pinctrl.txt
30.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
PINCTRL (PIN CONTROL) subsystem
This document outlines the pin control subsystem in Linux
This subsystem deals with:
- Enumerating and naming controllable pins
- Multiplexing of pins, pads, fingers (etc) see below for details
The intention is to also deal with:
- Software-controlled biasing and driving mode specific pins, such as
pull-up/down, open drain etc, load capacitance configuration when controlled
by software, etc.
Top-level interface
===================
Definition of PIN CONTROLLER:
- A pin controller is a piece of hardware, usually a set of registers, that
can control PINs. It may be able to multiplex, bias, set load capacitance,
set drive strength etc for individual pins or groups of pins.
Definition of PIN:
- PINS are equal to pads, fingers, balls or whatever packaging input or
output line you want to control and these are denoted by unsigned integers
in the range 0..maxpin. This numberspace is local to each PIN CONTROLLER, so
there may be several such number spaces in a system. This pin space may
be sparse - i.e. there may be gaps in the space with numbers where no
pin exists.
When a PIN CONTROLLER is instatiated, it will register a descriptor to the
pin control framework, and this descriptor contains an array of pin descriptors
describing the pins handled by this specific pin controller.
Here is an example of a PGA (Pin Grid Array) chip seen from underneath:
A B C D E F G H
8 o o o o o o o o
7 o o o o o o o o
6 o o o o o o o o
5 o o o o o o o o
4 o o o o o o o o
3 o o o o o o o o
2 o o o o o o o o
1 o o o o o o o o
To register a pin controller and name all the pins on this package we can do
this in our driver:
#include <linux/pinctrl/pinctrl.h>
const struct pinctrl_pin_desc __refdata foo_pins[] = {
PINCTRL_PIN(0, "A1"),
PINCTRL_PIN(1, "A2"),
PINCTRL_PIN(2, "A3"),
...
PINCTRL_PIN(61, "H6"),
PINCTRL_PIN(62, "H7"),
PINCTRL_PIN(63, "H8"),
};
static struct pinctrl_desc foo_desc = {
.name = "foo",
.pins = foo_pins,
.npins = ARRAY_SIZE(foo_pins),
.maxpin = 63,
.owner = THIS_MODULE,
};
int __init foo_probe(void)
{
struct pinctrl_dev *pctl;
pctl = pinctrl_register(&foo_desc, <PARENT>, NULL);
if (IS_ERR(pctl))
pr_err("could not register foo pin driver\n");
}
Pins usually have fancier names than this. You can find these in the dataheet
for your chip. Notice that the core pinctrl.h file provides a fancy macro
called PINCTRL_PIN() to create the struct entries. As you can see I enumerated
the pins from 0 in the upper left corner to 63 in the lower right corner,
this enumeration was arbitrarily chosen, in practice you need to think
through your numbering system so that it matches the layout of registers
and such things in your driver, or the code may become complicated. You must
also consider matching of offsets to the GPIO ranges that may be handled by
the pin controller.
For a padring with 467 pads, as opposed to actual pins, I used an enumeration
like this, walking around the edge of the chip, which seems to be industry
standard too (all these pads had names, too):
0 ..... 104
466 105
. .
. .
358 224
357 .... 225
Pin groups
==========
Many controllers need to deal with groups of pins, so the pin controller
subsystem has a mechanism for enumerating groups of pins and retrieving the
actual enumerated pins that are part of a certain group.
For example, say that we have a group of pins dealing with an SPI interface
on { 0, 8, 16, 24 }, and a group of pins dealing with an I2C interface on pins
on { 24, 25 }.
These two groups are presented to the pin control subsystem by implementing
some generic pinctrl_ops like this:
#include <linux/pinctrl/pinctrl.h>
struct foo_group {
const char *name;
const unsigned int *pins;
const unsigned num_pins;
};
static unsigned int spi0_pins[] = { 0, 8, 16, 24 };
static unsigned int i2c0_pins[] = { 24, 25 };
static const struct foo_group foo_groups[] = {
{
.name = "spi0_grp",
.pins = spi0_pins,
.num_pins = ARRAY_SIZE(spi0_pins),
},
{
.name = "i2c0_grp",
.pins = i2c0_pins,
.num_pins = ARRAY_SIZE(i2c0_pins),
},
};
static int foo_list_groups(struct pinctrl_dev *pctldev, unsigned selector)
{
if (selector >= ARRAY_SIZE(foo_groups))
return -EINVAL;
return 0;
}
static const char *foo_get_group_name(struct pinctrl_dev *pctldev,
unsigned selector)
{
return foo_groups[selector].name;
}
static int foo_get_group_pins(struct pinctrl_dev *pctldev, unsigned selector,
unsigned ** const pins,
unsigned * const num_pins)
{
*pins = (unsigned *) foo_groups[selector].pins;
*num_pins = foo_groups[selector].num_pins;
return 0;
}
static struct pinctrl_ops foo_pctrl_ops = {
.list_groups = foo_list_groups,
.get_group_name = foo_get_group_name,
.get_group_pins = foo_get_group_pins,
};
static struct pinctrl_desc foo_desc = {
...
.pctlops = &foo_pctrl_ops,
};
The pin control subsystem will call the .list_groups() function repeatedly
beginning on 0 until it returns non-zero to determine legal selectors, then
it will call the other functions to retrieve the name and pins of the group.
Maintaining the data structure of the groups is up to the driver, this is
just a simple example - in practice you may need more entries in your group
structure, for example specific register ranges associated with each group
and so on.
Interaction with the GPIO subsystem
===================================
The GPIO drivers may want to perform operations of various types on the same
physical pins that are also registered as pin controller pins.
Since the pin controller subsystem have its pinspace local to the pin
controller we need a mapping so that the pin control subsystem can figure out
which pin controller handles control of a certain GPIO pin. Since a single
pin controller may be muxing several GPIO ranges (typically SoCs that have
one set of pins but internally several GPIO silicon blocks, each modeled as
a struct gpio_chip) any number of GPIO ranges can be added to a pin controller
instance like this:
struct gpio_chip chip_a;
struct gpio_chip chip_b;
static struct pinctrl_gpio_range gpio_range_a = {
.name = "chip a",
.id = 0,
.base = 32,
.npins = 16,
.gc = &chip_a;
};
static struct pinctrl_gpio_range gpio_range_a = {
.name = "chip b",
.id = 0,
.base = 48,
.npins = 8,
.gc = &chip_b;
};
{
struct pinctrl_dev *pctl;
...
pinctrl_add_gpio_range(pctl, &gpio_range_a);
pinctrl_add_gpio_range(pctl, &gpio_range_b);
}
So this complex system has one pin controller handling two different
GPIO chips. Chip a has 16 pins and chip b has 8 pins. They are mapped in
the global GPIO pin space at:
chip a: [32 .. 47]
chip b: [48 .. 55]
When GPIO-specific functions in the pin control subsystem are called, these
ranges will be used to look up the apropriate pin controller by inspecting
and matching the pin to the pin ranges across all controllers. When a
pin controller handling the matching range is found, GPIO-specific functions
will be called on that specific pin controller.
For all functionalities dealing with pin biasing, pin muxing etc, the pin
controller subsystem will subtract the range's .base offset from the passed
in gpio pin number, and pass that on to the pin control driver, so the driver
will get an offset into its handled number range. Further it is also passed
the range ID value, so that the pin controller knows which range it should
deal with.
For example: if a user issues pinctrl_gpio_set_foo(50), the pin control
subsystem will find that the second range on this pin controller matches,
subtract the base 48 and call the
pinctrl_driver_gpio_set_foo(pinctrl, range, 2) where the latter function has
this signature:
int pinctrl_driver_gpio_set_foo(struct pinctrl_dev *pctldev,
struct pinctrl_gpio_range *rangeid,
unsigned offset);
Now the driver knows that we want to do some GPIO-specific operation on the
second GPIO range handled by "chip b", at offset 2 in that specific range.
(If the GPIO subsystem is ever refactored to use a local per-GPIO controller
pin space, this mapping will need to be augmented accordingly.)
PINMUX interfaces
=================
These calls use the pinmux_* naming prefix. No other calls should use that
prefix.
What is pinmuxing?
==================
PINMUX, also known as padmux, ballmux, alternate functions or mission modes
is a way for chip vendors producing some kind of electrical packages to use
a certain physical pin (ball, pad, finger, etc) for multiple mutually exclusive
functions, depending on the application. By "application" in this context
we usually mean a way of soldering or wiring the package into an electronic
system, even though the framework makes it possible to also change the function
at runtime.
Here is an example of a PGA (Pin Grid Array) chip seen from underneath:
A B C D E F G H
+---+
8 | o | o o o o o o o
| |
7 | o | o o o o o o o
| |
6 | o | o o o o o o o
+---+---+
5 | o | o | o o o o o o
+---+---+ +---+
4 o o o o o o | o | o
| |
3 o o o o o o | o | o
| |
2 o o o o o o | o | o
+-------+-------+-------+---+---+
1 | o o | o o | o o | o | o |
+-------+-------+-------+---+---+
This is not tetris. The game to think of is chess. Not all PGA/BGA packages
are chessboard-like, big ones have "holes" in some arrangement according to
different design patterns, but we're using this as a simple example. Of the
pins you see some will be taken by things like a few VCC and GND to feed power
to the chip, and quite a few will be taken by large ports like an external
memory interface. The remaining pins will often be subject to pin multiplexing.
The example 8x8 PGA package above will have pin numbers 0 thru 63 assigned to
its physical pins. It will name the pins { A1, A2, A3 ... H6, H7, H8 } using
pinctrl_register_pins() and a suitable data set as shown earlier.
In this 8x8 BGA package the pins { A8, A7, A6, A5 } can be used as an SPI port
(these are four pins: CLK, RXD, TXD, FRM). In that case, pin B5 can be used as
some general-purpose GPIO pin. However, in another setting, pins { A5, B5 } can
be used as an I2C port (these are just two pins: SCL, SDA). Needless to say,
we cannot use the SPI port and I2C port at the same time. However in the inside
of the package the silicon performing the SPI logic can alternatively be routed
out on pins { G4, G3, G2, G1 }.
On the botton row at { A1, B1, C1, D1, E1, F1, G1, H1 } we have something
special - it's an external MMC bus that can be 2, 4 or 8 bits wide, and it will
consume 2, 4 or 8 pins respectively, so either { A1, B1 } are taken or
{ A1, B1, C1, D1 } or all of them. If we use all 8 bits, we cannot use the SPI
port on pins { G4, G3, G2, G1 } of course.
This way the silicon blocks present inside the chip can be multiplexed "muxed"
out on different pin ranges. Often contemporary SoC (systems on chip) will
contain several I2C, SPI, SDIO/MMC, etc silicon blocks that can be routed to
different pins by pinmux settings.
Since general-purpose I/O pins (GPIO) are typically always in shortage, it is
common to be able to use almost any pin as a GPIO pin if it is not currently
in use by some other I/O port.
Pinmux conventions
==================
The purpose of the pinmux functionality in the pin controller subsystem is to
abstract and provide pinmux settings to the devices you choose to instantiate
in your machine configuration. It is inspired by the clk, GPIO and regulator
subsystems, so devices will request their mux setting, but it's also possible
to request a single pin for e.g. GPIO.
Definitions:
- FUNCTIONS can be switched in and out by a driver residing with the pin
control subsystem in the drivers/pinctrl/* directory of the kernel. The
pin control driver knows the possible functions. In the example above you can
identify three pinmux functions, one for spi, one for i2c and one for mmc.
- FUNCTIONS are assumed to be enumerable from zero in a one-dimensional array.
In this case the array could be something like: { spi0, i2c0, mmc0 }
for the three available functions.
- FUNCTIONS have PIN GROUPS as defined on the generic level - so a certain
function is *always* associated with a certain set of pin groups, could
be just a single one, but could also be many. In the example above the
function i2c is associated with the pins { A5, B5 }, enumerated as
{ 24, 25 } in the controller pin space.
The Function spi is associated with pin groups { A8, A7, A6, A5 }
and { G4, G3, G2, G1 }, which are enumerated as { 0, 8, 16, 24 } and
{ 38, 46, 54, 62 } respectively.
Group names must be unique per pin controller, no two groups on the same
controller may have the same name.
- The combination of a FUNCTION and a PIN GROUP determine a certain function
for a certain set of pins. The knowledge of the functions and pin groups
and their machine-specific particulars are kept inside the pinmux driver,
from the outside only the enumerators are known, and the driver core can:
- Request the name of a function with a certain selector (>= 0)
- A list of groups associated with a certain function
- Request that a certain group in that list to be activated for a certain
function
As already described above, pin groups are in turn self-descriptive, so
the core will retrieve the actual pin range in a certain group from the
driver.
- FUNCTIONS and GROUPS on a certain PIN CONTROLLER are MAPPED to a certain
device by the board file, device tree or similar machine setup configuration
mechanism, similar to how regulators are connected to devices, usually by
name. Defining a pin controller, function and group thus uniquely identify
the set of pins to be used by a certain device. (If only one possible group
of pins is available for the function, no group name need to be supplied -
the core will simply select the first and only group available.)
In the example case we can define that this particular machine shall
use device spi0 with pinmux function fspi0 group gspi0 and i2c0 on function
fi2c0 group gi2c0, on the primary pin controller, we get mappings
like these:
{
{"map-spi0", spi0, pinctrl0, fspi0, gspi0},
{"map-i2c0", i2c0, pinctrl0, fi2c0, gi2c0}
}
Every map must be assigned a symbolic name, pin controller and function.
The group is not compulsory - if it is omitted the first group presented by
the driver as applicable for the function will be selected, which is
useful for simple cases.
The device name is present in map entries tied to specific devices. Maps
without device names are referred to as SYSTEM pinmuxes, such as can be taken
by the machine implementation on boot and not tied to any specific device.
It is possible to map several groups to the same combination of device,
pin controller and function. This is for cases where a certain function on
a certain pin controller may use different sets of pins in different
configurations.
- PINS for a certain FUNCTION using a certain PIN GROUP on a certain
PIN CONTROLLER are provided on a first-come first-serve basis, so if some
other device mux setting or GPIO pin request has already taken your physical
pin, you will be denied the use of it. To get (activate) a new setting, the
old one has to be put (deactivated) first.
Sometimes the documentation and hardware registers will be oriented around
pads (or "fingers") rather than pins - these are the soldering surfaces on the
silicon inside the package, and may or may not match the actual number of
pins/balls underneath the capsule. Pick some enumeration that makes sense to
you. Define enumerators only for the pins you can control if that makes sense.
Assumptions:
We assume that the number possible function maps to pin groups is limited by
the hardware. I.e. we assume that there is no system where any function can be
mapped to any pin, like in a phone exchange. So the available pins groups for
a certain function will be limited to a few choices (say up to eight or so),
not hundreds or any amount of choices. This is the characteristic we have found
by inspecting available pinmux hardware, and a necessary assumption since we
expect pinmux drivers to present *all* possible function vs pin group mappings
to the subsystem.
Pinmux drivers
==============
The pinmux core takes care of preventing conflicts on pins and calling
the pin controller driver to execute different settings.
It is the responsibility of the pinmux driver to impose further restrictions
(say for example infer electronic limitations due to load etc) to determine
whether or not the requested function can actually be allowed, and in case it
is possible to perform the requested mux setting, poke the hardware so that
this happens.
Pinmux drivers are required to supply a few callback functions, some are
optional. Usually the enable() and disable() functions are implemented,
writing values into some certain registers to activate a certain mux setting
for a certain pin.
A simple driver for the above example will work by setting bits 0, 1, 2, 3 or 4
into some register named MUX to select a certain function with a certain
group of pins would work something like this:
#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/pinmux.h>
struct foo_group {
const char *name;
const unsigned int *pins;
const unsigned num_pins;
};
static const unsigned spi0_0_pins[] = { 0, 8, 16, 24 };
static const unsigned spi0_1_pins[] = { 38, 46, 54, 62 };
static const unsigned i2c0_pins[] = { 24, 25 };
static const unsigned mmc0_1_pins[] = { 56, 57 };
static const unsigned mmc0_2_pins[] = { 58, 59 };
static const unsigned mmc0_3_pins[] = { 60, 61, 62, 63 };
static const struct foo_group foo_groups[] = {
{
.name = "spi0_0_grp",
.pins = spi0_0_pins,
.num_pins = ARRAY_SIZE(spi0_0_pins),
},
{
.name = "spi0_1_grp",
.pins = spi0_1_pins,
.num_pins = ARRAY_SIZE(spi0_1_pins),
},
{
.name = "i2c0_grp",
.pins = i2c0_pins,
.num_pins = ARRAY_SIZE(i2c0_pins),
},
{
.name = "mmc0_1_grp",
.pins = mmc0_1_pins,
.num_pins = ARRAY_SIZE(mmc0_1_pins),
},
{
.name = "mmc0_2_grp",
.pins = mmc0_2_pins,
.num_pins = ARRAY_SIZE(mmc0_2_pins),
},
{
.name = "mmc0_3_grp",
.pins = mmc0_3_pins,
.num_pins = ARRAY_SIZE(mmc0_3_pins),
},
};
static int foo_list_groups(struct pinctrl_dev *pctldev, unsigned selector)
{
if (selector >= ARRAY_SIZE(foo_groups))
return -EINVAL;
return 0;
}
static const char *foo_get_group_name(struct pinctrl_dev *pctldev,
unsigned selector)
{
return foo_groups[selector].name;
}
static int foo_get_group_pins(struct pinctrl_dev *pctldev, unsigned selector,
unsigned ** const pins,
unsigned * const num_pins)
{
*pins = (unsigned *) foo_groups[selector].pins;
*num_pins = foo_groups[selector].num_pins;
return 0;
}
static struct pinctrl_ops foo_pctrl_ops = {
.list_groups = foo_list_groups,
.get_group_name = foo_get_group_name,
.get_group_pins = foo_get_group_pins,
};
struct foo_pmx_func {
const char *name;
const char * const *groups;
const unsigned num_groups;
};
static const char * const spi0_groups[] = { "spi0_1_grp" };
static const char * const i2c0_groups[] = { "i2c0_grp" };
static const char * const mmc0_groups[] = { "mmc0_1_grp", "mmc0_2_grp",
"mmc0_3_grp" };
static const struct foo_pmx_func foo_functions[] = {
{
.name = "spi0",
.groups = spi0_groups,
.num_groups = ARRAY_SIZE(spi0_groups),
},
{
.name = "i2c0",
.groups = i2c0_groups,
.num_groups = ARRAY_SIZE(i2c0_groups),
},
{
.name = "mmc0",
.groups = mmc0_groups,
.num_groups = ARRAY_SIZE(mmc0_groups),
},
};
int foo_list_funcs(struct pinctrl_dev *pctldev, unsigned selector)
{
if (selector >= ARRAY_SIZE(foo_functions))
return -EINVAL;
return 0;
}
const char *foo_get_fname(struct pinctrl_dev *pctldev, unsigned selector)
{
return myfuncs[selector].name;
}
static int foo_get_groups(struct pinctrl_dev *pctldev, unsigned selector,
const char * const **groups,
unsigned * const num_groups)
{
*groups = foo_functions[selector].groups;
*num_groups = foo_functions[selector].num_groups;
return 0;
}
int foo_enable(struct pinctrl_dev *pctldev, unsigned selector,
unsigned group)
{
u8 regbit = (1 << group);
writeb((readb(MUX)|regbit), MUX)
return 0;
}
int foo_disable(struct pinctrl_dev *pctldev, unsigned selector,
unsigned group)
{
u8 regbit = (1 << group);
writeb((readb(MUX) & ~(regbit)), MUX)
return 0;
}
struct pinmux_ops foo_pmxops = {
.list_functions = foo_list_funcs,
.get_function_name = foo_get_fname,
.get_function_groups = foo_get_groups,
.enable = foo_enable,
.disable = foo_disable,
};
/* Pinmux operations are handled by some pin controller */
static struct pinctrl_desc foo_desc = {
...
.pctlops = &foo_pctrl_ops,
.pmxops = &foo_pmxops,
};
In the example activating muxing 0 and 1 at the same time setting bits
0 and 1, uses one pin in common so they would collide.
The beauty of the pinmux subsystem is that since it keeps track of all
pins and who is using them, it will already have denied an impossible
request like that, so the driver does not need to worry about such
things - when it gets a selector passed in, the pinmux subsystem makes
sure no other device or GPIO assignment is already using the selected
pins. Thus bits 0 and 1 in the control register will never be set at the
same time.
All the above functions are mandatory to implement for a pinmux driver.
Pinmux interaction with the GPIO subsystem
==========================================
The function list could become long, especially if you can convert every
individual pin into a GPIO pin independent of any other pins, and then try
the approach to define every pin as a function.
In this case, the function array would become 64 entries for each GPIO
setting and then the device functions.
For this reason there is an additional function a pinmux driver can implement
to enable only GPIO on an individual pin: .gpio_request_enable(). The same
.free() function as for other functions is assumed to be usable also for
GPIO pins.
This function will pass in the affected GPIO range identified by the pin
controller core, so you know which GPIO pins are being affected by the request
operation.
Alternatively it is fully allowed to use named functions for each GPIO
pin, the pinmux_request_gpio() will attempt to obtain the function "gpioN"
where "N" is the global GPIO pin number if no special GPIO-handler is
registered.
Pinmux board/machine configuration
==================================
Boards and machines define how a certain complete running system is put
together, including how GPIOs and devices are muxed, how regulators are
constrained and how the clock tree looks. Of course pinmux settings are also
part of this.
A pinmux config for a machine looks pretty much like a simple regulator
configuration, so for the example array above we want to enable i2c and
spi on the second function mapping:
#include <linux/pinctrl/machine.h>
static struct pinmux_map pmx_mapping[] = {
{
.ctrl_dev_name = "pinctrl.0",
.function = "spi0",
.dev_name = "foo-spi.0",
},
{
.ctrl_dev_name = "pinctrl.0",
.function = "i2c0",
.dev_name = "foo-i2c.0",
},
{
.ctrl_dev_name = "pinctrl.0",
.function = "mmc0",
.dev_name = "foo-mmc.0",
},
};
The dev_name here matches to the unique device name that can be used to look
up the device struct (just like with clockdev or regulators). The function name
must match a function provided by the pinmux driver handling this pin range.
As you can see we may have several pin controllers on the system and thus
we need to specify which one of them that contain the functions we wish
to map. The map can also use struct device * directly, so there is no
inherent need to use strings to specify .dev_name or .ctrl_dev_name, these
are for the situation where you do not have a handle to the struct device *,
for example if they are not yet instantiated or cumbersome to obtain.
You register this pinmux mapping to the pinmux subsystem by simply:
ret = pinmux_register_mappings(&pmx_mapping, ARRAY_SIZE(pmx_mapping));
Since the above construct is pretty common there is a helper macro to make
it even more compact which assumes you want to use pinctrl.0 and position
0 for mapping, for example:
static struct pinmux_map pmx_mapping[] = {
PINMUX_MAP_PRIMARY("I2CMAP", "i2c0", "foo-i2c.0"),
};
Complex mappings
================
As it is possible to map a function to different groups of pins an optional
.group can be specified like this:
...
{
.name = "spi0-pos-A",
.ctrl_dev_name = "pinctrl.0",
.function = "spi0",
.group = "spi0_0_grp",
.dev_name = "foo-spi.0",
},
{
.name = "spi0-pos-B",
.ctrl_dev_name = "pinctrl.0",
.function = "spi0",
.group = "spi0_1_grp",
.dev_name = "foo-spi.0",
},
...
This example mapping is used to switch between two positions for spi0 at
runtime, as described further below under the heading "Runtime pinmuxing".
Further it is possible to match several groups of pins to the same function
for a single device, say for example in the mmc0 example above, where you can
additively expand the mmc0 bus from 2 to 4 to 8 pins. If we want to use all
three groups for a total of 2+2+4 = 8 pins (for an 8-bit MMC bus as is the
case), we define a mapping like this:
...
{
.name "2bit"
.ctrl_dev_name = "pinctrl.0",
.function = "mmc0",
.group = "mmc0_0_grp",
.dev_name = "foo-mmc.0",
},
{
.name "4bit"
.ctrl_dev_name = "pinctrl.0",
.function = "mmc0",
.group = "mmc0_0_grp",
.dev_name = "foo-mmc.0",
},
{
.name "4bit"
.ctrl_dev_name = "pinctrl.0",
.function = "mmc0",
.group = "mmc0_1_grp",
.dev_name = "foo-mmc.0",
},
{
.name "8bit"
.ctrl_dev_name = "pinctrl.0",
.function = "mmc0",
.group = "mmc0_0_grp",
.dev_name = "foo-mmc.0",
},
{
.name "8bit"
.ctrl_dev_name = "pinctrl.0",
.function = "mmc0",
.group = "mmc0_1_grp",
.dev_name = "foo-mmc.0",
},
{
.name "8bit"
.ctrl_dev_name = "pinctrl.0",
.function = "mmc0",
.group = "mmc0_2_grp",
.dev_name = "foo-mmc.0",
},
...
The result of grabbing this mapping from the device with something like
this (see next paragraph):
pmx = pinmux_get(&device, "8bit");
Will be that you activate all the three bottom records in the mapping at
once. Since they share the same name, pin controller device, funcion and
device, and since we allow multiple groups to match to a single device, they
all get selected, and they all get enabled and disable simultaneously by the
pinmux core.
Pinmux requests from drivers
============================
Generally it is discouraged to let individual drivers get and enable pinmuxes.
So if possible, handle the pinmuxes in platform code or some other place where
you have access to all the affected struct device * pointers. In some cases
where a driver needs to switch between different mux mappings at runtime
this is not possible.
A driver may request a certain mux to be activated, usually just the default
mux like this:
#include <linux/pinctrl/pinmux.h>
struct foo_state {
struct pinmux *pmx;
...
};
foo_probe()
{
/* Allocate a state holder named "state" etc */
struct pinmux pmx;
pmx = pinmux_get(&device, NULL);
if IS_ERR(pmx)
return PTR_ERR(pmx);
pinmux_enable(pmx);
state->pmx = pmx;
}
foo_remove()
{
pinmux_disable(state->pmx);
pinmux_put(state->pmx);
}
If you want to grab a specific mux mapping and not just the first one found for
this device you can specify a specific mapping name, for example in the above
example the second i2c0 setting: pinmux_get(&device, "spi0-pos-B");
This get/enable/disable/put sequence can just as well be handled by bus drivers
if you don't want each and every driver to handle it and you know the
arrangement on your bus.
The semantics of the get/enable respective disable/put is as follows:
- pinmux_get() is called in process context to reserve the pins affected with
a certain mapping and set up the pinmux core and the driver. It will allocate
a struct from the kernel memory to hold the pinmux state.
- pinmux_enable()/pinmux_disable() is quick and can be called from fastpath
(irq context) when you quickly want to set up/tear down the hardware muxing
when running a device driver. Usually it will just poke some values into a
register.
- pinmux_disable() is called in process context to tear down the pin requests
and release the state holder struct for the mux setting.
Usually the pinmux core handled the get/put pair and call out to the device
drivers bookkeeping operations, like checking available functions and the
associated pins, whereas the enable/disable pass on to the pin controller
driver which takes care of activating and/or deactivating the mux setting by
quickly poking some registers.
The pins are allocated for your device when you issue the pinmux_get() call,
after this you should be able to see this in the debugfs listing of all pins.
System pinmux hogging
=====================
A system pinmux map entry, i.e. a pinmux setting that does not have a device
associated with it, can be hogged by the core when the pin controller is
registered. This means that the core will attempt to call pinmux_get() and
pinmux_enable() on it immediately after the pin control device has been
registered.
This is enabled by simply setting the .hog_on_boot field in the map to true,
like this:
{
.name "POWERMAP"
.ctrl_dev_name = "pinctrl.0",
.function = "power_func",
.hog_on_boot = true,
},
Since it may be common to request the core to hog a few always-applicable
mux settings on the primary pin controller, there is a convenience macro for
this:
PINMUX_MAP_PRIMARY_SYS_HOG("POWERMAP", "power_func")
This gives the exact same result as the above construction.
Runtime pinmuxing
=================
It is possible to mux a certain function in and out at runtime, say to move
an SPI port from one set of pins to another set of pins. Say for example for
spi0 in the example above, we expose two different groups of pins for the same
function, but with different named in the mapping as described under
"Advanced mapping" above. So we have two mappings named "spi0-pos-A" and
"spi0-pos-B".
This snippet first muxes the function in the pins defined by group A, enables
it, disables and releases it, and muxes it in on the pins defined by group B:
foo_switch()
{
struct pinmux pmx;
/* Enable on position A */
pmx = pinmux_get(&device, "spi0-pos-A");
if IS_ERR(pmx)
return PTR_ERR(pmx);
pinmux_enable(pmx);
/* This releases the pins again */
pinmux_disable(pmx);
pinmux_put(pmx);
/* Enable on position B */
pmx = pinmux_get(&device, "spi0-pos-B");
if IS_ERR(pmx)
return PTR_ERR(pmx);
pinmux_enable(pmx);
...
}
The above has to be done from process context.