slob.c 18.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
// SPDX-License-Identifier: GPL-2.0
/*
 * SLOB Allocator: Simple List Of Blocks
 *
 * Matt Mackall <mpm@selenic.com> 12/30/03
 *
 * NUMA support by Paul Mundt, 2007.
 *
 * How SLOB works:
 *
 * The core of SLOB is a traditional K&R style heap allocator, with
 * support for returning aligned objects. The granularity of this
 * allocator is as little as 2 bytes, however typically most architectures
 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
 *
 * The slob heap is a set of linked list of pages from alloc_pages(),
 * and within each page, there is a singly-linked list of free blocks
 * (slob_t). The heap is grown on demand. To reduce fragmentation,
 * heap pages are segregated into three lists, with objects less than
 * 256 bytes, objects less than 1024 bytes, and all other objects.
 *
 * Allocation from heap involves first searching for a page with
 * sufficient free blocks (using a next-fit-like approach) followed by
 * a first-fit scan of the page. Deallocation inserts objects back
 * into the free list in address order, so this is effectively an
 * address-ordered first fit.
 *
 * Above this is an implementation of kmalloc/kfree. Blocks returned
 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
 * alloc_pages() directly, allocating compound pages so the page order
 * does not have to be separately tracked.
 * These objects are detected in kfree() because PageSlab()
 * is false for them.
 *
 * SLAB is emulated on top of SLOB by simply calling constructors and
 * destructors for every SLAB allocation. Objects are returned with the
 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
 * case the low-level allocator will fragment blocks to create the proper
 * alignment. Again, objects of page-size or greater are allocated by
 * calling alloc_pages(). As SLAB objects know their size, no separate
 * size bookkeeping is necessary and there is essentially no allocation
 * space overhead, and compound pages aren't needed for multi-page
 * allocations.
 *
 * NUMA support in SLOB is fairly simplistic, pushing most of the real
 * logic down to the page allocator, and simply doing the node accounting
 * on the upper levels. In the event that a node id is explicitly
 * provided, __alloc_pages_node() with the specified node id is used
 * instead. The common case (or when the node id isn't explicitly provided)
 * will default to the current node, as per numa_node_id().
 *
 * Node aware pages are still inserted in to the global freelist, and
 * these are scanned for by matching against the node id encoded in the
 * page flags. As a result, block allocations that can be satisfied from
 * the freelist will only be done so on pages residing on the same node,
 * in order to prevent random node placement.
 */

#include <linux/kernel.h>
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/swap.h> /* struct reclaim_state */
#include <linux/cache.h>
#include <linux/init.h>
#include <linux/export.h>
#include <linux/rcupdate.h>
#include <linux/list.h>
#include <linux/kmemleak.h>

#include <trace/events/kmem.h>

#include <linux/atomic.h>

#include "slab.h"
/*
 * slob_block has a field 'units', which indicates size of block if +ve,
 * or offset of next block if -ve (in SLOB_UNITs).
 *
 * Free blocks of size 1 unit simply contain the offset of the next block.
 * Those with larger size contain their size in the first SLOB_UNIT of
 * memory, and the offset of the next free block in the second SLOB_UNIT.
 */
#if PAGE_SIZE <= (32767 * 2)
typedef s16 slobidx_t;
#else
typedef s32 slobidx_t;
#endif

struct slob_block {
	slobidx_t units;
};
typedef struct slob_block slob_t;

/*
 * All partially free slob pages go on these lists.
 */
#define SLOB_BREAK1 256
#define SLOB_BREAK2 1024
static LIST_HEAD(free_slob_small);
static LIST_HEAD(free_slob_medium);
static LIST_HEAD(free_slob_large);

/*
 * slob_page_free: true for pages on free_slob_pages list.
 */
static inline int slob_page_free(struct page *sp)
{
	return PageSlobFree(sp);
}

static void set_slob_page_free(struct page *sp, struct list_head *list)
{
	list_add(&sp->slab_list, list);
	__SetPageSlobFree(sp);
}

static inline void clear_slob_page_free(struct page *sp)
{
	list_del(&sp->slab_list);
	__ClearPageSlobFree(sp);
}

#define SLOB_UNIT sizeof(slob_t)
#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)

/*
 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
 * were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free
 * the block using call_rcu.
 */
struct slob_rcu {
	struct rcu_head head;
	int size;
};

/*
 * slob_lock protects all slob allocator structures.
 */
static DEFINE_SPINLOCK(slob_lock);

/*
 * Encode the given size and next info into a free slob block s.
 */
static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
{
	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
	slobidx_t offset = next - base;

	if (size > 1) {
		s[0].units = size;
		s[1].units = offset;
	} else
		s[0].units = -offset;
}

/*
 * Return the size of a slob block.
 */
static slobidx_t slob_units(slob_t *s)
{
	if (s->units > 0)
		return s->units;
	return 1;
}

/*
 * Return the next free slob block pointer after this one.
 */
static slob_t *slob_next(slob_t *s)
{
	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
	slobidx_t next;

	if (s[0].units < 0)
		next = -s[0].units;
	else
		next = s[1].units;
	return base+next;
}

/*
 * Returns true if s is the last free block in its page.
 */
static int slob_last(slob_t *s)
{
	return !((unsigned long)slob_next(s) & ~PAGE_MASK);
}

static void *slob_new_pages(gfp_t gfp, int order, int node)
{
	struct page *page;

#ifdef CONFIG_NUMA
	if (node != NUMA_NO_NODE)
		page = __alloc_pages_node(node, gfp, order);
	else
#endif
		page = alloc_pages(gfp, order);

	if (!page)
		return NULL;

	mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
			    PAGE_SIZE << order);
	return page_address(page);
}

static void slob_free_pages(void *b, int order)
{
	struct page *sp = virt_to_page(b);

	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += 1 << order;

	mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
			    -(PAGE_SIZE << order));
	__free_pages(sp, order);
}

/*
 * slob_page_alloc() - Allocate a slob block within a given slob_page sp.
 * @sp: Page to look in.
 * @size: Size of the allocation.
 * @align: Allocation alignment.
 * @align_offset: Offset in the allocated block that will be aligned.
 * @page_removed_from_list: Return parameter.
 *
 * Tries to find a chunk of memory at least @size bytes big within @page.
 *
 * Return: Pointer to memory if allocated, %NULL otherwise.  If the
 *         allocation fills up @page then the page is removed from the
 *         freelist, in this case @page_removed_from_list will be set to
 *         true (set to false otherwise).
 */
static void *slob_page_alloc(struct page *sp, size_t size, int align,
			      int align_offset, bool *page_removed_from_list)
{
	slob_t *prev, *cur, *aligned = NULL;
	int delta = 0, units = SLOB_UNITS(size);

	*page_removed_from_list = false;
	for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
		slobidx_t avail = slob_units(cur);

		/*
		 * 'aligned' will hold the address of the slob block so that the
		 * address 'aligned'+'align_offset' is aligned according to the
		 * 'align' parameter. This is for kmalloc() which prepends the
		 * allocated block with its size, so that the block itself is
		 * aligned when needed.
		 */
		if (align) {
			aligned = (slob_t *)
				(ALIGN((unsigned long)cur + align_offset, align)
				 - align_offset);
			delta = aligned - cur;
		}
		if (avail >= units + delta) { /* room enough? */
			slob_t *next;

			if (delta) { /* need to fragment head to align? */
				next = slob_next(cur);
				set_slob(aligned, avail - delta, next);
				set_slob(cur, delta, aligned);
				prev = cur;
				cur = aligned;
				avail = slob_units(cur);
			}

			next = slob_next(cur);
			if (avail == units) { /* exact fit? unlink. */
				if (prev)
					set_slob(prev, slob_units(prev), next);
				else
					sp->freelist = next;
			} else { /* fragment */
				if (prev)
					set_slob(prev, slob_units(prev), cur + units);
				else
					sp->freelist = cur + units;
				set_slob(cur + units, avail - units, next);
			}

			sp->units -= units;
			if (!sp->units) {
				clear_slob_page_free(sp);
				*page_removed_from_list = true;
			}
			return cur;
		}
		if (slob_last(cur))
			return NULL;
	}
}

/*
 * slob_alloc: entry point into the slob allocator.
 */
static void *slob_alloc(size_t size, gfp_t gfp, int align, int node,
							int align_offset)
{
	struct page *sp;
	struct list_head *slob_list;
	slob_t *b = NULL;
	unsigned long flags;
	bool _unused;

	if (size < SLOB_BREAK1)
		slob_list = &free_slob_small;
	else if (size < SLOB_BREAK2)
		slob_list = &free_slob_medium;
	else
		slob_list = &free_slob_large;

	spin_lock_irqsave(&slob_lock, flags);
	/* Iterate through each partially free page, try to find room */
	list_for_each_entry(sp, slob_list, slab_list) {
		bool page_removed_from_list = false;
#ifdef CONFIG_NUMA
		/*
		 * If there's a node specification, search for a partial
		 * page with a matching node id in the freelist.
		 */
		if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
			continue;
#endif
		/* Enough room on this page? */
		if (sp->units < SLOB_UNITS(size))
			continue;

		b = slob_page_alloc(sp, size, align, align_offset, &page_removed_from_list);
		if (!b)
			continue;

		/*
		 * If slob_page_alloc() removed sp from the list then we
		 * cannot call list functions on sp.  If so allocation
		 * did not fragment the page anyway so optimisation is
		 * unnecessary.
		 */
		if (!page_removed_from_list) {
			/*
			 * Improve fragment distribution and reduce our average
			 * search time by starting our next search here. (see
			 * Knuth vol 1, sec 2.5, pg 449)
			 */
			if (!list_is_first(&sp->slab_list, slob_list))
				list_rotate_to_front(&sp->slab_list, slob_list);
		}
		break;
	}
	spin_unlock_irqrestore(&slob_lock, flags);

	/* Not enough space: must allocate a new page */
	if (!b) {
		b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
		if (!b)
			return NULL;
		sp = virt_to_page(b);
		__SetPageSlab(sp);

		spin_lock_irqsave(&slob_lock, flags);
		sp->units = SLOB_UNITS(PAGE_SIZE);
		sp->freelist = b;
		INIT_LIST_HEAD(&sp->slab_list);
		set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
		set_slob_page_free(sp, slob_list);
		b = slob_page_alloc(sp, size, align, align_offset, &_unused);
		BUG_ON(!b);
		spin_unlock_irqrestore(&slob_lock, flags);
	}
	if (unlikely(gfp & __GFP_ZERO))
		memset(b, 0, size);
	return b;
}

/*
 * slob_free: entry point into the slob allocator.
 */
static void slob_free(void *block, int size)
{
	struct page *sp;
	slob_t *prev, *next, *b = (slob_t *)block;
	slobidx_t units;
	unsigned long flags;
	struct list_head *slob_list;

	if (unlikely(ZERO_OR_NULL_PTR(block)))
		return;
	BUG_ON(!size);

	sp = virt_to_page(block);
	units = SLOB_UNITS(size);

	spin_lock_irqsave(&slob_lock, flags);

	if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
		/* Go directly to page allocator. Do not pass slob allocator */
		if (slob_page_free(sp))
			clear_slob_page_free(sp);
		spin_unlock_irqrestore(&slob_lock, flags);
		__ClearPageSlab(sp);
		page_mapcount_reset(sp);
		slob_free_pages(b, 0);
		return;
	}

	if (!slob_page_free(sp)) {
		/* This slob page is about to become partially free. Easy! */
		sp->units = units;
		sp->freelist = b;
		set_slob(b, units,
			(void *)((unsigned long)(b +
					SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
		if (size < SLOB_BREAK1)
			slob_list = &free_slob_small;
		else if (size < SLOB_BREAK2)
			slob_list = &free_slob_medium;
		else
			slob_list = &free_slob_large;
		set_slob_page_free(sp, slob_list);
		goto out;
	}

	/*
	 * Otherwise the page is already partially free, so find reinsertion
	 * point.
	 */
	sp->units += units;

	if (b < (slob_t *)sp->freelist) {
		if (b + units == sp->freelist) {
			units += slob_units(sp->freelist);
			sp->freelist = slob_next(sp->freelist);
		}
		set_slob(b, units, sp->freelist);
		sp->freelist = b;
	} else {
		prev = sp->freelist;
		next = slob_next(prev);
		while (b > next) {
			prev = next;
			next = slob_next(prev);
		}

		if (!slob_last(prev) && b + units == next) {
			units += slob_units(next);
			set_slob(b, units, slob_next(next));
		} else
			set_slob(b, units, next);

		if (prev + slob_units(prev) == b) {
			units = slob_units(b) + slob_units(prev);
			set_slob(prev, units, slob_next(b));
		} else
			set_slob(prev, slob_units(prev), b);
	}
out:
	spin_unlock_irqrestore(&slob_lock, flags);
}

/*
 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
 */

static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
{
	unsigned int *m;
	int minalign = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
	void *ret;

	gfp &= gfp_allowed_mask;

	fs_reclaim_acquire(gfp);
	fs_reclaim_release(gfp);

	if (size < PAGE_SIZE - minalign) {
		int align = minalign;

		/*
		 * For power of two sizes, guarantee natural alignment for
		 * kmalloc()'d objects.
		 */
		if (is_power_of_2(size))
			align = max(minalign, (int) size);

		if (!size)
			return ZERO_SIZE_PTR;

		m = slob_alloc(size + minalign, gfp, align, node, minalign);

		if (!m)
			return NULL;
		*m = size;
		ret = (void *)m + minalign;

		trace_kmalloc_node(caller, ret,
				   size, size + minalign, gfp, node);
	} else {
		unsigned int order = get_order(size);

		if (likely(order))
			gfp |= __GFP_COMP;
		ret = slob_new_pages(gfp, order, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << order, gfp, node);
	}

	kmemleak_alloc(ret, size, 1, gfp);
	return ret;
}

void *__kmalloc(size_t size, gfp_t gfp)
{
	return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc);

void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
{
	return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);

#ifdef CONFIG_NUMA
void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
					int node, unsigned long caller)
{
	return __do_kmalloc_node(size, gfp, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif

void kfree(const void *block)
{
	struct page *sp;

	trace_kfree(_RET_IP_, block);

	if (unlikely(ZERO_OR_NULL_PTR(block)))
		return;
	kmemleak_free(block);

	sp = virt_to_page(block);
	if (PageSlab(sp)) {
		int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
		unsigned int *m = (unsigned int *)(block - align);
		slob_free(m, *m + align);
	} else {
		unsigned int order = compound_order(sp);
		mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
				    -(PAGE_SIZE << order));
		__free_pages(sp, order);

	}
}
EXPORT_SYMBOL(kfree);

/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
size_t __ksize(const void *block)
{
	struct page *sp;
	int align;
	unsigned int *m;

	BUG_ON(!block);
	if (unlikely(block == ZERO_SIZE_PTR))
		return 0;

	sp = virt_to_page(block);
	if (unlikely(!PageSlab(sp)))
		return page_size(sp);

	align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
	m = (unsigned int *)(block - align);
	return SLOB_UNITS(*m) * SLOB_UNIT;
}
EXPORT_SYMBOL(__ksize);

int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags)
{
	if (flags & SLAB_TYPESAFE_BY_RCU) {
		/* leave room for rcu footer at the end of object */
		c->size += sizeof(struct slob_rcu);
	}
	c->flags = flags;
	return 0;
}

static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
{
	void *b;

	flags &= gfp_allowed_mask;

	fs_reclaim_acquire(flags);
	fs_reclaim_release(flags);

	if (c->size < PAGE_SIZE) {
		b = slob_alloc(c->size, flags, c->align, node, 0);
		trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
					    SLOB_UNITS(c->size) * SLOB_UNIT,
					    flags, node);
	} else {
		b = slob_new_pages(flags, get_order(c->size), node);
		trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
					    PAGE_SIZE << get_order(c->size),
					    flags, node);
	}

	if (b && c->ctor) {
		WARN_ON_ONCE(flags & __GFP_ZERO);
		c->ctor(b);
	}

	kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
	return b;
}

void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
{
	return __do_kmalloc_node(size, gfp, node, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc_node);

void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
{
	return slob_alloc_node(cachep, gfp, node);
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

static void __kmem_cache_free(void *b, int size)
{
	if (size < PAGE_SIZE)
		slob_free(b, size);
	else
		slob_free_pages(b, get_order(size));
}

static void kmem_rcu_free(struct rcu_head *head)
{
	struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
	void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));

	__kmem_cache_free(b, slob_rcu->size);
}

void kmem_cache_free(struct kmem_cache *c, void *b)
{
	kmemleak_free_recursive(b, c->flags);
	if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) {
		struct slob_rcu *slob_rcu;
		slob_rcu = b + (c->size - sizeof(struct slob_rcu));
		slob_rcu->size = c->size;
		call_rcu(&slob_rcu->head, kmem_rcu_free);
	} else {
		__kmem_cache_free(b, c->size);
	}

	trace_kmem_cache_free(_RET_IP_, b);
}
EXPORT_SYMBOL(kmem_cache_free);

void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
{
	__kmem_cache_free_bulk(s, size, p);
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
								void **p)
{
	return __kmem_cache_alloc_bulk(s, flags, size, p);
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

int __kmem_cache_shutdown(struct kmem_cache *c)
{
	/* No way to check for remaining objects */
	return 0;
}

void __kmem_cache_release(struct kmem_cache *c)
{
}

int __kmem_cache_shrink(struct kmem_cache *d)
{
	return 0;
}

struct kmem_cache kmem_cache_boot = {
	.name = "kmem_cache",
	.size = sizeof(struct kmem_cache),
	.flags = SLAB_PANIC,
	.align = ARCH_KMALLOC_MINALIGN,
};

void __init kmem_cache_init(void)
{
	kmem_cache = &kmem_cache_boot;
	slab_state = UP;
}

void __init kmem_cache_init_late(void)
{
	slab_state = FULL;
}