pid.c 12.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
/*
 * Generic pidhash and scalable, time-bounded PID allocator
 *
 * (C) 2002-2003 William Irwin, IBM
 * (C) 2004 William Irwin, Oracle
 * (C) 2002-2004 Ingo Molnar, Red Hat
 *
 * pid-structures are backing objects for tasks sharing a given ID to chain
 * against. There is very little to them aside from hashing them and
 * parking tasks using given ID's on a list.
 *
 * The hash is always changed with the tasklist_lock write-acquired,
 * and the hash is only accessed with the tasklist_lock at least
 * read-acquired, so there's no additional SMP locking needed here.
 *
 * We have a list of bitmap pages, which bitmaps represent the PID space.
 * Allocating and freeing PIDs is completely lockless. The worst-case
 * allocation scenario when all but one out of 1 million PIDs possible are
 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 *
 * Pid namespaces:
 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 *     Many thanks to Oleg Nesterov for comments and help
 *
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/rculist.h>
#include <linux/bootmem.h>
#include <linux/hash.h>
#include <linux/pid_namespace.h>
#include <linux/init_task.h>
#include <linux/syscalls.h>

#define pid_hashfn(nr, ns)	\
	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
static struct hlist_head *pid_hash;
static unsigned int pidhash_shift = 4;
struct pid init_struct_pid = INIT_STRUCT_PID;

int pid_max = PID_MAX_DEFAULT;

#define RESERVED_PIDS		300

int pid_max_min = RESERVED_PIDS + 1;
int pid_max_max = PID_MAX_LIMIT;

#define BITS_PER_PAGE		(PAGE_SIZE*8)
#define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1)

static inline int mk_pid(struct pid_namespace *pid_ns,
		struct pidmap *map, int off)
{
	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
}

#define find_next_offset(map, off)					\
		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)

/*
 * PID-map pages start out as NULL, they get allocated upon
 * first use and are never deallocated. This way a low pid_max
 * value does not cause lots of bitmaps to be allocated, but
 * the scheme scales to up to 4 million PIDs, runtime.
 */
struct pid_namespace init_pid_ns = {
	.kref = {
		.refcount       = ATOMIC_INIT(2),
	},
	.pidmap = {
		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
	},
	.last_pid = 0,
	.level = 0,
	.child_reaper = &init_task,
};
EXPORT_SYMBOL_GPL(init_pid_ns);

int is_container_init(struct task_struct *tsk)
{
	int ret = 0;
	struct pid *pid;

	rcu_read_lock();
	pid = task_pid(tsk);
	if (pid != NULL && pid->numbers[pid->level].nr == 1)
		ret = 1;
	rcu_read_unlock();

	return ret;
}
EXPORT_SYMBOL(is_container_init);

/*
 * Note: disable interrupts while the pidmap_lock is held as an
 * interrupt might come in and do read_lock(&tasklist_lock).
 *
 * If we don't disable interrupts there is a nasty deadlock between
 * detach_pid()->free_pid() and another cpu that does
 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 * read_lock(&tasklist_lock);
 *
 * After we clean up the tasklist_lock and know there are no
 * irq handlers that take it we can leave the interrupts enabled.
 * For now it is easier to be safe than to prove it can't happen.
 */

static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);

static void free_pidmap(struct upid *upid)
{
	int nr = upid->nr;
	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
	int offset = nr & BITS_PER_PAGE_MASK;

	clear_bit(offset, map->page);
	atomic_inc(&map->nr_free);
}

static int alloc_pidmap(struct pid_namespace *pid_ns)
{
	int i, offset, max_scan, pid, last = pid_ns->last_pid;
	struct pidmap *map;

	pid = last + 1;
	if (pid >= pid_max)
		pid = RESERVED_PIDS;
	offset = pid & BITS_PER_PAGE_MASK;
	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
	max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
	for (i = 0; i <= max_scan; ++i) {
		if (unlikely(!map->page)) {
			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
			/*
			 * Free the page if someone raced with us
			 * installing it:
			 */
			spin_lock_irq(&pidmap_lock);
			if (!map->page) {
				map->page = page;
				page = NULL;
			}
			spin_unlock_irq(&pidmap_lock);
			kfree(page);
			if (unlikely(!map->page))
				break;
		}
		if (likely(atomic_read(&map->nr_free))) {
			do {
				if (!test_and_set_bit(offset, map->page)) {
					atomic_dec(&map->nr_free);
					pid_ns->last_pid = pid;
					return pid;
				}
				offset = find_next_offset(map, offset);
				pid = mk_pid(pid_ns, map, offset);
			/*
			 * find_next_offset() found a bit, the pid from it
			 * is in-bounds, and if we fell back to the last
			 * bitmap block and the final block was the same
			 * as the starting point, pid is before last_pid.
			 */
			} while (offset < BITS_PER_PAGE && pid < pid_max &&
					(i != max_scan || pid < last ||
					    !((last+1) & BITS_PER_PAGE_MASK)));
		}
		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
			++map;
			offset = 0;
		} else {
			map = &pid_ns->pidmap[0];
			offset = RESERVED_PIDS;
			if (unlikely(last == offset))
				break;
		}
		pid = mk_pid(pid_ns, map, offset);
	}
	return -1;
}

int next_pidmap(struct pid_namespace *pid_ns, int last)
{
	int offset;
	struct pidmap *map, *end;

	offset = (last + 1) & BITS_PER_PAGE_MASK;
	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
	for (; map < end; map++, offset = 0) {
		if (unlikely(!map->page))
			continue;
		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
		if (offset < BITS_PER_PAGE)
			return mk_pid(pid_ns, map, offset);
	}
	return -1;
}

void put_pid(struct pid *pid)
{
	struct pid_namespace *ns;

	if (!pid)
		return;

	ns = pid->numbers[pid->level].ns;
	if ((atomic_read(&pid->count) == 1) ||
	     atomic_dec_and_test(&pid->count)) {
		kmem_cache_free(ns->pid_cachep, pid);
		put_pid_ns(ns);
	}
}
EXPORT_SYMBOL_GPL(put_pid);

static void delayed_put_pid(struct rcu_head *rhp)
{
	struct pid *pid = container_of(rhp, struct pid, rcu);
	put_pid(pid);
}

void free_pid(struct pid *pid)
{
	/* We can be called with write_lock_irq(&tasklist_lock) held */
	int i;
	unsigned long flags;

	spin_lock_irqsave(&pidmap_lock, flags);
	for (i = 0; i <= pid->level; i++)
		hlist_del_rcu(&pid->numbers[i].pid_chain);
	spin_unlock_irqrestore(&pidmap_lock, flags);

	for (i = 0; i <= pid->level; i++)
		free_pidmap(pid->numbers + i);

	call_rcu(&pid->rcu, delayed_put_pid);
}

struct pid *alloc_pid(struct pid_namespace *ns)
{
	struct pid *pid;
	enum pid_type type;
	int i, nr;
	struct pid_namespace *tmp;
	struct upid *upid;

	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
	if (!pid)
		goto out;

	tmp = ns;
	for (i = ns->level; i >= 0; i--) {
		nr = alloc_pidmap(tmp);
		if (nr < 0)
			goto out_free;

		pid->numbers[i].nr = nr;
		pid->numbers[i].ns = tmp;
		tmp = tmp->parent;
	}

	get_pid_ns(ns);
	pid->level = ns->level;
	atomic_set(&pid->count, 1);
	for (type = 0; type < PIDTYPE_MAX; ++type)
		INIT_HLIST_HEAD(&pid->tasks[type]);

	upid = pid->numbers + ns->level;
	spin_lock_irq(&pidmap_lock);
	for ( ; upid >= pid->numbers; --upid)
		hlist_add_head_rcu(&upid->pid_chain,
				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
	spin_unlock_irq(&pidmap_lock);

out:
	return pid;

out_free:
	while (++i <= ns->level)
		free_pidmap(pid->numbers + i);

	kmem_cache_free(ns->pid_cachep, pid);
	pid = NULL;
	goto out;
}

struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
{
	struct hlist_node *elem;
	struct upid *pnr;

	hlist_for_each_entry_rcu(pnr, elem,
			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
		if (pnr->nr == nr && pnr->ns == ns)
			return container_of(pnr, struct pid,
					numbers[ns->level]);

	return NULL;
}
EXPORT_SYMBOL_GPL(find_pid_ns);

struct pid *find_vpid(int nr)
{
	return find_pid_ns(nr, current->nsproxy->pid_ns);
}
EXPORT_SYMBOL_GPL(find_vpid);

/*
 * attach_pid() must be called with the tasklist_lock write-held.
 */
void attach_pid(struct task_struct *task, enum pid_type type,
		struct pid *pid)
{
	struct pid_link *link;

	link = &task->pids[type];
	link->pid = pid;
	hlist_add_head_rcu(&link->node, &pid->tasks[type]);
}

static void __change_pid(struct task_struct *task, enum pid_type type,
			struct pid *new)
{
	struct pid_link *link;
	struct pid *pid;
	int tmp;

	link = &task->pids[type];
	pid = link->pid;

	hlist_del_rcu(&link->node);
	link->pid = new;

	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
		if (!hlist_empty(&pid->tasks[tmp]))
			return;

	free_pid(pid);
}

void detach_pid(struct task_struct *task, enum pid_type type)
{
	__change_pid(task, type, NULL);
}

void change_pid(struct task_struct *task, enum pid_type type,
		struct pid *pid)
{
	__change_pid(task, type, pid);
	attach_pid(task, type, pid);
}

/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
void transfer_pid(struct task_struct *old, struct task_struct *new,
			   enum pid_type type)
{
	new->pids[type].pid = old->pids[type].pid;
	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
}

struct task_struct *pid_task(struct pid *pid, enum pid_type type)
{
	struct task_struct *result = NULL;
	if (pid) {
		struct hlist_node *first;
		first = rcu_dereference_check(pid->tasks[type].first,
					      rcu_read_lock_held() ||
					      lockdep_tasklist_lock_is_held());
		if (first)
			result = hlist_entry(first, struct task_struct, pids[(type)].node);
	}
	return result;
}
EXPORT_SYMBOL(pid_task);

/*
 * Must be called under rcu_read_lock().
 */
struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
{
	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
}

struct task_struct *find_task_by_vpid(pid_t vnr)
{
	return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
}

struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
{
	struct pid *pid;
	rcu_read_lock();
	if (type != PIDTYPE_PID)
		task = task->group_leader;
	pid = get_pid(task->pids[type].pid);
	rcu_read_unlock();
	return pid;
}

struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
{
	struct task_struct *result;
	rcu_read_lock();
	result = pid_task(pid, type);
	if (result)
		get_task_struct(result);
	rcu_read_unlock();
	return result;
}

struct pid *find_get_pid(pid_t nr)
{
	struct pid *pid;

	rcu_read_lock();
	pid = get_pid(find_vpid(nr));
	rcu_read_unlock();

	return pid;
}
EXPORT_SYMBOL_GPL(find_get_pid);

pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
{
	struct upid *upid;
	pid_t nr = 0;

	if (pid && ns->level <= pid->level) {
		upid = &pid->numbers[ns->level];
		if (upid->ns == ns)
			nr = upid->nr;
	}
	return nr;
}

pid_t pid_vnr(struct pid *pid)
{
	return pid_nr_ns(pid, current->nsproxy->pid_ns);
}
EXPORT_SYMBOL_GPL(pid_vnr);

pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
			struct pid_namespace *ns)
{
	pid_t nr = 0;

	rcu_read_lock();
	if (!ns)
		ns = current->nsproxy->pid_ns;
	if (likely(pid_alive(task))) {
		if (type != PIDTYPE_PID)
			task = task->group_leader;
		nr = pid_nr_ns(task->pids[type].pid, ns);
	}
	rcu_read_unlock();

	return nr;
}
EXPORT_SYMBOL(__task_pid_nr_ns);

pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
	return pid_nr_ns(task_tgid(tsk), ns);
}
EXPORT_SYMBOL(task_tgid_nr_ns);

struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
{
	return ns_of_pid(task_pid(tsk));
}
EXPORT_SYMBOL_GPL(task_active_pid_ns);

/*
 * Used by proc to find the first pid that is greater than or equal to nr.
 *
 * If there is a pid at nr this function is exactly the same as find_pid_ns.
 */
struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
{
	struct pid *pid;

	do {
		pid = find_pid_ns(nr, ns);
		if (pid)
			break;
		nr = next_pidmap(ns, nr);
	} while (nr > 0);

	return pid;
}

/*
 * The pid hash table is scaled according to the amount of memory in the
 * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
 * more.
 */
void __init pidhash_init(void)
{
	int i, pidhash_size;

	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
					   HASH_EARLY | HASH_SMALL,
					   &pidhash_shift, NULL, 4096);
	pidhash_size = 1 << pidhash_shift;

	for (i = 0; i < pidhash_size; i++)
		INIT_HLIST_HEAD(&pid_hash[i]);
}

void __init pidmap_init(void)
{
	/* bump default and minimum pid_max based on number of cpus */
	pid_max = min(pid_max_max, max_t(int, pid_max,
				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
	pid_max_min = max_t(int, pid_max_min,
				PIDS_PER_CPU_MIN * num_possible_cpus());
	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);

	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
	/* Reserve PID 0. We never call free_pidmap(0) */
	set_bit(0, init_pid_ns.pidmap[0].page);
	atomic_dec(&init_pid_ns.pidmap[0].nr_free);

	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
			SLAB_HWCACHE_ALIGN | SLAB_PANIC);
}