == bitmap_pos_to_ord(relmap, n, bits) */
		if (test_bit(m, orig))
			set_bit(n, dst);
		m++;
	}
}

/**
 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
 *	@dst: resulting smaller bitmap
 *	@orig: original larger bitmap
 *	@sz: specified size
 *	@nbits: number of bits in each of these bitmaps
 *
 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
 * Clear all other bits in @dst.  See further the comment and
 * Example [2] for bitmap_onto() for why and how to use this.
 */
void bitmap_fold(unsigned long *dst, const unsigned long *orig,
			unsigned int sz, unsigned int nbits)
{
	unsigned int oldbit;

	if (dst == orig)	/* following doesn't handle inplace mappings */
		return;
	bitmap_zero(dst, nbits);

	for_each_set_bit(oldbit, orig, nbits)
		set_bit(oldbit % sz, dst);
}
#endif /* CONFIG_NUMA */

/*
 * Common code for bitmap_*_region() routines.
 *	bitmap: array of unsigned longs corresponding to the bitmap
 *	pos: the beginning of the region
 *	order: region size (log base 2 of number of bits)
 *	reg_op: operation(s) to perform on that region of bitmap
 *
 * Can set, verify and/or release a region of bits in a bitmap,
 * depending on which combination of REG_OP_* flag bits is set.
 *
 * A region of a bitmap is a sequence of bits in the bitmap, of
 * some size '1 << order' (a power of two), aligned to that same
 * '1 << order' power of two.
 *
 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
 * Returns 0 in all other cases and reg_ops.
 */

enum {
	REG_OP_ISFREE,		/* true if region is all zero bits */
	REG_OP_ALLOC,		/* set all bits in region */
	REG_OP_RELEASE,		/* clear all bits in region */
};

static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
{
	int nbits_reg;		/* number of bits in region */
	int index;		/* index first long of region in bitmap */
	int offset;		/* bit offset region in bitmap[index] */
	int nlongs_reg;		/* num longs spanned by region in bitmap */
	int nbitsinlong;	/* num bits of region in each spanned long */
	unsigned long mask;	/* bitmask for one long of region */
	int i;			/* scans bitmap by longs */
	int ret = 0;		/* return value */

	/*
	 * Either nlongs_reg == 1 (for small orders that fit in one long)
	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
	 */
	nbits_reg = 1 << order;
	index = pos / BITS_PER_LONG;
	offset = pos - (index * BITS_PER_LONG);
	nlongs_reg = BITS_TO_LONGS(nbits_reg);
	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);

	/*
	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
	 * overflows if nbitsinlong == BITS_PER_LONG.
	 */
	mask = (1UL << (nbitsinlong - 1));
	mask += mask - 1;
	mask <<= offset;

	switch (reg_op) {
	case REG_OP_ISFREE:
		for (i = 0; i < nlongs_reg; i++) {
			if (bitmap[index + i] & mask)
				goto done;
		}
		ret = 1;	/* all bits in region free (zero) */
		break;

	case REG_OP_ALLOC:
		for (i = 0; i < nlongs_reg; i++)
			bitmap[index + i] |= mask;
		break;

	case REG_OP_RELEASE:
		for (i = 0; i < nlongs_reg; i++)
			bitmap[index + i] &= ~mask;
		break;
	}
done:
	return ret;
}

/**
 * bitmap_find_free_region - find a contiguous aligned mem region
 *	@bitmap: array of unsigned longs corresponding to the bitmap
 *	@bits: number of bits in the bitmap
 *	@order: region size (log base 2 of number of bits) to find
 *
 * Find a region of free (zero) bits in a @bitmap of @bits bits and
 * allocate them (set them to one).  Only consider regions of length
 * a power (@order) of two, aligned to that power of two, which
 * makes the search algorithm much faster.
 *
 * Return the bit offset in bitmap of the allocated region,
 * or -errno on failure.
 */
int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
{
	unsigned int pos, end;		/* scans bitmap by regions of size order */

	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
			continue;
		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
		return pos;
	}
	return -ENOMEM;
}
EXPORT_SYMBOL(bitmap_find_free_region);

/**
 * bitmap_release_region - release allocated bitmap region
 *	@bitmap: array of unsigned longs corresponding to the bitmap
 *	@pos: beginning of bit region to release
 *	@order: region size (log base 2 of number of bits) to release
 *
 * This is the complement to __bitmap_find_free_region() and releases
 * the found region (by clearing it in the bitmap).
 *
 * No return value.
 */
void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
{
	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
}
EXPORT_SYMBOL(bitmap_release_region);

/**
 * bitmap_allocate_region - allocate bitmap region
 *	@bitmap: array of unsigned longs corresponding to the bitmap
 *	@pos: beginning of bit region to allocate
 *	@order: region size (log base 2 of number of bits) to allocate
 *
 * Allocate (set bits in) a specified region of a bitmap.
 *
 * Return 0 on success, or %-EBUSY if specified region wasn't
 * free (not all bits were zero).
 */
int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
{
	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
		return -EBUSY;
	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
}
EXPORT_SYMBOL(bitmap_allocate_region);

/**
 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
 * @dst:   destination buffer
 * @src:   bitmap to copy
 * @nbits: number of bits in the bitmap
 *
 * Require nbits % BITS_PER_LONG == 0.
 */
#ifdef __BIG_ENDIAN
void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
{
	unsigned int i;

	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
		if (BITS_PER_LONG == 64)
			dst[i] = cpu_to_le64(src[i]);
		else
			dst[i] = cpu_to_le32(src[i]);
	}
}
EXPORT_SYMBOL(bitmap_copy_le);
#endif

unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
{
	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
			     flags);
}
EXPORT_SYMBOL(bitmap_alloc);

unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
{
	return bitmap_alloc(nbits, flags | __GFP_ZERO);
}
EXPORT_SYMBOL(bitmap_zalloc);

void bitmap_free(const unsigned long *bitmap)
{
	kfree(bitmap);
}
EXPORT_SYMBOL(bitmap_free);

#if BITS_PER_LONG == 64
/**
 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
 *	@bitmap: array of unsigned longs, the destination bitmap
 *	@buf: array of u32 (in host byte order), the source bitmap
 *	@nbits: number of bits in @bitmap
 */
void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
{
	unsigned int i, halfwords;

	halfwords = DIV_ROUND_UP(nbits, 32);
	for (i = 0; i < halfwords; i++) {
		bitmap[i/2] = (unsigned long) buf[i];
		if (++i < halfwords)
			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
	}

	/* Clear tail bits in last word beyond nbits. */
	if (nbits % BITS_PER_LONG)
		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
}
EXPORT_SYMBOL(bitmap_from_arr32);

/**
 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
 *	@buf: array of u32 (in host byte order), the dest bitmap
 *	@bitmap: array of unsigned longs, the source bitmap
 *	@nbits: number of bits in @bitmap
 */
void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
{
	unsigned int i, halfwords;

	halfwords = DIV_ROUND_UP(nbits, 32);
	for (i = 0; i < halfwords; i++) {
		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
		if (++i < halfwords)
			buf[i] = (u32) (bitmap[i/2] >> 32);
	}

	/* Clear tail bits in last element of array beyond nbits. */
	if (nbits % BITS_PER_LONG)
		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
}
EXPORT_SYMBOL(bitmap_to_arr32);

#endif