sprd-mcdt.c 23.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2019 Spreadtrum Communications Inc.

#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>

#include "sprd-mcdt.h"

/* MCDT registers definition */
#define MCDT_CH0_TXD		0x0
#define MCDT_CH0_RXD		0x28
#define MCDT_DAC0_WTMK		0x60
#define MCDT_ADC0_WTMK		0x88
#define MCDT_DMA_EN		0xb0

#define MCDT_INT_EN0		0xb4
#define MCDT_INT_EN1		0xb8
#define MCDT_INT_EN2		0xbc

#define MCDT_INT_CLR0		0xc0
#define MCDT_INT_CLR1		0xc4
#define MCDT_INT_CLR2		0xc8

#define MCDT_INT_RAW1		0xcc
#define MCDT_INT_RAW2		0xd0
#define MCDT_INT_RAW3		0xd4

#define MCDT_INT_MSK1		0xd8
#define MCDT_INT_MSK2		0xdc
#define MCDT_INT_MSK3		0xe0

#define MCDT_DAC0_FIFO_ADDR_ST	0xe4
#define MCDT_ADC0_FIFO_ADDR_ST	0xe8

#define MCDT_CH_FIFO_ST0	0x134
#define MCDT_CH_FIFO_ST1	0x138
#define MCDT_CH_FIFO_ST2	0x13c

#define MCDT_INT_MSK_CFG0	0x140
#define MCDT_INT_MSK_CFG1	0x144

#define MCDT_DMA_CFG0		0x148
#define MCDT_FIFO_CLR		0x14c
#define MCDT_DMA_CFG1		0x150
#define MCDT_DMA_CFG2		0x154
#define MCDT_DMA_CFG3		0x158
#define MCDT_DMA_CFG4		0x15c
#define MCDT_DMA_CFG5		0x160

/* Channel water mark definition */
#define MCDT_CH_FIFO_AE_SHIFT	16
#define MCDT_CH_FIFO_AE_MASK	GENMASK(24, 16)
#define MCDT_CH_FIFO_AF_MASK	GENMASK(8, 0)

/* DMA channel select definition */
#define MCDT_DMA_CH0_SEL_MASK	GENMASK(3, 0)
#define MCDT_DMA_CH0_SEL_SHIFT	0
#define MCDT_DMA_CH1_SEL_MASK	GENMASK(7, 4)
#define MCDT_DMA_CH1_SEL_SHIFT	4
#define MCDT_DMA_CH2_SEL_MASK	GENMASK(11, 8)
#define MCDT_DMA_CH2_SEL_SHIFT	8
#define MCDT_DMA_CH3_SEL_MASK	GENMASK(15, 12)
#define MCDT_DMA_CH3_SEL_SHIFT	12
#define MCDT_DMA_CH4_SEL_MASK	GENMASK(19, 16)
#define MCDT_DMA_CH4_SEL_SHIFT	16
#define MCDT_DAC_DMA_SHIFT	16

/* DMA channel ACK select definition */
#define MCDT_DMA_ACK_SEL_MASK	GENMASK(3, 0)

/* Channel FIFO definition */
#define MCDT_CH_FIFO_ADDR_SHIFT	16
#define MCDT_CH_FIFO_ADDR_MASK	GENMASK(9, 0)
#define MCDT_ADC_FIFO_SHIFT	16
#define MCDT_FIFO_LENGTH	512

#define MCDT_ADC_CHANNEL_NUM	10
#define MCDT_DAC_CHANNEL_NUM	10
#define MCDT_CHANNEL_NUM	(MCDT_ADC_CHANNEL_NUM + MCDT_DAC_CHANNEL_NUM)

enum sprd_mcdt_fifo_int {
	MCDT_ADC_FIFO_AE_INT,
	MCDT_ADC_FIFO_AF_INT,
	MCDT_DAC_FIFO_AE_INT,
	MCDT_DAC_FIFO_AF_INT,
	MCDT_ADC_FIFO_OV_INT,
	MCDT_DAC_FIFO_OV_INT
};

enum sprd_mcdt_fifo_sts {
	MCDT_ADC_FIFO_REAL_FULL,
	MCDT_ADC_FIFO_REAL_EMPTY,
	MCDT_ADC_FIFO_AF,
	MCDT_ADC_FIFO_AE,
	MCDT_DAC_FIFO_REAL_FULL,
	MCDT_DAC_FIFO_REAL_EMPTY,
	MCDT_DAC_FIFO_AF,
	MCDT_DAC_FIFO_AE
};

struct sprd_mcdt_dev {
	struct device *dev;
	void __iomem *base;
	spinlock_t lock;
	struct sprd_mcdt_chan chan[MCDT_CHANNEL_NUM];
};

static LIST_HEAD(sprd_mcdt_chan_list);
static DEFINE_MUTEX(sprd_mcdt_list_mutex);

static void sprd_mcdt_update(struct sprd_mcdt_dev *mcdt, u32 reg, u32 val,
			     u32 mask)
{
	u32 orig = readl_relaxed(mcdt->base + reg);
	u32 tmp;

	tmp = (orig & ~mask) | val;
	writel_relaxed(tmp, mcdt->base + reg);
}

static void sprd_mcdt_dac_set_watermark(struct sprd_mcdt_dev *mcdt, u8 channel,
					u32 full, u32 empty)
{
	u32 reg = MCDT_DAC0_WTMK + channel * 4;
	u32 water_mark =
		(empty << MCDT_CH_FIFO_AE_SHIFT) & MCDT_CH_FIFO_AE_MASK;

	water_mark |= full & MCDT_CH_FIFO_AF_MASK;
	sprd_mcdt_update(mcdt, reg, water_mark,
			 MCDT_CH_FIFO_AE_MASK | MCDT_CH_FIFO_AF_MASK);
}

static void sprd_mcdt_adc_set_watermark(struct sprd_mcdt_dev *mcdt, u8 channel,
					u32 full, u32 empty)
{
	u32 reg = MCDT_ADC0_WTMK + channel * 4;
	u32 water_mark =
		(empty << MCDT_CH_FIFO_AE_SHIFT) & MCDT_CH_FIFO_AE_MASK;

	water_mark |= full & MCDT_CH_FIFO_AF_MASK;
	sprd_mcdt_update(mcdt, reg, water_mark,
			 MCDT_CH_FIFO_AE_MASK | MCDT_CH_FIFO_AF_MASK);
}

static void sprd_mcdt_dac_dma_enable(struct sprd_mcdt_dev *mcdt, u8 channel,
				     bool enable)
{
	u32 shift = MCDT_DAC_DMA_SHIFT + channel;

	if (enable)
		sprd_mcdt_update(mcdt, MCDT_DMA_EN, BIT(shift), BIT(shift));
	else
		sprd_mcdt_update(mcdt, MCDT_DMA_EN, 0, BIT(shift));
}

static void sprd_mcdt_adc_dma_enable(struct sprd_mcdt_dev *mcdt, u8 channel,
				     bool enable)
{
	if (enable)
		sprd_mcdt_update(mcdt, MCDT_DMA_EN, BIT(channel), BIT(channel));
	else
		sprd_mcdt_update(mcdt, MCDT_DMA_EN, 0, BIT(channel));
}

static void sprd_mcdt_ap_int_enable(struct sprd_mcdt_dev *mcdt, u8 channel,
				    bool enable)
{
	if (enable)
		sprd_mcdt_update(mcdt, MCDT_INT_MSK_CFG0, BIT(channel),
				 BIT(channel));
	else
		sprd_mcdt_update(mcdt, MCDT_INT_MSK_CFG0, 0, BIT(channel));
}

static void sprd_mcdt_dac_write_fifo(struct sprd_mcdt_dev *mcdt, u8 channel,
				     u32 val)
{
	u32 reg = MCDT_CH0_TXD + channel * 4;

	writel_relaxed(val, mcdt->base + reg);
}

static void sprd_mcdt_adc_read_fifo(struct sprd_mcdt_dev *mcdt, u8 channel,
				    u32 *val)
{
	u32 reg = MCDT_CH0_RXD + channel * 4;

	*val = readl_relaxed(mcdt->base + reg);
}

static void sprd_mcdt_dac_dma_chn_select(struct sprd_mcdt_dev *mcdt, u8 channel,
					 enum sprd_mcdt_dma_chan dma_chan)
{
	switch (dma_chan) {
	case SPRD_MCDT_DMA_CH0:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG0,
				 channel << MCDT_DMA_CH0_SEL_SHIFT,
				 MCDT_DMA_CH0_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH1:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG0,
				 channel << MCDT_DMA_CH1_SEL_SHIFT,
				 MCDT_DMA_CH1_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH2:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG0,
				 channel << MCDT_DMA_CH2_SEL_SHIFT,
				 MCDT_DMA_CH2_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH3:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG0,
				 channel << MCDT_DMA_CH3_SEL_SHIFT,
				 MCDT_DMA_CH3_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH4:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG0,
				 channel << MCDT_DMA_CH4_SEL_SHIFT,
				 MCDT_DMA_CH4_SEL_MASK);
		break;
	}
}

static void sprd_mcdt_adc_dma_chn_select(struct sprd_mcdt_dev *mcdt, u8 channel,
					 enum sprd_mcdt_dma_chan dma_chan)
{
	switch (dma_chan) {
	case SPRD_MCDT_DMA_CH0:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG1,
				 channel << MCDT_DMA_CH0_SEL_SHIFT,
				 MCDT_DMA_CH0_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH1:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG1,
				 channel << MCDT_DMA_CH1_SEL_SHIFT,
				 MCDT_DMA_CH1_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH2:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG1,
				 channel << MCDT_DMA_CH2_SEL_SHIFT,
				 MCDT_DMA_CH2_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH3:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG1,
				 channel << MCDT_DMA_CH3_SEL_SHIFT,
				 MCDT_DMA_CH3_SEL_MASK);
		break;

	case SPRD_MCDT_DMA_CH4:
		sprd_mcdt_update(mcdt, MCDT_DMA_CFG1,
				 channel << MCDT_DMA_CH4_SEL_SHIFT,
				 MCDT_DMA_CH4_SEL_MASK);
		break;
	}
}

static u32 sprd_mcdt_dma_ack_shift(u8 channel)
{
	switch (channel) {
	default:
	case 0:
	case 8:
		return 0;
	case 1:
	case 9:
		return 4;
	case 2:
		return 8;
	case 3:
		return 12;
	case 4:
		return 16;
	case 5:
		return 20;
	case 6:
		return 24;
	case 7:
		return 28;
	}
}

static void sprd_mcdt_dac_dma_ack_select(struct sprd_mcdt_dev *mcdt, u8 channel,
					 enum sprd_mcdt_dma_chan dma_chan)
{
	u32 reg, shift = sprd_mcdt_dma_ack_shift(channel), ack = dma_chan;

	switch (channel) {
	case 0 ... 7:
		reg = MCDT_DMA_CFG2;
		break;

	case 8 ... 9:
		reg = MCDT_DMA_CFG3;
		break;

	default:
		return;
	}

	sprd_mcdt_update(mcdt, reg, ack << shift,
			 MCDT_DMA_ACK_SEL_MASK << shift);
}

static void sprd_mcdt_adc_dma_ack_select(struct sprd_mcdt_dev *mcdt, u8 channel,
					 enum sprd_mcdt_dma_chan dma_chan)
{
	u32 reg, shift = sprd_mcdt_dma_ack_shift(channel), ack = dma_chan;

	switch (channel) {
	case 0 ... 7:
		reg = MCDT_DMA_CFG4;
		break;

	case 8 ... 9:
		reg = MCDT_DMA_CFG5;
		break;

	default:
		return;
	}

	sprd_mcdt_update(mcdt, reg, ack << shift,
			 MCDT_DMA_ACK_SEL_MASK << shift);
}

static bool sprd_mcdt_chan_fifo_sts(struct sprd_mcdt_dev *mcdt, u8 channel,
				    enum sprd_mcdt_fifo_sts fifo_sts)
{
	u32 reg, shift;

	switch (channel) {
	case 0 ... 3:
		reg = MCDT_CH_FIFO_ST0;
		break;
	case 4 ... 7:
		reg = MCDT_CH_FIFO_ST1;
		break;
	case 8 ... 9:
		reg = MCDT_CH_FIFO_ST2;
		break;
	default:
		return false;
	}

	switch (channel) {
	case 0:
	case 4:
	case 8:
		shift = fifo_sts;
		break;

	case 1:
	case 5:
	case 9:
		shift = 8 + fifo_sts;
		break;

	case 2:
	case 6:
		shift = 16 + fifo_sts;
		break;

	case 3:
	case 7:
		shift = 24 + fifo_sts;
		break;

	default:
		return false;
	}

	return !!(readl_relaxed(mcdt->base + reg) & BIT(shift));
}

static void sprd_mcdt_dac_fifo_clear(struct sprd_mcdt_dev *mcdt, u8 channel)
{
	sprd_mcdt_update(mcdt, MCDT_FIFO_CLR, BIT(channel), BIT(channel));
}

static void sprd_mcdt_adc_fifo_clear(struct sprd_mcdt_dev *mcdt, u8 channel)
{
	u32 shift = MCDT_ADC_FIFO_SHIFT + channel;

	sprd_mcdt_update(mcdt, MCDT_FIFO_CLR, BIT(shift), BIT(shift));
}

static u32 sprd_mcdt_dac_fifo_avail(struct sprd_mcdt_dev *mcdt, u8 channel)
{
	u32 reg = MCDT_DAC0_FIFO_ADDR_ST + channel * 8;
	u32 r_addr = (readl_relaxed(mcdt->base + reg) >>
		      MCDT_CH_FIFO_ADDR_SHIFT) & MCDT_CH_FIFO_ADDR_MASK;
	u32 w_addr = readl_relaxed(mcdt->base + reg) & MCDT_CH_FIFO_ADDR_MASK;

	if (w_addr >= r_addr)
		return 4 * (MCDT_FIFO_LENGTH - w_addr + r_addr);
	else
		return 4 * (r_addr - w_addr);
}

static u32 sprd_mcdt_adc_fifo_avail(struct sprd_mcdt_dev *mcdt, u8 channel)
{
	u32 reg = MCDT_ADC0_FIFO_ADDR_ST + channel * 8;
	u32 r_addr = (readl_relaxed(mcdt->base + reg) >>
		      MCDT_CH_FIFO_ADDR_SHIFT) & MCDT_CH_FIFO_ADDR_MASK;
	u32 w_addr = readl_relaxed(mcdt->base + reg) & MCDT_CH_FIFO_ADDR_MASK;

	if (w_addr >= r_addr)
		return 4 * (w_addr - r_addr);
	else
		return 4 * (MCDT_FIFO_LENGTH - r_addr + w_addr);
}

static u32 sprd_mcdt_int_type_shift(u8 channel,
				    enum sprd_mcdt_fifo_int int_type)
{
	switch (channel) {
	case 0:
	case 4:
	case 8:
		return int_type;

	case 1:
	case 5:
	case 9:
		return  8 + int_type;

	case 2:
	case 6:
		return 16 + int_type;

	case 3:
	case 7:
		return 24 + int_type;

	default:
		return 0;
	}
}

static void sprd_mcdt_chan_int_en(struct sprd_mcdt_dev *mcdt, u8 channel,
				  enum sprd_mcdt_fifo_int int_type, bool enable)
{
	u32 reg, shift = sprd_mcdt_int_type_shift(channel, int_type);

	switch (channel) {
	case 0 ... 3:
		reg = MCDT_INT_EN0;
		break;
	case 4 ... 7:
		reg = MCDT_INT_EN1;
		break;
	case 8 ... 9:
		reg = MCDT_INT_EN2;
		break;
	default:
		return;
	}

	if (enable)
		sprd_mcdt_update(mcdt, reg, BIT(shift), BIT(shift));
	else
		sprd_mcdt_update(mcdt, reg, 0, BIT(shift));
}

static void sprd_mcdt_chan_int_clear(struct sprd_mcdt_dev *mcdt, u8 channel,
				     enum sprd_mcdt_fifo_int int_type)
{
	u32 reg, shift = sprd_mcdt_int_type_shift(channel, int_type);

	switch (channel) {
	case 0 ... 3:
		reg = MCDT_INT_CLR0;
		break;
	case 4 ... 7:
		reg = MCDT_INT_CLR1;
		break;
	case 8 ... 9:
		reg = MCDT_INT_CLR2;
		break;
	default:
		return;
	}

	sprd_mcdt_update(mcdt, reg, BIT(shift), BIT(shift));
}

static bool sprd_mcdt_chan_int_sts(struct sprd_mcdt_dev *mcdt, u8 channel,
				   enum sprd_mcdt_fifo_int int_type)
{
	u32 reg, shift = sprd_mcdt_int_type_shift(channel, int_type);

	switch (channel) {
	case 0 ... 3:
		reg = MCDT_INT_MSK1;
		break;
	case 4 ... 7:
		reg = MCDT_INT_MSK2;
		break;
	case 8 ... 9:
		reg = MCDT_INT_MSK3;
		break;
	default:
		return false;
	}

	return !!(readl_relaxed(mcdt->base + reg) & BIT(shift));
}

static irqreturn_t sprd_mcdt_irq_handler(int irq, void *dev_id)
{
	struct sprd_mcdt_dev *mcdt = (struct sprd_mcdt_dev *)dev_id;
	int i;

	spin_lock(&mcdt->lock);

	for (i = 0; i < MCDT_ADC_CHANNEL_NUM; i++) {
		if (sprd_mcdt_chan_int_sts(mcdt, i, MCDT_ADC_FIFO_AF_INT)) {
			struct sprd_mcdt_chan *chan = &mcdt->chan[i];

			sprd_mcdt_chan_int_clear(mcdt, i, MCDT_ADC_FIFO_AF_INT);
			if (chan->cb)
				chan->cb->notify(chan->cb->data);
		}
	}

	for (i = 0; i < MCDT_DAC_CHANNEL_NUM; i++) {
		if (sprd_mcdt_chan_int_sts(mcdt, i, MCDT_DAC_FIFO_AE_INT)) {
			struct sprd_mcdt_chan *chan =
				&mcdt->chan[i + MCDT_ADC_CHANNEL_NUM];

			sprd_mcdt_chan_int_clear(mcdt, i, MCDT_DAC_FIFO_AE_INT);
			if (chan->cb)
				chan->cb->notify(chan->cb->data);
		}
	}

	spin_unlock(&mcdt->lock);

	return IRQ_HANDLED;
}

/**
 * sprd_mcdt_chan_write - write data to the MCDT channel's fifo
 * @chan: the MCDT channel
 * @tx_buf: send buffer
 * @size: data size
 *
 * Note: We can not write data to the channel fifo when enabling the DMA mode,
 * otherwise the channel fifo data will be invalid.
 *
 * If there are not enough space of the channel fifo, it will return errors
 * to users.
 *
 * Returns 0 on success, or an appropriate error code on failure.
 */
int sprd_mcdt_chan_write(struct sprd_mcdt_chan *chan, char *tx_buf, u32 size)
{
	struct sprd_mcdt_dev *mcdt = chan->mcdt;
	unsigned long flags;
	int avail, i = 0, words = size / 4;
	u32 *buf = (u32 *)tx_buf;

	spin_lock_irqsave(&mcdt->lock, flags);

	if (chan->dma_enable) {
		dev_err(mcdt->dev,
			"Can not write data when DMA mode enabled\n");
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return -EINVAL;
	}

	if (sprd_mcdt_chan_fifo_sts(mcdt, chan->id, MCDT_DAC_FIFO_REAL_FULL)) {
		dev_err(mcdt->dev, "Channel fifo is full now\n");
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return -EBUSY;
	}

	avail = sprd_mcdt_dac_fifo_avail(mcdt, chan->id);
	if (size > avail) {
		dev_err(mcdt->dev,
			"Data size is larger than the available fifo size\n");
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return -EBUSY;
	}

	while (i++ < words)
		sprd_mcdt_dac_write_fifo(mcdt, chan->id, *buf++);

	spin_unlock_irqrestore(&mcdt->lock, flags);
	return 0;
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_write);

/**
 * sprd_mcdt_chan_read - read data from the MCDT channel's fifo
 * @chan: the MCDT channel
 * @rx_buf: receive buffer
 * @size: data size
 *
 * Note: We can not read data from the channel fifo when enabling the DMA mode,
 * otherwise the reading data will be invalid.
 *
 * Usually user need start to read data once receiving the fifo full interrupt.
 *
 * Returns data size of reading successfully, or an error code on failure.
 */
int sprd_mcdt_chan_read(struct sprd_mcdt_chan *chan, char *rx_buf, u32 size)
{
	struct sprd_mcdt_dev *mcdt = chan->mcdt;
	unsigned long flags;
	int i = 0, avail, words = size / 4;
	u32 *buf = (u32 *)rx_buf;

	spin_lock_irqsave(&mcdt->lock, flags);

	if (chan->dma_enable) {
		dev_err(mcdt->dev, "Can not read data when DMA mode enabled\n");
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return -EINVAL;
	}

	if (sprd_mcdt_chan_fifo_sts(mcdt, chan->id, MCDT_ADC_FIFO_REAL_EMPTY)) {
		dev_err(mcdt->dev, "Channel fifo is empty\n");
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return -EBUSY;
	}

	avail = sprd_mcdt_adc_fifo_avail(mcdt, chan->id);
	if (size > avail)
		words = avail / 4;

	while (i++ < words)
		sprd_mcdt_adc_read_fifo(mcdt, chan->id, buf++);

	spin_unlock_irqrestore(&mcdt->lock, flags);
	return words * 4;
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_read);

/**
 * sprd_mcdt_chan_int_enable - enable the interrupt mode for the MCDT channel
 * @chan: the MCDT channel
 * @water_mark: water mark to trigger a interrupt
 * @cb: callback when a interrupt happened
 *
 * Now it only can enable fifo almost full interrupt for ADC channel and fifo
 * almost empty interrupt for DAC channel. Morevoer for interrupt mode, user
 * should use sprd_mcdt_chan_read() or sprd_mcdt_chan_write() to read or write
 * data manually.
 *
 * For ADC channel, user can start to read data once receiving one fifo full
 * interrupt. For DAC channel, user can start to write data once receiving one
 * fifo empty interrupt or just call sprd_mcdt_chan_write() to write data
 * directly.
 *
 * Returns 0 on success, or an error code on failure.
 */
int sprd_mcdt_chan_int_enable(struct sprd_mcdt_chan *chan, u32 water_mark,
			      struct sprd_mcdt_chan_callback *cb)
{
	struct sprd_mcdt_dev *mcdt = chan->mcdt;
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&mcdt->lock, flags);

	if (chan->dma_enable || chan->int_enable) {
		dev_err(mcdt->dev, "Failed to set interrupt mode.\n");
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return -EINVAL;
	}

	switch (chan->type) {
	case SPRD_MCDT_ADC_CHAN:
		sprd_mcdt_adc_fifo_clear(mcdt, chan->id);
		sprd_mcdt_adc_set_watermark(mcdt, chan->id, water_mark,
					    MCDT_FIFO_LENGTH - 1);
		sprd_mcdt_chan_int_en(mcdt, chan->id,
				      MCDT_ADC_FIFO_AF_INT, true);
		sprd_mcdt_ap_int_enable(mcdt, chan->id, true);
		break;

	case SPRD_MCDT_DAC_CHAN:
		sprd_mcdt_dac_fifo_clear(mcdt, chan->id);
		sprd_mcdt_dac_set_watermark(mcdt, chan->id,
					    MCDT_FIFO_LENGTH - 1, water_mark);
		sprd_mcdt_chan_int_en(mcdt, chan->id,
				      MCDT_DAC_FIFO_AE_INT, true);
		sprd_mcdt_ap_int_enable(mcdt, chan->id, true);
		break;

	default:
		dev_err(mcdt->dev, "Unsupported channel type\n");
		ret = -EINVAL;
	}

	if (!ret) {
		chan->cb = cb;
		chan->int_enable = true;
	}

	spin_unlock_irqrestore(&mcdt->lock, flags);

	return ret;
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_int_enable);

/**
 * sprd_mcdt_chan_int_disable - disable the interrupt mode for the MCDT channel
 * @chan: the MCDT channel
 */
void sprd_mcdt_chan_int_disable(struct sprd_mcdt_chan *chan)
{
	struct sprd_mcdt_dev *mcdt = chan->mcdt;
	unsigned long flags;

	spin_lock_irqsave(&mcdt->lock, flags);

	if (!chan->int_enable) {
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return;
	}

	switch (chan->type) {
	case SPRD_MCDT_ADC_CHAN:
		sprd_mcdt_chan_int_en(mcdt, chan->id,
				      MCDT_ADC_FIFO_AF_INT, false);
		sprd_mcdt_chan_int_clear(mcdt, chan->id, MCDT_ADC_FIFO_AF_INT);
		sprd_mcdt_ap_int_enable(mcdt, chan->id, false);
		break;

	case SPRD_MCDT_DAC_CHAN:
		sprd_mcdt_chan_int_en(mcdt, chan->id,
				      MCDT_DAC_FIFO_AE_INT, false);
		sprd_mcdt_chan_int_clear(mcdt, chan->id, MCDT_DAC_FIFO_AE_INT);
		sprd_mcdt_ap_int_enable(mcdt, chan->id, false);
		break;

	default:
		break;
	}

	chan->int_enable = false;
	spin_unlock_irqrestore(&mcdt->lock, flags);
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_int_disable);

/**
 * sprd_mcdt_chan_dma_enable - enable the DMA mode for the MCDT channel
 * @chan: the MCDT channel
 * @dma_chan: specify which DMA channel will be used for this MCDT channel
 * @water_mark: water mark to trigger a DMA request
 *
 * Enable the DMA mode for the MCDT channel, that means we can use DMA to
 * transfer data to the channel fifo and do not need reading/writing data
 * manually.
 *
 * Returns 0 on success, or an error code on failure.
 */
int sprd_mcdt_chan_dma_enable(struct sprd_mcdt_chan *chan,
			      enum sprd_mcdt_dma_chan dma_chan,
			      u32 water_mark)
{
	struct sprd_mcdt_dev *mcdt = chan->mcdt;
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&mcdt->lock, flags);

	if (chan->dma_enable || chan->int_enable ||
	    dma_chan > SPRD_MCDT_DMA_CH4) {
		dev_err(mcdt->dev, "Failed to set DMA mode\n");
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return -EINVAL;
	}

	switch (chan->type) {
	case SPRD_MCDT_ADC_CHAN:
		sprd_mcdt_adc_fifo_clear(mcdt, chan->id);
		sprd_mcdt_adc_set_watermark(mcdt, chan->id,
					    water_mark, MCDT_FIFO_LENGTH - 1);
		sprd_mcdt_adc_dma_enable(mcdt, chan->id, true);
		sprd_mcdt_adc_dma_chn_select(mcdt, chan->id, dma_chan);
		sprd_mcdt_adc_dma_ack_select(mcdt, chan->id, dma_chan);
		break;

	case SPRD_MCDT_DAC_CHAN:
		sprd_mcdt_dac_fifo_clear(mcdt, chan->id);
		sprd_mcdt_dac_set_watermark(mcdt, chan->id,
					    MCDT_FIFO_LENGTH - 1, water_mark);
		sprd_mcdt_dac_dma_enable(mcdt, chan->id, true);
		sprd_mcdt_dac_dma_chn_select(mcdt, chan->id, dma_chan);
		sprd_mcdt_dac_dma_ack_select(mcdt, chan->id, dma_chan);
		break;

	default:
		dev_err(mcdt->dev, "Unsupported channel type\n");
		ret = -EINVAL;
	}

	if (!ret)
		chan->dma_enable = true;

	spin_unlock_irqrestore(&mcdt->lock, flags);

	return ret;
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_dma_enable);

/**
 * sprd_mcdt_chan_dma_disable - disable the DMA mode for the MCDT channel
 * @chan: the MCDT channel
 */
void sprd_mcdt_chan_dma_disable(struct sprd_mcdt_chan *chan)
{
	struct sprd_mcdt_dev *mcdt = chan->mcdt;
	unsigned long flags;

	spin_lock_irqsave(&mcdt->lock, flags);

	if (!chan->dma_enable) {
		spin_unlock_irqrestore(&mcdt->lock, flags);
		return;
	}

	switch (chan->type) {
	case SPRD_MCDT_ADC_CHAN:
		sprd_mcdt_adc_dma_enable(mcdt, chan->id, false);
		sprd_mcdt_adc_fifo_clear(mcdt, chan->id);
		break;

	case SPRD_MCDT_DAC_CHAN:
		sprd_mcdt_dac_dma_enable(mcdt, chan->id, false);
		sprd_mcdt_dac_fifo_clear(mcdt, chan->id);
		break;

	default:
		break;
	}

	chan->dma_enable = false;
	spin_unlock_irqrestore(&mcdt->lock, flags);
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_dma_disable);

/**
 * sprd_mcdt_request_chan - request one MCDT channel
 * @channel: channel id
 * @type: channel type, it can be one ADC channel or DAC channel
 *
 * Rreturn NULL if no available channel.
 */
struct sprd_mcdt_chan *sprd_mcdt_request_chan(u8 channel,
					      enum sprd_mcdt_channel_type type)
{
	struct sprd_mcdt_chan *temp, *chan = NULL;

	mutex_lock(&sprd_mcdt_list_mutex);

	list_for_each_entry(temp, &sprd_mcdt_chan_list, list) {
		if (temp->type == type && temp->id == channel) {
			chan = temp;
			break;
		}
	}

	if (chan)
		list_del(&chan->list);

	mutex_unlock(&sprd_mcdt_list_mutex);

	return chan;
}
EXPORT_SYMBOL_GPL(sprd_mcdt_request_chan);

/**
 * sprd_mcdt_free_chan - free one MCDT channel
 * @chan: the channel to be freed
 */
void sprd_mcdt_free_chan(struct sprd_mcdt_chan *chan)
{
	struct sprd_mcdt_chan *temp;

	sprd_mcdt_chan_dma_disable(chan);
	sprd_mcdt_chan_int_disable(chan);

	mutex_lock(&sprd_mcdt_list_mutex);

	list_for_each_entry(temp, &sprd_mcdt_chan_list, list) {
		if (temp == chan) {
			mutex_unlock(&sprd_mcdt_list_mutex);
			return;
		}
	}

	list_add_tail(&chan->list, &sprd_mcdt_chan_list);
	mutex_unlock(&sprd_mcdt_list_mutex);
}
EXPORT_SYMBOL_GPL(sprd_mcdt_free_chan);

static void sprd_mcdt_init_chans(struct sprd_mcdt_dev *mcdt,
				 struct resource *res)
{
	int i;

	for (i = 0; i < MCDT_CHANNEL_NUM; i++) {
		struct sprd_mcdt_chan *chan = &mcdt->chan[i];

		if (i < MCDT_ADC_CHANNEL_NUM) {
			chan->id = i;
			chan->type = SPRD_MCDT_ADC_CHAN;
			chan->fifo_phys = res->start + MCDT_CH0_RXD + i * 4;
		} else {
			chan->id = i - MCDT_ADC_CHANNEL_NUM;
			chan->type = SPRD_MCDT_DAC_CHAN;
			chan->fifo_phys = res->start + MCDT_CH0_TXD +
				(i - MCDT_ADC_CHANNEL_NUM) * 4;
		}

		chan->mcdt = mcdt;
		INIT_LIST_HEAD(&chan->list);

		mutex_lock(&sprd_mcdt_list_mutex);
		list_add_tail(&chan->list, &sprd_mcdt_chan_list);
		mutex_unlock(&sprd_mcdt_list_mutex);
	}
}

static int sprd_mcdt_probe(struct platform_device *pdev)
{
	struct sprd_mcdt_dev *mcdt;
	struct resource *res;
	int ret, irq;

	mcdt = devm_kzalloc(&pdev->dev, sizeof(*mcdt), GFP_KERNEL);
	if (!mcdt)
		return -ENOMEM;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	mcdt->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(mcdt->base))
		return PTR_ERR(mcdt->base);

	mcdt->dev = &pdev->dev;
	spin_lock_init(&mcdt->lock);
	platform_set_drvdata(pdev, mcdt);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "Failed to get MCDT interrupt\n");
		return irq;
	}

	ret = devm_request_irq(&pdev->dev, irq, sprd_mcdt_irq_handler,
			       0, "sprd-mcdt", mcdt);
	if (ret) {
		dev_err(&pdev->dev, "Failed to request MCDT IRQ\n");
		return ret;
	}

	sprd_mcdt_init_chans(mcdt, res);

	return 0;
}

static int sprd_mcdt_remove(struct platform_device *pdev)
{
	struct sprd_mcdt_chan *chan, *temp;

	mutex_lock(&sprd_mcdt_list_mutex);

	list_for_each_entry_safe(chan, temp, &sprd_mcdt_chan_list, list)
		list_del(&chan->list);

	mutex_unlock(&sprd_mcdt_list_mutex);

	return 0;
}

static const struct of_device_id sprd_mcdt_of_match[] = {
	{ .compatible = "sprd,sc9860-mcdt", },
	{ }
};
MODULE_DEVICE_TABLE(of, sprd_mcdt_of_match);

static struct platform_driver sprd_mcdt_driver = {
	.probe = sprd_mcdt_probe,
	.remove = sprd_mcdt_remove,
	.driver = {
		.name = "sprd-mcdt",
		.of_match_table = sprd_mcdt_of_match,
	},
};

module_platform_driver(sprd_mcdt_driver);

MODULE_DESCRIPTION("Spreadtrum Multi-Channel Data Transfer Driver");
MODULE_LICENSE("GPL v2");