rcar_gen3_thermal.c 13 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
// SPDX-License-Identifier: GPL-2.0
/*
 *  R-Car Gen3 THS thermal sensor driver
 *  Based on rcar_thermal.c and work from Hien Dang and Khiem Nguyen.
 *
 * Copyright (C) 2016 Renesas Electronics Corporation.
 * Copyright (C) 2016 Sang Engineering
 */
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/sys_soc.h>
#include <linux/thermal.h>

#include "thermal_core.h"
#include "thermal_hwmon.h"

/* Register offsets */
#define REG_GEN3_IRQSTR		0x04
#define REG_GEN3_IRQMSK		0x08
#define REG_GEN3_IRQCTL		0x0C
#define REG_GEN3_IRQEN		0x10
#define REG_GEN3_IRQTEMP1	0x14
#define REG_GEN3_IRQTEMP2	0x18
#define REG_GEN3_IRQTEMP3	0x1C
#define REG_GEN3_CTSR		0x20
#define REG_GEN3_THCTR		0x20
#define REG_GEN3_TEMP		0x28
#define REG_GEN3_THCODE1	0x50
#define REG_GEN3_THCODE2	0x54
#define REG_GEN3_THCODE3	0x58

/* IRQ{STR,MSK,EN} bits */
#define IRQ_TEMP1		BIT(0)
#define IRQ_TEMP2		BIT(1)
#define IRQ_TEMP3		BIT(2)
#define IRQ_TEMPD1		BIT(3)
#define IRQ_TEMPD2		BIT(4)
#define IRQ_TEMPD3		BIT(5)

/* CTSR bits */
#define CTSR_PONM	BIT(8)
#define CTSR_AOUT	BIT(7)
#define CTSR_THBGR	BIT(5)
#define CTSR_VMEN	BIT(4)
#define CTSR_VMST	BIT(1)
#define CTSR_THSST	BIT(0)

/* THCTR bits */
#define THCTR_PONM	BIT(6)
#define THCTR_THSST	BIT(0)

#define CTEMP_MASK	0xFFF

#define MCELSIUS(temp)	((temp) * 1000)
#define GEN3_FUSE_MASK	0xFFF

#define TSC_MAX_NUM	3

/* default THCODE values if FUSEs are missing */
static const int thcodes[TSC_MAX_NUM][3] = {
	{ 3397, 2800, 2221 },
	{ 3393, 2795, 2216 },
	{ 3389, 2805, 2237 },
};

/* Structure for thermal temperature calculation */
struct equation_coefs {
	int a1;
	int b1;
	int a2;
	int b2;
};

struct rcar_gen3_thermal_tsc {
	void __iomem *base;
	struct thermal_zone_device *zone;
	struct equation_coefs coef;
	int tj_t;
	int id; /* thermal channel id */
};

struct rcar_gen3_thermal_priv {
	struct rcar_gen3_thermal_tsc *tscs[TSC_MAX_NUM];
	unsigned int num_tscs;
	void (*thermal_init)(struct rcar_gen3_thermal_tsc *tsc);
};

static inline u32 rcar_gen3_thermal_read(struct rcar_gen3_thermal_tsc *tsc,
					 u32 reg)
{
	return ioread32(tsc->base + reg);
}

static inline void rcar_gen3_thermal_write(struct rcar_gen3_thermal_tsc *tsc,
					   u32 reg, u32 data)
{
	iowrite32(data, tsc->base + reg);
}

/*
 * Linear approximation for temperature
 *
 * [reg] = [temp] * a + b => [temp] = ([reg] - b) / a
 *
 * The constants a and b are calculated using two triplets of int values PTAT
 * and THCODE. PTAT and THCODE can either be read from hardware or use hard
 * coded values from driver. The formula to calculate a and b are taken from
 * BSP and sparsely documented and understood.
 *
 * Examining the linear formula and the formula used to calculate constants a
 * and b while knowing that the span for PTAT and THCODE values are between
 * 0x000 and 0xfff the largest integer possible is 0xfff * 0xfff == 0xffe001.
 * Integer also needs to be signed so that leaves 7 bits for binary
 * fixed point scaling.
 */

#define FIXPT_SHIFT 7
#define FIXPT_INT(_x) ((_x) << FIXPT_SHIFT)
#define INT_FIXPT(_x) ((_x) >> FIXPT_SHIFT)
#define FIXPT_DIV(_a, _b) DIV_ROUND_CLOSEST(((_a) << FIXPT_SHIFT), (_b))
#define FIXPT_TO_MCELSIUS(_x) ((_x) * 1000 >> FIXPT_SHIFT)

#define RCAR3_THERMAL_GRAN 500 /* mili Celsius */

/* no idea where these constants come from */
#define TJ_3 -41

static void rcar_gen3_thermal_calc_coefs(struct rcar_gen3_thermal_tsc *tsc,
					 int *ptat, const int *thcode,
					 int ths_tj_1)
{
	/* TODO: Find documentation and document constant calculation formula */

	/*
	 * Division is not scaled in BSP and if scaled it might overflow
	 * the dividend (4095 * 4095 << 14 > INT_MAX) so keep it unscaled
	 */
	tsc->tj_t = (FIXPT_INT((ptat[1] - ptat[2]) * 157)
		     / (ptat[0] - ptat[2])) + FIXPT_INT(TJ_3);

	tsc->coef.a1 = FIXPT_DIV(FIXPT_INT(thcode[1] - thcode[2]),
				 tsc->tj_t - FIXPT_INT(TJ_3));
	tsc->coef.b1 = FIXPT_INT(thcode[2]) - tsc->coef.a1 * TJ_3;

	tsc->coef.a2 = FIXPT_DIV(FIXPT_INT(thcode[1] - thcode[0]),
				 tsc->tj_t - FIXPT_INT(ths_tj_1));
	tsc->coef.b2 = FIXPT_INT(thcode[0]) - tsc->coef.a2 * ths_tj_1;
}

static int rcar_gen3_thermal_round(int temp)
{
	int result, round_offs;

	round_offs = temp >= 0 ? RCAR3_THERMAL_GRAN / 2 :
		-RCAR3_THERMAL_GRAN / 2;
	result = (temp + round_offs) / RCAR3_THERMAL_GRAN;
	return result * RCAR3_THERMAL_GRAN;
}

static int rcar_gen3_thermal_get_temp(void *devdata, int *temp)
{
	struct rcar_gen3_thermal_tsc *tsc = devdata;
	int mcelsius, val;
	int reg;

	/* Read register and convert to mili Celsius */
	reg = rcar_gen3_thermal_read(tsc, REG_GEN3_TEMP) & CTEMP_MASK;

	if (reg <= thcodes[tsc->id][1])
		val = FIXPT_DIV(FIXPT_INT(reg) - tsc->coef.b1,
				tsc->coef.a1);
	else
		val = FIXPT_DIV(FIXPT_INT(reg) - tsc->coef.b2,
				tsc->coef.a2);
	mcelsius = FIXPT_TO_MCELSIUS(val);

	/* Guaranteed operating range is -40C to 125C. */

	/* Round value to device granularity setting */
	*temp = rcar_gen3_thermal_round(mcelsius);

	return 0;
}

static int rcar_gen3_thermal_mcelsius_to_temp(struct rcar_gen3_thermal_tsc *tsc,
					      int mcelsius)
{
	int celsius, val;

	celsius = DIV_ROUND_CLOSEST(mcelsius, 1000);
	if (celsius <= INT_FIXPT(tsc->tj_t))
		val = celsius * tsc->coef.a1 + tsc->coef.b1;
	else
		val = celsius * tsc->coef.a2 + tsc->coef.b2;

	return INT_FIXPT(val);
}

static int rcar_gen3_thermal_update_range(struct rcar_gen3_thermal_tsc *tsc)
{
	int temperature, low, high;

	rcar_gen3_thermal_get_temp(tsc, &temperature);

	low = temperature - MCELSIUS(1);
	high = temperature + MCELSIUS(1);

	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQTEMP1,
				rcar_gen3_thermal_mcelsius_to_temp(tsc, low));

	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQTEMP2,
				rcar_gen3_thermal_mcelsius_to_temp(tsc, high));

	return 0;
}

static const struct thermal_zone_of_device_ops rcar_gen3_tz_of_ops = {
	.get_temp	= rcar_gen3_thermal_get_temp,
};

static void rcar_thermal_irq_set(struct rcar_gen3_thermal_priv *priv, bool on)
{
	unsigned int i;
	u32 val = on ? IRQ_TEMPD1 | IRQ_TEMP2 : 0;

	for (i = 0; i < priv->num_tscs; i++)
		rcar_gen3_thermal_write(priv->tscs[i], REG_GEN3_IRQMSK, val);
}

static irqreturn_t rcar_gen3_thermal_irq(int irq, void *data)
{
	struct rcar_gen3_thermal_priv *priv = data;
	u32 status;
	int i;

	for (i = 0; i < priv->num_tscs; i++) {
		status = rcar_gen3_thermal_read(priv->tscs[i], REG_GEN3_IRQSTR);
		rcar_gen3_thermal_write(priv->tscs[i], REG_GEN3_IRQSTR, 0);
		if (status) {
			rcar_gen3_thermal_update_range(priv->tscs[i]);
			thermal_zone_device_update(priv->tscs[i]->zone,
						   THERMAL_EVENT_UNSPECIFIED);
		}
	}

	return IRQ_HANDLED;
}

static const struct soc_device_attribute r8a7795es1[] = {
	{ .soc_id = "r8a7795", .revision = "ES1.*" },
	{ /* sentinel */ }
};

static void rcar_gen3_thermal_init_r8a7795es1(struct rcar_gen3_thermal_tsc *tsc)
{
	rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR,  CTSR_THBGR);
	rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR,  0x0);

	usleep_range(1000, 2000);

	rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, CTSR_PONM);

	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQCTL, 0x3F);
	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, 0);
	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQEN, IRQ_TEMPD1 | IRQ_TEMP2);

	rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR,
				CTSR_PONM | CTSR_AOUT | CTSR_THBGR | CTSR_VMEN);

	usleep_range(100, 200);

	rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR,
				CTSR_PONM | CTSR_AOUT | CTSR_THBGR | CTSR_VMEN |
				CTSR_VMST | CTSR_THSST);

	usleep_range(1000, 2000);
}

static void rcar_gen3_thermal_init(struct rcar_gen3_thermal_tsc *tsc)
{
	u32 reg_val;

	reg_val = rcar_gen3_thermal_read(tsc, REG_GEN3_THCTR);
	reg_val &= ~THCTR_PONM;
	rcar_gen3_thermal_write(tsc, REG_GEN3_THCTR, reg_val);

	usleep_range(1000, 2000);

	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQCTL, 0);
	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, 0);
	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQEN, IRQ_TEMPD1 | IRQ_TEMP2);

	reg_val = rcar_gen3_thermal_read(tsc, REG_GEN3_THCTR);
	reg_val |= THCTR_THSST;
	rcar_gen3_thermal_write(tsc, REG_GEN3_THCTR, reg_val);

	usleep_range(1000, 2000);
}

static const int rcar_gen3_ths_tj_1 = 126;
static const int rcar_gen3_ths_tj_1_m3_w = 116;
static const struct of_device_id rcar_gen3_thermal_dt_ids[] = {
	{
		.compatible = "renesas,r8a774a1-thermal",
		.data = &rcar_gen3_ths_tj_1_m3_w,
	},
	{
		.compatible = "renesas,r8a774b1-thermal",
		.data = &rcar_gen3_ths_tj_1,
	},
	{
		.compatible = "renesas,r8a774e1-thermal",
		.data = &rcar_gen3_ths_tj_1,
	},
	{
		.compatible = "renesas,r8a7795-thermal",
		.data = &rcar_gen3_ths_tj_1,
	},
	{
		.compatible = "renesas,r8a7796-thermal",
		.data = &rcar_gen3_ths_tj_1_m3_w,
	},
	{
		.compatible = "renesas,r8a77961-thermal",
		.data = &rcar_gen3_ths_tj_1_m3_w,
	},
	{
		.compatible = "renesas,r8a77965-thermal",
		.data = &rcar_gen3_ths_tj_1,
	},
	{
		.compatible = "renesas,r8a77980-thermal",
		.data = &rcar_gen3_ths_tj_1,
	},
	{},
};
MODULE_DEVICE_TABLE(of, rcar_gen3_thermal_dt_ids);

static int rcar_gen3_thermal_remove(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct rcar_gen3_thermal_priv *priv = dev_get_drvdata(dev);

	rcar_thermal_irq_set(priv, false);

	pm_runtime_put(dev);
	pm_runtime_disable(dev);

	return 0;
}

static void rcar_gen3_hwmon_action(void *data)
{
	struct thermal_zone_device *zone = data;

	thermal_remove_hwmon_sysfs(zone);
}

static int rcar_gen3_thermal_probe(struct platform_device *pdev)
{
	struct rcar_gen3_thermal_priv *priv;
	struct device *dev = &pdev->dev;
	const int *rcar_gen3_ths_tj_1 = of_device_get_match_data(dev);
	struct resource *res;
	struct thermal_zone_device *zone;
	int ret, irq, i;
	char *irqname;

	/* default values if FUSEs are missing */
	/* TODO: Read values from hardware on supported platforms */
	int ptat[3] = { 2631, 1509, 435 };

	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->thermal_init = rcar_gen3_thermal_init;
	if (soc_device_match(r8a7795es1))
		priv->thermal_init = rcar_gen3_thermal_init_r8a7795es1;

	platform_set_drvdata(pdev, priv);

	/*
	 * Request 2 (of the 3 possible) IRQs, the driver only needs to
	 * to trigger on the low and high trip points of the current
	 * temp window at this point.
	 */
	for (i = 0; i < 2; i++) {
		irq = platform_get_irq(pdev, i);
		if (irq < 0)
			return irq;

		irqname = devm_kasprintf(dev, GFP_KERNEL, "%s:ch%d",
					 dev_name(dev), i);
		if (!irqname)
			return -ENOMEM;

		ret = devm_request_threaded_irq(dev, irq, NULL,
						rcar_gen3_thermal_irq,
						IRQF_ONESHOT, irqname, priv);
		if (ret)
			return ret;
	}

	pm_runtime_enable(dev);
	pm_runtime_get_sync(dev);

	for (i = 0; i < TSC_MAX_NUM; i++) {
		struct rcar_gen3_thermal_tsc *tsc;

		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
		if (!res)
			break;

		tsc = devm_kzalloc(dev, sizeof(*tsc), GFP_KERNEL);
		if (!tsc) {
			ret = -ENOMEM;
			goto error_unregister;
		}

		tsc->base = devm_ioremap_resource(dev, res);
		if (IS_ERR(tsc->base)) {
			ret = PTR_ERR(tsc->base);
			goto error_unregister;
		}
		tsc->id = i;

		priv->tscs[i] = tsc;

		priv->thermal_init(tsc);
		rcar_gen3_thermal_calc_coefs(tsc, ptat, thcodes[i],
					     *rcar_gen3_ths_tj_1);

		zone = devm_thermal_zone_of_sensor_register(dev, i, tsc,
							    &rcar_gen3_tz_of_ops);
		if (IS_ERR(zone)) {
			dev_err(dev, "Can't register thermal zone\n");
			ret = PTR_ERR(zone);
			goto error_unregister;
		}
		tsc->zone = zone;

		tsc->zone->tzp->no_hwmon = false;
		ret = thermal_add_hwmon_sysfs(tsc->zone);
		if (ret)
			goto error_unregister;

		ret = devm_add_action_or_reset(dev, rcar_gen3_hwmon_action, zone);
		if (ret)
			goto error_unregister;

		ret = of_thermal_get_ntrips(tsc->zone);
		if (ret < 0)
			goto error_unregister;

		rcar_gen3_thermal_update_range(tsc);

		dev_info(dev, "TSC%d: Loaded %d trip points\n", i, ret);
	}

	priv->num_tscs = i;

	if (!priv->num_tscs) {
		ret = -ENODEV;
		goto error_unregister;
	}

	rcar_thermal_irq_set(priv, true);

	return 0;

error_unregister:
	rcar_gen3_thermal_remove(pdev);

	return ret;
}

static int __maybe_unused rcar_gen3_thermal_suspend(struct device *dev)
{
	struct rcar_gen3_thermal_priv *priv = dev_get_drvdata(dev);

	rcar_thermal_irq_set(priv, false);

	return 0;
}

static int __maybe_unused rcar_gen3_thermal_resume(struct device *dev)
{
	struct rcar_gen3_thermal_priv *priv = dev_get_drvdata(dev);
	unsigned int i;

	for (i = 0; i < priv->num_tscs; i++) {
		struct rcar_gen3_thermal_tsc *tsc = priv->tscs[i];

		priv->thermal_init(tsc);
		rcar_gen3_thermal_update_range(tsc);
	}

	rcar_thermal_irq_set(priv, true);

	return 0;
}

static SIMPLE_DEV_PM_OPS(rcar_gen3_thermal_pm_ops, rcar_gen3_thermal_suspend,
			 rcar_gen3_thermal_resume);

static struct platform_driver rcar_gen3_thermal_driver = {
	.driver	= {
		.name	= "rcar_gen3_thermal",
		.pm = &rcar_gen3_thermal_pm_ops,
		.of_match_table = rcar_gen3_thermal_dt_ids,
	},
	.probe		= rcar_gen3_thermal_probe,
	.remove		= rcar_gen3_thermal_remove,
};
module_platform_driver(rcar_gen3_thermal_driver);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("R-Car Gen3 THS thermal sensor driver");
MODULE_AUTHOR("Wolfram Sang <wsa+renesas@sang-engineering.com>");