idr.c 17.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/bitmap.h>
#include <linux/bug.h>
#include <linux/export.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/xarray.h>

/**
 * idr_alloc_u32() - Allocate an ID.
 * @idr: IDR handle.
 * @ptr: Pointer to be associated with the new ID.
 * @nextid: Pointer to an ID.
 * @max: The maximum ID to allocate (inclusive).
 * @gfp: Memory allocation flags.
 *
 * Allocates an unused ID in the range specified by @nextid and @max.
 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
 * is exclusive.  The new ID is assigned to @nextid before the pointer
 * is inserted into the IDR, so if @nextid points into the object pointed
 * to by @ptr, a concurrent lookup will not find an uninitialised ID.
 *
 * The caller should provide their own locking to ensure that two
 * concurrent modifications to the IDR are not possible.  Read-only
 * accesses to the IDR may be done under the RCU read lock or may
 * exclude simultaneous writers.
 *
 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
 * or -ENOSPC if no free IDs could be found.  If an error occurred,
 * @nextid is unchanged.
 */
int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
			unsigned long max, gfp_t gfp)
{
	struct radix_tree_iter iter;
	void __rcu **slot;
	unsigned int base = idr->idr_base;
	unsigned int id = *nextid;

	if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR)))
		idr->idr_rt.xa_flags |= IDR_RT_MARKER;

	id = (id < base) ? 0 : id - base;
	radix_tree_iter_init(&iter, id);
	slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
	if (IS_ERR(slot))
		return PTR_ERR(slot);

	*nextid = iter.index + base;
	/* there is a memory barrier inside radix_tree_iter_replace() */
	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);

	return 0;
}
EXPORT_SYMBOL_GPL(idr_alloc_u32);

/**
 * idr_alloc() - Allocate an ID.
 * @idr: IDR handle.
 * @ptr: Pointer to be associated with the new ID.
 * @start: The minimum ID (inclusive).
 * @end: The maximum ID (exclusive).
 * @gfp: Memory allocation flags.
 *
 * Allocates an unused ID in the range specified by @start and @end.  If
 * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
 * callers to use @start + N as @end as long as N is within integer range.
 *
 * The caller should provide their own locking to ensure that two
 * concurrent modifications to the IDR are not possible.  Read-only
 * accesses to the IDR may be done under the RCU read lock or may
 * exclude simultaneous writers.
 *
 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
 * or -ENOSPC if no free IDs could be found.
 */
int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
{
	u32 id = start;
	int ret;

	if (WARN_ON_ONCE(start < 0))
		return -EINVAL;

	ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
	if (ret)
		return ret;

	return id;
}
EXPORT_SYMBOL_GPL(idr_alloc);

/**
 * idr_alloc_cyclic() - Allocate an ID cyclically.
 * @idr: IDR handle.
 * @ptr: Pointer to be associated with the new ID.
 * @start: The minimum ID (inclusive).
 * @end: The maximum ID (exclusive).
 * @gfp: Memory allocation flags.
 *
 * Allocates an unused ID in the range specified by @nextid and @end.  If
 * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
 * callers to use @start + N as @end as long as N is within integer range.
 * The search for an unused ID will start at the last ID allocated and will
 * wrap around to @start if no free IDs are found before reaching @end.
 *
 * The caller should provide their own locking to ensure that two
 * concurrent modifications to the IDR are not possible.  Read-only
 * accesses to the IDR may be done under the RCU read lock or may
 * exclude simultaneous writers.
 *
 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
 * or -ENOSPC if no free IDs could be found.
 */
int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
{
	u32 id = idr->idr_next;
	int err, max = end > 0 ? end - 1 : INT_MAX;

	if ((int)id < start)
		id = start;

	err = idr_alloc_u32(idr, ptr, &id, max, gfp);
	if ((err == -ENOSPC) && (id > start)) {
		id = start;
		err = idr_alloc_u32(idr, ptr, &id, max, gfp);
	}
	if (err)
		return err;

	idr->idr_next = id + 1;
	return id;
}
EXPORT_SYMBOL(idr_alloc_cyclic);

/**
 * idr_remove() - Remove an ID from the IDR.
 * @idr: IDR handle.
 * @id: Pointer ID.
 *
 * Removes this ID from the IDR.  If the ID was not previously in the IDR,
 * this function returns %NULL.
 *
 * Since this function modifies the IDR, the caller should provide their
 * own locking to ensure that concurrent modification of the same IDR is
 * not possible.
 *
 * Return: The pointer formerly associated with this ID.
 */
void *idr_remove(struct idr *idr, unsigned long id)
{
	return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
}
EXPORT_SYMBOL_GPL(idr_remove);

/**
 * idr_find() - Return pointer for given ID.
 * @idr: IDR handle.
 * @id: Pointer ID.
 *
 * Looks up the pointer associated with this ID.  A %NULL pointer may
 * indicate that @id is not allocated or that the %NULL pointer was
 * associated with this ID.
 *
 * This function can be called under rcu_read_lock(), given that the leaf
 * pointers lifetimes are correctly managed.
 *
 * Return: The pointer associated with this ID.
 */
void *idr_find(const struct idr *idr, unsigned long id)
{
	return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
}
EXPORT_SYMBOL_GPL(idr_find);

/**
 * idr_for_each() - Iterate through all stored pointers.
 * @idr: IDR handle.
 * @fn: Function to be called for each pointer.
 * @data: Data passed to callback function.
 *
 * The callback function will be called for each entry in @idr, passing
 * the ID, the entry and @data.
 *
 * If @fn returns anything other than %0, the iteration stops and that
 * value is returned from this function.
 *
 * idr_for_each() can be called concurrently with idr_alloc() and
 * idr_remove() if protected by RCU.  Newly added entries may not be
 * seen and deleted entries may be seen, but adding and removing entries
 * will not cause other entries to be skipped, nor spurious ones to be seen.
 */
int idr_for_each(const struct idr *idr,
		int (*fn)(int id, void *p, void *data), void *data)
{
	struct radix_tree_iter iter;
	void __rcu **slot;
	int base = idr->idr_base;

	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
		int ret;
		unsigned long id = iter.index + base;

		if (WARN_ON_ONCE(id > INT_MAX))
			break;
		ret = fn(id, rcu_dereference_raw(*slot), data);
		if (ret)
			return ret;
	}

	return 0;
}
EXPORT_SYMBOL(idr_for_each);

/**
 * idr_get_next_ul() - Find next populated entry.
 * @idr: IDR handle.
 * @nextid: Pointer to an ID.
 *
 * Returns the next populated entry in the tree with an ID greater than
 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 * to the ID of the found value.  To use in a loop, the value pointed to by
 * nextid must be incremented by the user.
 */
void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
{
	struct radix_tree_iter iter;
	void __rcu **slot;
	void *entry = NULL;
	unsigned long base = idr->idr_base;
	unsigned long id = *nextid;

	id = (id < base) ? 0 : id - base;
	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) {
		entry = rcu_dereference_raw(*slot);
		if (!entry)
			continue;
		if (!xa_is_internal(entry))
			break;
		if (slot != &idr->idr_rt.xa_head && !xa_is_retry(entry))
			break;
		slot = radix_tree_iter_retry(&iter);
	}
	if (!slot)
		return NULL;

	*nextid = iter.index + base;
	return entry;
}
EXPORT_SYMBOL(idr_get_next_ul);

/**
 * idr_get_next() - Find next populated entry.
 * @idr: IDR handle.
 * @nextid: Pointer to an ID.
 *
 * Returns the next populated entry in the tree with an ID greater than
 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 * to the ID of the found value.  To use in a loop, the value pointed to by
 * nextid must be incremented by the user.
 */
void *idr_get_next(struct idr *idr, int *nextid)
{
	unsigned long id = *nextid;
	void *entry = idr_get_next_ul(idr, &id);

	if (WARN_ON_ONCE(id > INT_MAX))
		return NULL;
	*nextid = id;
	return entry;
}
EXPORT_SYMBOL(idr_get_next);

/**
 * idr_replace() - replace pointer for given ID.
 * @idr: IDR handle.
 * @ptr: New pointer to associate with the ID.
 * @id: ID to change.
 *
 * Replace the pointer registered with an ID and return the old value.
 * This function can be called under the RCU read lock concurrently with
 * idr_alloc() and idr_remove() (as long as the ID being removed is not
 * the one being replaced!).
 *
 * Returns: the old value on success.  %-ENOENT indicates that @id was not
 * found.  %-EINVAL indicates that @ptr was not valid.
 */
void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
{
	struct radix_tree_node *node;
	void __rcu **slot = NULL;
	void *entry;

	id -= idr->idr_base;

	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
		return ERR_PTR(-ENOENT);

	__radix_tree_replace(&idr->idr_rt, node, slot, ptr);

	return entry;
}
EXPORT_SYMBOL(idr_replace);

/**
 * DOC: IDA description
 *
 * The IDA is an ID allocator which does not provide the ability to
 * associate an ID with a pointer.  As such, it only needs to store one
 * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
 * then initialise it using ida_init()).  To allocate a new ID, call
 * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
 * To free an ID, call ida_free().
 *
 * ida_destroy() can be used to dispose of an IDA without needing to
 * free the individual IDs in it.  You can use ida_is_empty() to find
 * out whether the IDA has any IDs currently allocated.
 *
 * The IDA handles its own locking.  It is safe to call any of the IDA
 * functions without synchronisation in your code.
 *
 * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
 * limitation, it should be quite straightforward to raise the maximum.
 */

/*
 * Developer's notes:
 *
 * The IDA uses the functionality provided by the XArray to store bitmaps in
 * each entry.  The XA_FREE_MARK is only cleared when all bits in the bitmap
 * have been set.
 *
 * I considered telling the XArray that each slot is an order-10 node
 * and indexing by bit number, but the XArray can't allow a single multi-index
 * entry in the head, which would significantly increase memory consumption
 * for the IDA.  So instead we divide the index by the number of bits in the
 * leaf bitmap before doing a radix tree lookup.
 *
 * As an optimisation, if there are only a few low bits set in any given
 * leaf, instead of allocating a 128-byte bitmap, we store the bits
 * as a value entry.  Value entries never have the XA_FREE_MARK cleared
 * because we can always convert them into a bitmap entry.
 *
 * It would be possible to optimise further; once we've run out of a
 * single 128-byte bitmap, we currently switch to a 576-byte node, put
 * the 128-byte bitmap in the first entry and then start allocating extra
 * 128-byte entries.  We could instead use the 512 bytes of the node's
 * data as a bitmap before moving to that scheme.  I do not believe this
 * is a worthwhile optimisation; Rasmus Villemoes surveyed the current
 * users of the IDA and almost none of them use more than 1024 entries.
 * Those that do use more than the 8192 IDs that the 512 bytes would
 * provide.
 *
 * The IDA always uses a lock to alloc/free.  If we add a 'test_bit'
 * equivalent, it will still need locking.  Going to RCU lookup would require
 * using RCU to free bitmaps, and that's not trivial without embedding an
 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
 * bitmap, which is excessive.
 */

/**
 * ida_alloc_range() - Allocate an unused ID.
 * @ida: IDA handle.
 * @min: Lowest ID to allocate.
 * @max: Highest ID to allocate.
 * @gfp: Memory allocation flags.
 *
 * Allocate an ID between @min and @max, inclusive.  The allocated ID will
 * not exceed %INT_MAX, even if @max is larger.
 *
 * Context: Any context. It is safe to call this function without
 * locking in your code.
 * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
 * or %-ENOSPC if there are no free IDs.
 */
int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
			gfp_t gfp)
{
	XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS);
	unsigned bit = min % IDA_BITMAP_BITS;
	unsigned long flags;
	struct ida_bitmap *bitmap, *alloc = NULL;

	if ((int)min < 0)
		return -ENOSPC;

	if ((int)max < 0)
		max = INT_MAX;

retry:
	xas_lock_irqsave(&xas, flags);
next:
	bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK);
	if (xas.xa_index > min / IDA_BITMAP_BITS)
		bit = 0;
	if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
		goto nospc;

	if (xa_is_value(bitmap)) {
		unsigned long tmp = xa_to_value(bitmap);

		if (bit < BITS_PER_XA_VALUE) {
			bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit);
			if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
				goto nospc;
			if (bit < BITS_PER_XA_VALUE) {
				tmp |= 1UL << bit;
				xas_store(&xas, xa_mk_value(tmp));
				goto out;
			}
		}
		bitmap = alloc;
		if (!bitmap)
			bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
		if (!bitmap)
			goto alloc;
		bitmap->bitmap[0] = tmp;
		xas_store(&xas, bitmap);
		if (xas_error(&xas)) {
			bitmap->bitmap[0] = 0;
			goto out;
		}
	}

	if (bitmap) {
		bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit);
		if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
			goto nospc;
		if (bit == IDA_BITMAP_BITS)
			goto next;

		__set_bit(bit, bitmap->bitmap);
		if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
			xas_clear_mark(&xas, XA_FREE_MARK);
	} else {
		if (bit < BITS_PER_XA_VALUE) {
			bitmap = xa_mk_value(1UL << bit);
		} else {
			bitmap = alloc;
			if (!bitmap)
				bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
			if (!bitmap)
				goto alloc;
			__set_bit(bit, bitmap->bitmap);
		}
		xas_store(&xas, bitmap);
	}
out:
	xas_unlock_irqrestore(&xas, flags);
	if (xas_nomem(&xas, gfp)) {
		xas.xa_index = min / IDA_BITMAP_BITS;
		bit = min % IDA_BITMAP_BITS;
		goto retry;
	}
	if (bitmap != alloc)
		kfree(alloc);
	if (xas_error(&xas))
		return xas_error(&xas);
	return xas.xa_index * IDA_BITMAP_BITS + bit;
alloc:
	xas_unlock_irqrestore(&xas, flags);
	alloc = kzalloc(sizeof(*bitmap), gfp);
	if (!alloc)
		return -ENOMEM;
	xas_set(&xas, min / IDA_BITMAP_BITS);
	bit = min % IDA_BITMAP_BITS;
	goto retry;
nospc:
	xas_unlock_irqrestore(&xas, flags);
	kfree(alloc);
	return -ENOSPC;
}
EXPORT_SYMBOL(ida_alloc_range);

/**
 * ida_free() - Release an allocated ID.
 * @ida: IDA handle.
 * @id: Previously allocated ID.
 *
 * Context: Any context. It is safe to call this function without
 * locking in your code.
 */
void ida_free(struct ida *ida, unsigned int id)
{
	XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS);
	unsigned bit = id % IDA_BITMAP_BITS;
	struct ida_bitmap *bitmap;
	unsigned long flags;

	BUG_ON((int)id < 0);

	xas_lock_irqsave(&xas, flags);
	bitmap = xas_load(&xas);

	if (xa_is_value(bitmap)) {
		unsigned long v = xa_to_value(bitmap);
		if (bit >= BITS_PER_XA_VALUE)
			goto err;
		if (!(v & (1UL << bit)))
			goto err;
		v &= ~(1UL << bit);
		if (!v)
			goto delete;
		xas_store(&xas, xa_mk_value(v));
	} else {
		if (!test_bit(bit, bitmap->bitmap))
			goto err;
		__clear_bit(bit, bitmap->bitmap);
		xas_set_mark(&xas, XA_FREE_MARK);
		if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) {
			kfree(bitmap);
delete:
			xas_store(&xas, NULL);
		}
	}
	xas_unlock_irqrestore(&xas, flags);
	return;
 err:
	xas_unlock_irqrestore(&xas, flags);
	WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
}
EXPORT_SYMBOL(ida_free);

/**
 * ida_destroy() - Free all IDs.
 * @ida: IDA handle.
 *
 * Calling this function frees all IDs and releases all resources used
 * by an IDA.  When this call returns, the IDA is empty and can be reused
 * or freed.  If the IDA is already empty, there is no need to call this
 * function.
 *
 * Context: Any context. It is safe to call this function without
 * locking in your code.
 */
void ida_destroy(struct ida *ida)
{
	XA_STATE(xas, &ida->xa, 0);
	struct ida_bitmap *bitmap;
	unsigned long flags;

	xas_lock_irqsave(&xas, flags);
	xas_for_each(&xas, bitmap, ULONG_MAX) {
		if (!xa_is_value(bitmap))
			kfree(bitmap);
		xas_store(&xas, NULL);
	}
	xas_unlock_irqrestore(&xas, flags);
}
EXPORT_SYMBOL(ida_destroy);

#ifndef __KERNEL__
extern void xa_dump_index(unsigned long index, unsigned int shift);
#define IDA_CHUNK_SHIFT		ilog2(IDA_BITMAP_BITS)

static void ida_dump_entry(void *entry, unsigned long index)
{
	unsigned long i;

	if (!entry)
		return;

	if (xa_is_node(entry)) {
		struct xa_node *node = xa_to_node(entry);
		unsigned int shift = node->shift + IDA_CHUNK_SHIFT +
			XA_CHUNK_SHIFT;

		xa_dump_index(index * IDA_BITMAP_BITS, shift);
		xa_dump_node(node);
		for (i = 0; i < XA_CHUNK_SIZE; i++)
			ida_dump_entry(node->slots[i],
					index | (i << node->shift));
	} else if (xa_is_value(entry)) {
		xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG));
		pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry);
	} else {
		struct ida_bitmap *bitmap = entry;

		xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT);
		pr_cont("bitmap: %p data", bitmap);
		for (i = 0; i < IDA_BITMAP_LONGS; i++)
			pr_cont(" %lx", bitmap->bitmap[i]);
		pr_cont("\n");
	}
}

static void ida_dump(struct ida *ida)
{
	struct xarray *xa = &ida->xa;
	pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head,
				xa->xa_flags >> ROOT_TAG_SHIFT);
	ida_dump_entry(xa->xa_head, 0);
}
#endif