esas2r_io.c 23.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
/*
 *  linux/drivers/scsi/esas2r/esas2r_io.c
 *      For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
 *
 *  Copyright (c) 2001-2013 ATTO Technology, Inc.
 *  (mailto:linuxdrivers@attotech.com)mpt3sas/mpt3sas_trigger_diag.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * NO WARRANTY
 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
 * solely responsible for determining the appropriateness of using and
 * distributing the Program and assumes all risks associated with its
 * exercise of rights under this Agreement, including but not limited to
 * the risks and costs of program errors, damage to or loss of data,
 * programs or equipment, and unavailability or interruption of operations.
 *
 * DISCLAIMER OF LIABILITY
 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
 * USA.
 */

#include "esas2r.h"

void esas2r_start_request(struct esas2r_adapter *a, struct esas2r_request *rq)
{
	struct esas2r_target *t = NULL;
	struct esas2r_request *startrq = rq;
	unsigned long flags;

	if (unlikely(test_bit(AF_DEGRADED_MODE, &a->flags) ||
		     test_bit(AF_POWER_DOWN, &a->flags))) {
		if (rq->vrq->scsi.function == VDA_FUNC_SCSI)
			rq->req_stat = RS_SEL2;
		else
			rq->req_stat = RS_DEGRADED;
	} else if (likely(rq->vrq->scsi.function == VDA_FUNC_SCSI)) {
		t = a->targetdb + rq->target_id;

		if (unlikely(t >= a->targetdb_end
			     || !(t->flags & TF_USED))) {
			rq->req_stat = RS_SEL;
		} else {
			/* copy in the target ID. */
			rq->vrq->scsi.target_id = cpu_to_le16(t->virt_targ_id);

			/*
			 * Test if we want to report RS_SEL for missing target.
			 * Note that if AF_DISC_PENDING is set than this will
			 * go on the defer queue.
			 */
			if (unlikely(t->target_state != TS_PRESENT &&
				     !test_bit(AF_DISC_PENDING, &a->flags)))
				rq->req_stat = RS_SEL;
		}
	}

	if (unlikely(rq->req_stat != RS_PENDING)) {
		esas2r_complete_request(a, rq);
		return;
	}

	esas2r_trace("rq=%p", rq);
	esas2r_trace("rq->vrq->scsi.handle=%x", rq->vrq->scsi.handle);

	if (rq->vrq->scsi.function == VDA_FUNC_SCSI) {
		esas2r_trace("rq->target_id=%d", rq->target_id);
		esas2r_trace("rq->vrq->scsi.flags=%x", rq->vrq->scsi.flags);
	}

	spin_lock_irqsave(&a->queue_lock, flags);

	if (likely(list_empty(&a->defer_list) &&
		   !test_bit(AF_CHPRST_PENDING, &a->flags) &&
		   !test_bit(AF_FLASHING, &a->flags) &&
		   !test_bit(AF_DISC_PENDING, &a->flags)))
		esas2r_local_start_request(a, startrq);
	else
		list_add_tail(&startrq->req_list, &a->defer_list);

	spin_unlock_irqrestore(&a->queue_lock, flags);
}

/*
 * Starts the specified request.  all requests have RS_PENDING set when this
 * routine is called.  The caller is usually esas2r_start_request, but
 * esas2r_do_deferred_processes will start request that are deferred.
 *
 * The caller must ensure that requests can be started.
 *
 * esas2r_start_request will defer a request if there are already requests
 * waiting or there is a chip reset pending.  once the reset condition clears,
 * esas2r_do_deferred_processes will call this function to start the request.
 *
 * When a request is started, it is placed on the active list and queued to
 * the controller.
 */
void esas2r_local_start_request(struct esas2r_adapter *a,
				struct esas2r_request *rq)
{
	esas2r_trace_enter();
	esas2r_trace("rq=%p", rq);
	esas2r_trace("rq->vrq:%p", rq->vrq);
	esas2r_trace("rq->vrq_md->phys_addr:%x", rq->vrq_md->phys_addr);

	if (unlikely(rq->vrq->scsi.function == VDA_FUNC_FLASH
		     && rq->vrq->flash.sub_func == VDA_FLASH_COMMIT))
		set_bit(AF_FLASHING, &a->flags);

	list_add_tail(&rq->req_list, &a->active_list);
	esas2r_start_vda_request(a, rq);
	esas2r_trace_exit();
	return;
}

void esas2r_start_vda_request(struct esas2r_adapter *a,
			      struct esas2r_request *rq)
{
	struct esas2r_inbound_list_source_entry *element;
	u32 dw;

	rq->req_stat = RS_STARTED;
	/*
	 * Calculate the inbound list entry location and the current state of
	 * toggle bit.
	 */
	a->last_write++;
	if (a->last_write >= a->list_size) {
		a->last_write = 0;
		/* update the toggle bit */
		if (test_bit(AF_COMM_LIST_TOGGLE, &a->flags))
			clear_bit(AF_COMM_LIST_TOGGLE, &a->flags);
		else
			set_bit(AF_COMM_LIST_TOGGLE, &a->flags);
	}

	element =
		(struct esas2r_inbound_list_source_entry *)a->inbound_list_md.
		virt_addr
		+ a->last_write;

	/* Set the VDA request size if it was never modified */
	if (rq->vda_req_sz == RQ_SIZE_DEFAULT)
		rq->vda_req_sz = (u16)(a->max_vdareq_size / sizeof(u32));

	element->address = cpu_to_le64(rq->vrq_md->phys_addr);
	element->length = cpu_to_le32(rq->vda_req_sz);

	/* Update the write pointer */
	dw = a->last_write;

	if (test_bit(AF_COMM_LIST_TOGGLE, &a->flags))
		dw |= MU_ILW_TOGGLE;

	esas2r_trace("rq->vrq->scsi.handle:%x", rq->vrq->scsi.handle);
	esas2r_trace("dw:%x", dw);
	esas2r_trace("rq->vda_req_sz:%x", rq->vda_req_sz);
	esas2r_write_register_dword(a, MU_IN_LIST_WRITE, dw);
}

/*
 * Build the scatter/gather list for an I/O request according to the
 * specifications placed in the s/g context.  The caller must initialize
 * context prior to the initial call by calling esas2r_sgc_init().
 */
bool esas2r_build_sg_list_sge(struct esas2r_adapter *a,
			      struct esas2r_sg_context *sgc)
{
	struct esas2r_request *rq = sgc->first_req;
	union atto_vda_req *vrq = rq->vrq;

	while (sgc->length) {
		u32 rem = 0;
		u64 addr;
		u32 len;

		len = (*sgc->get_phys_addr)(sgc, &addr);

		if (unlikely(len == 0))
			return false;

		/* if current length is more than what's left, stop there */
		if (unlikely(len > sgc->length))
			len = sgc->length;

another_entry:
		/* limit to a round number less than the maximum length */
		if (len > SGE_LEN_MAX) {
			/*
			 * Save the remainder of the split.  Whenever we limit
			 * an entry we come back around to build entries out
			 * of the leftover.  We do this to prevent multiple
			 * calls to the get_phys_addr() function for an SGE
			 * that is too large.
			 */
			rem = len - SGE_LEN_MAX;
			len = SGE_LEN_MAX;
		}

		/* See if we need to allocate a new SGL */
		if (unlikely(sgc->sge.a64.curr > sgc->sge.a64.limit)) {
			u8 sgelen;
			struct esas2r_mem_desc *sgl;

			/*
			 * If no SGls are available, return failure.  The
			 * caller can call us later with the current context
			 * to pick up here.
			 */
			sgl = esas2r_alloc_sgl(a);

			if (unlikely(sgl == NULL))
				return false;

			/* Calculate the length of the last SGE filled in */
			sgelen = (u8)((u8 *)sgc->sge.a64.curr
				      - (u8 *)sgc->sge.a64.last);

			/*
			 * Copy the last SGE filled in to the first entry of
			 * the new SGL to make room for the chain entry.
			 */
			memcpy(sgl->virt_addr, sgc->sge.a64.last, sgelen);

			/* Figure out the new curr pointer in the new segment */
			sgc->sge.a64.curr =
				(struct atto_vda_sge *)((u8 *)sgl->virt_addr +
							sgelen);

			/* Set the limit pointer and build the chain entry */
			sgc->sge.a64.limit =
				(struct atto_vda_sge *)((u8 *)sgl->virt_addr
							+ sgl_page_size
							- sizeof(struct
								 atto_vda_sge));
			sgc->sge.a64.last->length = cpu_to_le32(
				SGE_CHAIN | SGE_ADDR_64);
			sgc->sge.a64.last->address =
				cpu_to_le64(sgl->phys_addr);

			/*
			 * Now, if there was a previous chain entry, then
			 * update it to contain the length of this segment
			 * and size of this chain.  otherwise this is the
			 * first SGL, so set the chain_offset in the request.
			 */
			if (sgc->sge.a64.chain) {
				sgc->sge.a64.chain->length |=
					cpu_to_le32(
						((u8 *)(sgc->sge.a64.
							last + 1)
						 - (u8 *)rq->sg_table->
						 virt_addr)
						+ sizeof(struct atto_vda_sge) *
						LOBIT(SGE_CHAIN_SZ));
			} else {
				vrq->scsi.chain_offset = (u8)
							 ((u8 *)sgc->
							  sge.a64.last -
							  (u8 *)vrq);

				/*
				 * This is the first SGL, so set the
				 * chain_offset and the VDA request size in
				 * the request.
				 */
				rq->vda_req_sz =
					(vrq->scsi.chain_offset +
					 sizeof(struct atto_vda_sge) +
					 3)
					/ sizeof(u32);
			}

			/*
			 * Remember this so when we get a new SGL filled in we
			 * can update the length of this chain entry.
			 */
			sgc->sge.a64.chain = sgc->sge.a64.last;

			/* Now link the new SGL onto the primary request. */
			list_add(&sgl->next_desc, &rq->sg_table_head);
		}

		/* Update last one filled in */
		sgc->sge.a64.last = sgc->sge.a64.curr;

		/* Build the new SGE and update the S/G context */
		sgc->sge.a64.curr->length = cpu_to_le32(SGE_ADDR_64 | len);
		sgc->sge.a64.curr->address = cpu_to_le32(addr);
		sgc->sge.a64.curr++;
		sgc->cur_offset += len;
		sgc->length -= len;

		/*
		 * Check if we previously split an entry.  If so we have to
		 * pick up where we left off.
		 */
		if (rem) {
			addr += len;
			len = rem;
			rem = 0;
			goto another_entry;
		}
	}

	/* Mark the end of the SGL */
	sgc->sge.a64.last->length |= cpu_to_le32(SGE_LAST);

	/*
	 * If there was a previous chain entry, update the length to indicate
	 * the length of this last segment.
	 */
	if (sgc->sge.a64.chain) {
		sgc->sge.a64.chain->length |= cpu_to_le32(
			((u8 *)(sgc->sge.a64.curr) -
			 (u8 *)rq->sg_table->virt_addr));
	} else {
		u16 reqsize;

		/*
		 * The entire VDA request was not used so lets
		 * set the size of the VDA request to be DMA'd
		 */
		reqsize =
			((u16)((u8 *)sgc->sge.a64.last - (u8 *)vrq)
			 + sizeof(struct atto_vda_sge) + 3) / sizeof(u32);

		/*
		 * Only update the request size if it is bigger than what is
		 * already there.  We can come in here twice for some management
		 * commands.
		 */
		if (reqsize > rq->vda_req_sz)
			rq->vda_req_sz = reqsize;
	}
	return true;
}


/*
 * Create PRD list for each I-block consumed by the command. This routine
 * determines how much data is required from each I-block being consumed
 * by the command. The first and last I-blocks can be partials and all of
 * the I-blocks in between are for a full I-block of data.
 *
 * The interleave size is used to determine the number of bytes in the 1st
 * I-block and the remaining I-blocks are what remeains.
 */
static bool esas2r_build_prd_iblk(struct esas2r_adapter *a,
				  struct esas2r_sg_context *sgc)
{
	struct esas2r_request *rq = sgc->first_req;
	u64 addr;
	u32 len;
	struct esas2r_mem_desc *sgl;
	u32 numchain = 1;
	u32 rem = 0;

	while (sgc->length) {
		/* Get the next address/length pair */

		len = (*sgc->get_phys_addr)(sgc, &addr);

		if (unlikely(len == 0))
			return false;

		/* If current length is more than what's left, stop there */

		if (unlikely(len > sgc->length))
			len = sgc->length;

another_entry:
		/* Limit to a round number less than the maximum length */

		if (len > PRD_LEN_MAX) {
			/*
			 * Save the remainder of the split.  whenever we limit
			 * an entry we come back around to build entries out
			 * of the leftover.  We do this to prevent multiple
			 * calls to the get_phys_addr() function for an SGE
			 * that is too large.
			 */
			rem = len - PRD_LEN_MAX;
			len = PRD_LEN_MAX;
		}

		/* See if we need to allocate a new SGL */
		if (sgc->sge.prd.sge_cnt == 0) {
			if (len == sgc->length) {
				/*
				 * We only have 1 PRD entry left.
				 * It can be placed where the chain
				 * entry would have gone
				 */

				/* Build the simple SGE */
				sgc->sge.prd.curr->ctl_len = cpu_to_le32(
					PRD_DATA | len);
				sgc->sge.prd.curr->address = cpu_to_le64(addr);

				/* Adjust length related fields */
				sgc->cur_offset += len;
				sgc->length -= len;

				/* We use the reserved chain entry for data */
				numchain = 0;

				break;
			}

			if (sgc->sge.prd.chain) {
				/*
				 * Fill # of entries of current SGL in previous
				 * chain the length of this current SGL may not
				 * full.
				 */

				sgc->sge.prd.chain->ctl_len |= cpu_to_le32(
					sgc->sge.prd.sgl_max_cnt);
			}

			/*
			 * If no SGls are available, return failure.  The
			 * caller can call us later with the current context
			 * to pick up here.
			 */

			sgl = esas2r_alloc_sgl(a);

			if (unlikely(sgl == NULL))
				return false;

			/*
			 * Link the new SGL onto the chain
			 * They are in reverse order
			 */
			list_add(&sgl->next_desc, &rq->sg_table_head);

			/*
			 * An SGL was just filled in and we are starting
			 * a new SGL. Prime the chain of the ending SGL with
			 * info that points to the new SGL. The length gets
			 * filled in when the new SGL is filled or ended
			 */

			sgc->sge.prd.chain = sgc->sge.prd.curr;

			sgc->sge.prd.chain->ctl_len = cpu_to_le32(PRD_CHAIN);
			sgc->sge.prd.chain->address =
				cpu_to_le64(sgl->phys_addr);

			/*
			 * Start a new segment.
			 * Take one away and save for chain SGE
			 */

			sgc->sge.prd.curr =
				(struct atto_physical_region_description *)sgl
				->
				virt_addr;
			sgc->sge.prd.sge_cnt = sgc->sge.prd.sgl_max_cnt - 1;
		}

		sgc->sge.prd.sge_cnt--;
		/* Build the simple SGE */
		sgc->sge.prd.curr->ctl_len = cpu_to_le32(PRD_DATA | len);
		sgc->sge.prd.curr->address = cpu_to_le64(addr);

		/* Used another element.  Point to the next one */

		sgc->sge.prd.curr++;

		/* Adjust length related fields */

		sgc->cur_offset += len;
		sgc->length -= len;

		/*
		 * Check if we previously split an entry.  If so we have to
		 * pick up where we left off.
		 */

		if (rem) {
			addr += len;
			len = rem;
			rem = 0;
			goto another_entry;
		}
	}

	if (!list_empty(&rq->sg_table_head)) {
		if (sgc->sge.prd.chain) {
			sgc->sge.prd.chain->ctl_len |=
				cpu_to_le32(sgc->sge.prd.sgl_max_cnt
					    - sgc->sge.prd.sge_cnt
					    - numchain);
		}
	}

	return true;
}

bool esas2r_build_sg_list_prd(struct esas2r_adapter *a,
			      struct esas2r_sg_context *sgc)
{
	struct esas2r_request *rq = sgc->first_req;
	u32 len = sgc->length;
	struct esas2r_target *t = a->targetdb + rq->target_id;
	u8 is_i_o = 0;
	u16 reqsize;
	struct atto_physical_region_description *curr_iblk_chn;
	u8 *cdb = (u8 *)&rq->vrq->scsi.cdb[0];

	/*
	 * extract LBA from command so we can determine
	 * the I-Block boundary
	 */

	if (rq->vrq->scsi.function == VDA_FUNC_SCSI
	    && t->target_state == TS_PRESENT
	    && !(t->flags & TF_PASS_THRU)) {
		u32 lbalo = 0;

		switch (rq->vrq->scsi.cdb[0]) {
		case    READ_16:
		case    WRITE_16:
		{
			lbalo =
				MAKEDWORD(MAKEWORD(cdb[9],
						   cdb[8]),
					  MAKEWORD(cdb[7],
						   cdb[6]));
			is_i_o = 1;
			break;
		}

		case    READ_12:
		case    WRITE_12:
		case    READ_10:
		case    WRITE_10:
		{
			lbalo =
				MAKEDWORD(MAKEWORD(cdb[5],
						   cdb[4]),
					  MAKEWORD(cdb[3],
						   cdb[2]));
			is_i_o = 1;
			break;
		}

		case    READ_6:
		case    WRITE_6:
		{
			lbalo =
				MAKEDWORD(MAKEWORD(cdb[3],
						   cdb[2]),
					  MAKEWORD(cdb[1] & 0x1F,
						   0));
			is_i_o = 1;
			break;
		}

		default:
			break;
		}

		if (is_i_o) {
			u32 startlba;

			rq->vrq->scsi.iblk_cnt_prd = 0;

			/* Determine size of 1st I-block PRD list       */
			startlba = t->inter_block - (lbalo & (t->inter_block -
							      1));
			sgc->length = startlba * t->block_size;

			/* Chk if the 1st iblk chain starts at base of Iblock */
			if ((lbalo & (t->inter_block - 1)) == 0)
				rq->flags |= RF_1ST_IBLK_BASE;

			if (sgc->length > len)
				sgc->length = len;
		} else {
			sgc->length = len;
		}
	} else {
		sgc->length = len;
	}

	/* get our starting chain address   */

	curr_iblk_chn =
		(struct atto_physical_region_description *)sgc->sge.a64.curr;

	sgc->sge.prd.sgl_max_cnt = sgl_page_size /
				   sizeof(struct
					  atto_physical_region_description);

	/* create all of the I-block PRD lists          */

	while (len) {
		sgc->sge.prd.sge_cnt = 0;
		sgc->sge.prd.chain = NULL;
		sgc->sge.prd.curr = curr_iblk_chn;

		/* increment to next I-Block    */

		len -= sgc->length;

		/* go build the next I-Block PRD list   */

		if (unlikely(!esas2r_build_prd_iblk(a, sgc)))
			return false;

		curr_iblk_chn++;

		if (is_i_o) {
			rq->vrq->scsi.iblk_cnt_prd++;

			if (len > t->inter_byte)
				sgc->length = t->inter_byte;
			else
				sgc->length = len;
		}
	}

	/* figure out the size used of the VDA request */

	reqsize = ((u16)((u8 *)curr_iblk_chn - (u8 *)rq->vrq))
		  / sizeof(u32);

	/*
	 * only update the request size if it is bigger than what is
	 * already there.  we can come in here twice for some management
	 * commands.
	 */

	if (reqsize > rq->vda_req_sz)
		rq->vda_req_sz = reqsize;

	return true;
}

static void esas2r_handle_pending_reset(struct esas2r_adapter *a, u32 currtime)
{
	u32 delta = currtime - a->chip_init_time;

	if (delta <= ESAS2R_CHPRST_WAIT_TIME) {
		/* Wait before accessing registers */
	} else if (delta >= ESAS2R_CHPRST_TIME) {
		/*
		 * The last reset failed so try again. Reset
		 * processing will give up after three tries.
		 */
		esas2r_local_reset_adapter(a);
	} else {
		/* We can now see if the firmware is ready */
		u32 doorbell;

		doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT);
		if (doorbell == 0xFFFFFFFF || !(doorbell & DRBL_FORCE_INT)) {
			esas2r_force_interrupt(a);
		} else {
			u32 ver = (doorbell & DRBL_FW_VER_MSK);

			/* Driver supports API version 0 and 1 */
			esas2r_write_register_dword(a, MU_DOORBELL_OUT,
						    doorbell);
			if (ver == DRBL_FW_VER_0) {
				set_bit(AF_CHPRST_DETECTED, &a->flags);
				set_bit(AF_LEGACY_SGE_MODE, &a->flags);

				a->max_vdareq_size = 128;
				a->build_sgl = esas2r_build_sg_list_sge;
			} else if (ver == DRBL_FW_VER_1) {
				set_bit(AF_CHPRST_DETECTED, &a->flags);
				clear_bit(AF_LEGACY_SGE_MODE, &a->flags);

				a->max_vdareq_size = 1024;
				a->build_sgl = esas2r_build_sg_list_prd;
			} else {
				esas2r_local_reset_adapter(a);
			}
		}
	}
}


/* This function must be called once per timer tick */
void esas2r_timer_tick(struct esas2r_adapter *a)
{
	u32 currtime = jiffies_to_msecs(jiffies);
	u32 deltatime = currtime - a->last_tick_time;

	a->last_tick_time = currtime;

	/* count down the uptime */
	if (a->chip_uptime &&
	    !test_bit(AF_CHPRST_PENDING, &a->flags) &&
	    !test_bit(AF_DISC_PENDING, &a->flags)) {
		if (deltatime >= a->chip_uptime)
			a->chip_uptime = 0;
		else
			a->chip_uptime -= deltatime;
	}

	if (test_bit(AF_CHPRST_PENDING, &a->flags)) {
		if (!test_bit(AF_CHPRST_NEEDED, &a->flags) &&
		    !test_bit(AF_CHPRST_DETECTED, &a->flags))
			esas2r_handle_pending_reset(a, currtime);
	} else {
		if (test_bit(AF_DISC_PENDING, &a->flags))
			esas2r_disc_check_complete(a);
		if (test_bit(AF_HEARTBEAT_ENB, &a->flags)) {
			if (test_bit(AF_HEARTBEAT, &a->flags)) {
				if ((currtime - a->heartbeat_time) >=
				    ESAS2R_HEARTBEAT_TIME) {
					clear_bit(AF_HEARTBEAT, &a->flags);
					esas2r_hdebug("heartbeat failed");
					esas2r_log(ESAS2R_LOG_CRIT,
						   "heartbeat failed");
					esas2r_bugon();
					esas2r_local_reset_adapter(a);
				}
			} else {
				set_bit(AF_HEARTBEAT, &a->flags);
				a->heartbeat_time = currtime;
				esas2r_force_interrupt(a);
			}
		}
	}

	if (atomic_read(&a->disable_cnt) == 0)
		esas2r_do_deferred_processes(a);
}

/*
 * Send the specified task management function to the target and LUN
 * specified in rqaux.  in addition, immediately abort any commands that
 * are queued but not sent to the device according to the rules specified
 * by the task management function.
 */
bool esas2r_send_task_mgmt(struct esas2r_adapter *a,
			   struct esas2r_request *rqaux, u8 task_mgt_func)
{
	u16 targetid = rqaux->target_id;
	u8 lun = (u8)le32_to_cpu(rqaux->vrq->scsi.flags);
	bool ret = false;
	struct esas2r_request *rq;
	struct list_head *next, *element;
	unsigned long flags;

	LIST_HEAD(comp_list);

	esas2r_trace_enter();
	esas2r_trace("rqaux:%p", rqaux);
	esas2r_trace("task_mgt_func:%x", task_mgt_func);
	spin_lock_irqsave(&a->queue_lock, flags);

	/* search the defer queue looking for requests for the device */
	list_for_each_safe(element, next, &a->defer_list) {
		rq = list_entry(element, struct esas2r_request, req_list);

		if (rq->vrq->scsi.function == VDA_FUNC_SCSI
		    && rq->target_id == targetid
		    && (((u8)le32_to_cpu(rq->vrq->scsi.flags)) == lun
			|| task_mgt_func == 0x20)) { /* target reset */
			/* Found a request affected by the task management */
			if (rq->req_stat == RS_PENDING) {
				/*
				 * The request is pending or waiting.  We can
				 * safelycomplete the request now.
				 */
				if (esas2r_ioreq_aborted(a, rq, RS_ABORTED))
					list_add_tail(&rq->comp_list,
						      &comp_list);
			}
		}
	}

	/* Send the task management request to the firmware */
	rqaux->sense_len = 0;
	rqaux->vrq->scsi.length = 0;
	rqaux->target_id = targetid;
	rqaux->vrq->scsi.flags |= cpu_to_le32(lun);
	memset(rqaux->vrq->scsi.cdb, 0, sizeof(rqaux->vrq->scsi.cdb));
	rqaux->vrq->scsi.flags |=
		cpu_to_le16(task_mgt_func * LOBIT(FCP_CMND_TM_MASK));

	if (test_bit(AF_FLASHING, &a->flags)) {
		/* Assume success.  if there are active requests, return busy */
		rqaux->req_stat = RS_SUCCESS;

		list_for_each_safe(element, next, &a->active_list) {
			rq = list_entry(element, struct esas2r_request,
					req_list);
			if (rq->vrq->scsi.function == VDA_FUNC_SCSI
			    && rq->target_id == targetid
			    && (((u8)le32_to_cpu(rq->vrq->scsi.flags)) == lun
				|| task_mgt_func == 0x20))  /* target reset */
				rqaux->req_stat = RS_BUSY;
		}

		ret = true;
	}

	spin_unlock_irqrestore(&a->queue_lock, flags);

	if (!test_bit(AF_FLASHING, &a->flags))
		esas2r_start_request(a, rqaux);

	esas2r_comp_list_drain(a, &comp_list);

	if (atomic_read(&a->disable_cnt) == 0)
		esas2r_do_deferred_processes(a);

	esas2r_trace_exit();

	return ret;
}

void esas2r_reset_bus(struct esas2r_adapter *a)
{
	esas2r_log(ESAS2R_LOG_INFO, "performing a bus reset");

	if (!test_bit(AF_DEGRADED_MODE, &a->flags) &&
	    !test_bit(AF_CHPRST_PENDING, &a->flags) &&
	    !test_bit(AF_DISC_PENDING, &a->flags)) {
		set_bit(AF_BUSRST_NEEDED, &a->flags);
		set_bit(AF_BUSRST_PENDING, &a->flags);
		set_bit(AF_OS_RESET, &a->flags);

		esas2r_schedule_tasklet(a);
	}
}

bool esas2r_ioreq_aborted(struct esas2r_adapter *a, struct esas2r_request *rq,
			  u8 status)
{
	esas2r_trace_enter();
	esas2r_trace("rq:%p", rq);
	list_del_init(&rq->req_list);
	if (rq->timeout > RQ_MAX_TIMEOUT) {
		/*
		 * The request timed out, but we could not abort it because a
		 * chip reset occurred.  Return busy status.
		 */
		rq->req_stat = RS_BUSY;
		esas2r_trace_exit();
		return true;
	}

	rq->req_stat = status;
	esas2r_trace_exit();
	return true;
}