bitops.h 12.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
/* $Id: bitops.h,v 1.67 2001/11/19 18:36:34 davem Exp $
 * bitops.h: Bit string operations on the Sparc.
 *
 * Copyright 1995 David S. Miller (davem@caip.rutgers.edu)
 * Copyright 1996 Eddie C. Dost   (ecd@skynet.be)
 * Copyright 2001 Anton Blanchard (anton@samba.org)
 */

#ifndef _SPARC_BITOPS_H
#define _SPARC_BITOPS_H

#include <linux/compiler.h>
#include <asm/byteorder.h>

#ifdef __KERNEL__

/*
 * Set bit 'nr' in 32-bit quantity at address 'addr' where bit '0'
 * is in the highest of the four bytes and bit '31' is the high bit
 * within the first byte. Sparc is BIG-Endian. Unless noted otherwise
 * all bit-ops return 0 if bit was previously clear and != 0 otherwise.
 */
static inline int test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
{
	register unsigned long mask asm("g2");
	register unsigned long *ADDR asm("g1");
	register int tmp1 asm("g3");
	register int tmp2 asm("g4");
	register int tmp3 asm("g5");
	register int tmp4 asm("g7");

	ADDR = ((unsigned long *) addr) + (nr >> 5);
	mask = 1 << (nr & 31);

	__asm__ __volatile__(
	"mov	%%o7, %%g4\n\t"
	"call	___set_bit\n\t"
	" add	%%o7, 8, %%o7\n"
	: "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
	: "0" (mask), "r" (ADDR)
	: "memory", "cc");

	return mask != 0;
}

static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
{
	register unsigned long mask asm("g2");
	register unsigned long *ADDR asm("g1");
	register int tmp1 asm("g3");
	register int tmp2 asm("g4");
	register int tmp3 asm("g5");
	register int tmp4 asm("g7");

	ADDR = ((unsigned long *) addr) + (nr >> 5);
	mask = 1 << (nr & 31);

	__asm__ __volatile__(
	"mov	%%o7, %%g4\n\t"
	"call	___set_bit\n\t"
	" add	%%o7, 8, %%o7\n"
	: "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
	: "0" (mask), "r" (ADDR)
	: "memory", "cc");
}

static inline int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
{
	register unsigned long mask asm("g2");
	register unsigned long *ADDR asm("g1");
	register int tmp1 asm("g3");
	register int tmp2 asm("g4");
	register int tmp3 asm("g5");
	register int tmp4 asm("g7");

	ADDR = ((unsigned long *) addr) + (nr >> 5);
	mask = 1 << (nr & 31);

	__asm__ __volatile__(
	"mov	%%o7, %%g4\n\t"
	"call	___clear_bit\n\t"
	" add	%%o7, 8, %%o7\n"
	: "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
	: "0" (mask), "r" (ADDR)
	: "memory", "cc");

	return mask != 0;
}

static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
{
	register unsigned long mask asm("g2");
	register unsigned long *ADDR asm("g1");
	register int tmp1 asm("g3");
	register int tmp2 asm("g4");
	register int tmp3 asm("g5");
	register int tmp4 asm("g7");

	ADDR = ((unsigned long *) addr) + (nr >> 5);
	mask = 1 << (nr & 31);

	__asm__ __volatile__(
	"mov	%%o7, %%g4\n\t"
	"call	___clear_bit\n\t"
	" add	%%o7, 8, %%o7\n"
	: "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
	: "0" (mask), "r" (ADDR)
	: "memory", "cc");
}

static inline int test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
{
	register unsigned long mask asm("g2");
	register unsigned long *ADDR asm("g1");
	register int tmp1 asm("g3");
	register int tmp2 asm("g4");
	register int tmp3 asm("g5");
	register int tmp4 asm("g7");

	ADDR = ((unsigned long *) addr) + (nr >> 5);
	mask = 1 << (nr & 31);

	__asm__ __volatile__(
	"mov	%%o7, %%g4\n\t"
	"call	___change_bit\n\t"
	" add	%%o7, 8, %%o7\n"
	: "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
	: "0" (mask), "r" (ADDR)
	: "memory", "cc");

	return mask != 0;
}

static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
{
	register unsigned long mask asm("g2");
	register unsigned long *ADDR asm("g1");
	register int tmp1 asm("g3");
	register int tmp2 asm("g4");
	register int tmp3 asm("g5");
	register int tmp4 asm("g7");

	ADDR = ((unsigned long *) addr) + (nr >> 5);
	mask = 1 << (nr & 31);

	__asm__ __volatile__(
	"mov	%%o7, %%g4\n\t"
	"call	___change_bit\n\t"
	" add	%%o7, 8, %%o7\n"
	: "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
	: "0" (mask), "r" (ADDR)
	: "memory", "cc");
}

/*
 * non-atomic versions
 */
static inline void __set_bit(int nr, volatile unsigned long *addr)
{
	unsigned long mask = 1UL << (nr & 0x1f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 5);

	*p |= mask;
}

static inline void __clear_bit(int nr, volatile unsigned long *addr)
{
	unsigned long mask = 1UL << (nr & 0x1f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 5);

	*p &= ~mask;
}

static inline void __change_bit(int nr, volatile unsigned long *addr)
{
	unsigned long mask = 1UL << (nr & 0x1f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 5);

	*p ^= mask;
}

static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
{
	unsigned long mask = 1UL << (nr & 0x1f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 5);
	unsigned long old = *p;

	*p = old | mask;
	return (old & mask) != 0;
}

static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
{
	unsigned long mask = 1UL << (nr & 0x1f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 5);
	unsigned long old = *p;

	*p = old & ~mask;
	return (old & mask) != 0;
}

static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
{
	unsigned long mask = 1UL << (nr & 0x1f);
	unsigned long *p = ((unsigned long *)addr) + (nr >> 5);
	unsigned long old = *p;

	*p = old ^ mask;
	return (old & mask) != 0;
}

#define smp_mb__before_clear_bit()	do { } while(0)
#define smp_mb__after_clear_bit()	do { } while(0)

/* The following routine need not be atomic. */
static inline int test_bit(int nr, __const__ volatile unsigned long *addr)
{
	return (1UL & (((unsigned long *)addr)[nr >> 5] >> (nr & 31))) != 0UL;
}

/* The easy/cheese version for now. */
static inline unsigned long ffz(unsigned long word)
{
	unsigned long result = 0;

	while(word & 1) {
		result++;
		word >>= 1;
	}
	return result;
}

/**
 * __ffs - find first bit in word.
 * @word: The word to search
 *
 * Undefined if no bit exists, so code should check against 0 first.
 */
static inline int __ffs(unsigned long word)
{
	int num = 0;

	if ((word & 0xffff) == 0) {
		num += 16;
		word >>= 16;
	}
	if ((word & 0xff) == 0) {
		num += 8;
		word >>= 8;
	}
	if ((word & 0xf) == 0) {
		num += 4;
		word >>= 4;
	}
	if ((word & 0x3) == 0) {
		num += 2;
		word >>= 2;
	}
	if ((word & 0x1) == 0)
		num += 1;
	return num;
}

/*
 * Every architecture must define this function. It's the fastest
 * way of searching a 140-bit bitmap where the first 100 bits are
 * unlikely to be set. It's guaranteed that at least one of the 140
 * bits is cleared.
 */
static inline int sched_find_first_bit(unsigned long *b)
{

	if (unlikely(b[0]))
		return __ffs(b[0]);
	if (unlikely(b[1]))
		return __ffs(b[1]) + 32;
	if (unlikely(b[2]))
		return __ffs(b[2]) + 64;
	if (b[3])
		return __ffs(b[3]) + 96;
	return __ffs(b[4]) + 128;
}

/*
 * ffs: find first bit set. This is defined the same way as
 * the libc and compiler builtin ffs routines, therefore
 * differs in spirit from the above ffz (man ffs).
 */
static inline int ffs(int x)
{
	if (!x)
		return 0;
	return __ffs((unsigned long)x) + 1;
}

/*
 * fls: find last (most-significant) bit set.
 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
 */
#define fls(x) generic_fls(x)

/*
 * hweightN: returns the hamming weight (i.e. the number
 * of bits set) of a N-bit word
 */
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)

/*
 * find_next_zero_bit() finds the first zero bit in a bit string of length
 * 'size' bits, starting the search at bit 'offset'. This is largely based
 * on Linus's ALPHA routines, which are pretty portable BTW.
 */
static inline unsigned long find_next_zero_bit(const unsigned long *addr,
    unsigned long size, unsigned long offset)
{
	const unsigned long *p = addr + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if (offset) {
		tmp = *(p++);
		tmp |= ~0UL >> (32-offset);
		if (size < 32)
			goto found_first;
		if (~tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while (size & ~31UL) {
		if (~(tmp = *(p++)))
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if (!size)
		return result;
	tmp = *p;

found_first:
	tmp |= ~0UL << size;
	if (tmp == ~0UL)        /* Are any bits zero? */
		return result + size; /* Nope. */
found_middle:
	return result + ffz(tmp);
}

/*
 * Linus sez that gcc can optimize the following correctly, we'll see if this
 * holds on the Sparc as it does for the ALPHA.
 */
#define find_first_zero_bit(addr, size) \
        find_next_zero_bit((addr), (size), 0)

/**
 * find_next_bit - find the first set bit in a memory region
 * @addr: The address to base the search on
 * @offset: The bitnumber to start searching at
 * @size: The maximum size to search
 *
 * Scheduler induced bitop, do not use.
 */
static inline int find_next_bit(const unsigned long *addr, int size, int offset)
{
	const unsigned long *p = addr + (offset >> 5);
	int num = offset & ~0x1f;
	unsigned long word;

	word = *p++;
	word &= ~((1 << (offset & 0x1f)) - 1);
	while (num < size) {
		if (word != 0) {
			return __ffs(word) + num;
		}
		word = *p++;
		num += 0x20;
	}
	return num;
}

/**
 * find_first_bit - find the first set bit in a memory region
 * @addr: The address to start the search at
 * @size: The maximum size to search
 *
 * Returns the bit-number of the first set bit, not the number of the byte
 * containing a bit.
 */
#define find_first_bit(addr, size) \
	find_next_bit((addr), (size), 0)

/*
 */
static inline int test_le_bit(int nr, __const__ unsigned long * addr)
{
	__const__ unsigned char *ADDR = (__const__ unsigned char *) addr;
	return (ADDR[nr >> 3] >> (nr & 7)) & 1;
}

/*
 * non-atomic versions
 */
static inline void __set_le_bit(int nr, unsigned long *addr)
{
	unsigned char *ADDR = (unsigned char *)addr;

	ADDR += nr >> 3;
	*ADDR |= 1 << (nr & 0x07);
}

static inline void __clear_le_bit(int nr, unsigned long *addr)
{
	unsigned char *ADDR = (unsigned char *)addr;

	ADDR += nr >> 3;
	*ADDR &= ~(1 << (nr & 0x07));
}

static inline int __test_and_set_le_bit(int nr, unsigned long *addr)
{
	int mask, retval;
	unsigned char *ADDR = (unsigned char *)addr;

	ADDR += nr >> 3;
	mask = 1 << (nr & 0x07);
	retval = (mask & *ADDR) != 0;
	*ADDR |= mask;
	return retval;
}

static inline int __test_and_clear_le_bit(int nr, unsigned long *addr)
{
	int mask, retval;
	unsigned char *ADDR = (unsigned char *)addr;

	ADDR += nr >> 3;
	mask = 1 << (nr & 0x07);
	retval = (mask & *ADDR) != 0;
	*ADDR &= ~mask;
	return retval;
}

static inline unsigned long find_next_zero_le_bit(const unsigned long *addr,
    unsigned long size, unsigned long offset)
{
	const unsigned long *p = addr + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if(offset) {
		tmp = *(p++);
		tmp |= __swab32(~0UL >> (32-offset));
		if(size < 32)
			goto found_first;
		if(~tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while(size & ~31UL) {
		if(~(tmp = *(p++)))
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if(!size)
		return result;
	tmp = *p;

found_first:
	tmp = __swab32(tmp) | (~0UL << size);
	if (tmp == ~0UL)        /* Are any bits zero? */
		return result + size; /* Nope. */
	return result + ffz(tmp);

found_middle:
	return result + ffz(__swab32(tmp));
}

#define find_first_zero_le_bit(addr, size) \
        find_next_zero_le_bit((addr), (size), 0)

#define ext2_set_bit(nr,addr)	\
	__test_and_set_le_bit((nr),(unsigned long *)(addr))
#define ext2_clear_bit(nr,addr)	\
	__test_and_clear_le_bit((nr),(unsigned long *)(addr))

#define ext2_set_bit_atomic(lock, nr, addr)		\
	({						\
		int ret;				\
		spin_lock(lock);			\
		ret = ext2_set_bit((nr), (unsigned long *)(addr)); \
		spin_unlock(lock);			\
		ret;					\
	})

#define ext2_clear_bit_atomic(lock, nr, addr)		\
	({						\
		int ret;				\
		spin_lock(lock);			\
		ret = ext2_clear_bit((nr), (unsigned long *)(addr)); \
		spin_unlock(lock);			\
		ret;					\
	})

#define ext2_test_bit(nr,addr)	\
	test_le_bit((nr),(unsigned long *)(addr))
#define ext2_find_first_zero_bit(addr, size) \
	find_first_zero_le_bit((unsigned long *)(addr), (size))
#define ext2_find_next_zero_bit(addr, size, off) \
	find_next_zero_le_bit((unsigned long *)(addr), (size), (off))

/* Bitmap functions for the minix filesystem.  */
#define minix_test_and_set_bit(nr,addr)	\
	test_and_set_bit((nr),(unsigned long *)(addr))
#define minix_set_bit(nr,addr)		\
	set_bit((nr),(unsigned long *)(addr))
#define minix_test_and_clear_bit(nr,addr) \
	test_and_clear_bit((nr),(unsigned long *)(addr))
#define minix_test_bit(nr,addr)		\
	test_bit((nr),(unsigned long *)(addr))
#define minix_find_first_zero_bit(addr,size) \
	find_first_zero_bit((unsigned long *)(addr),(size))

#endif /* __KERNEL__ */

#endif /* defined(_SPARC_BITOPS_H) */