nft_set_rbtree.c 17.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (c) 2008-2009 Patrick McHardy <kaber@trash.net>
 *
 * Development of this code funded by Astaro AG (http://www.astaro.com/)
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/rbtree.h>
#include <linux/netlink.h>
#include <linux/netfilter.h>
#include <linux/netfilter/nf_tables.h>
#include <net/netfilter/nf_tables_core.h>

struct nft_rbtree {
	struct rb_root		root;
	rwlock_t		lock;
	seqcount_rwlock_t	count;
	struct delayed_work	gc_work;
};

struct nft_rbtree_elem {
	struct rb_node		node;
	struct nft_set_ext	ext;
};

static bool nft_rbtree_interval_end(const struct nft_rbtree_elem *rbe)
{
	return nft_set_ext_exists(&rbe->ext, NFT_SET_EXT_FLAGS) &&
	       (*nft_set_ext_flags(&rbe->ext) & NFT_SET_ELEM_INTERVAL_END);
}

static bool nft_rbtree_interval_start(const struct nft_rbtree_elem *rbe)
{
	return !nft_rbtree_interval_end(rbe);
}

static bool nft_rbtree_equal(const struct nft_set *set, const void *this,
			     const struct nft_rbtree_elem *interval)
{
	return memcmp(this, nft_set_ext_key(&interval->ext), set->klen) == 0;
}

static bool __nft_rbtree_lookup(const struct net *net, const struct nft_set *set,
				const u32 *key, const struct nft_set_ext **ext,
				unsigned int seq)
{
	struct nft_rbtree *priv = nft_set_priv(set);
	const struct nft_rbtree_elem *rbe, *interval = NULL;
	u8 genmask = nft_genmask_cur(net);
	const struct rb_node *parent;
	const void *this;
	int d;

	parent = rcu_dereference_raw(priv->root.rb_node);
	while (parent != NULL) {
		if (read_seqcount_retry(&priv->count, seq))
			return false;

		rbe = rb_entry(parent, struct nft_rbtree_elem, node);

		this = nft_set_ext_key(&rbe->ext);
		d = memcmp(this, key, set->klen);
		if (d < 0) {
			parent = rcu_dereference_raw(parent->rb_left);
			if (interval &&
			    nft_rbtree_equal(set, this, interval) &&
			    nft_rbtree_interval_end(rbe) &&
			    nft_rbtree_interval_start(interval))
				continue;
			interval = rbe;
		} else if (d > 0)
			parent = rcu_dereference_raw(parent->rb_right);
		else {
			if (!nft_set_elem_active(&rbe->ext, genmask)) {
				parent = rcu_dereference_raw(parent->rb_left);
				continue;
			}

			if (nft_set_elem_expired(&rbe->ext))
				return false;

			if (nft_rbtree_interval_end(rbe)) {
				if (nft_set_is_anonymous(set))
					return false;
				parent = rcu_dereference_raw(parent->rb_left);
				interval = NULL;
				continue;
			}

			*ext = &rbe->ext;
			return true;
		}
	}

	if (set->flags & NFT_SET_INTERVAL && interval != NULL &&
	    nft_set_elem_active(&interval->ext, genmask) &&
	    !nft_set_elem_expired(&interval->ext) &&
	    nft_rbtree_interval_start(interval)) {
		*ext = &interval->ext;
		return true;
	}

	return false;
}

static bool nft_rbtree_lookup(const struct net *net, const struct nft_set *set,
			      const u32 *key, const struct nft_set_ext **ext)
{
	struct nft_rbtree *priv = nft_set_priv(set);
	unsigned int seq = read_seqcount_begin(&priv->count);
	bool ret;

	ret = __nft_rbtree_lookup(net, set, key, ext, seq);
	if (ret || !read_seqcount_retry(&priv->count, seq))
		return ret;

	read_lock_bh(&priv->lock);
	seq = read_seqcount_begin(&priv->count);
	ret = __nft_rbtree_lookup(net, set, key, ext, seq);
	read_unlock_bh(&priv->lock);

	return ret;
}

static bool __nft_rbtree_get(const struct net *net, const struct nft_set *set,
			     const u32 *key, struct nft_rbtree_elem **elem,
			     unsigned int seq, unsigned int flags, u8 genmask)
{
	struct nft_rbtree_elem *rbe, *interval = NULL;
	struct nft_rbtree *priv = nft_set_priv(set);
	const struct rb_node *parent;
	const void *this;
	int d;

	parent = rcu_dereference_raw(priv->root.rb_node);
	while (parent != NULL) {
		if (read_seqcount_retry(&priv->count, seq))
			return false;

		rbe = rb_entry(parent, struct nft_rbtree_elem, node);

		this = nft_set_ext_key(&rbe->ext);
		d = memcmp(this, key, set->klen);
		if (d < 0) {
			parent = rcu_dereference_raw(parent->rb_left);
			if (!(flags & NFT_SET_ELEM_INTERVAL_END))
				interval = rbe;
		} else if (d > 0) {
			parent = rcu_dereference_raw(parent->rb_right);
			if (flags & NFT_SET_ELEM_INTERVAL_END)
				interval = rbe;
		} else {
			if (!nft_set_elem_active(&rbe->ext, genmask)) {
				parent = rcu_dereference_raw(parent->rb_left);
				continue;
			}

			if (nft_set_elem_expired(&rbe->ext))
				return false;

			if (!nft_set_ext_exists(&rbe->ext, NFT_SET_EXT_FLAGS) ||
			    (*nft_set_ext_flags(&rbe->ext) & NFT_SET_ELEM_INTERVAL_END) ==
			    (flags & NFT_SET_ELEM_INTERVAL_END)) {
				*elem = rbe;
				return true;
			}

			if (nft_rbtree_interval_end(rbe))
				interval = NULL;

			parent = rcu_dereference_raw(parent->rb_left);
		}
	}

	if (set->flags & NFT_SET_INTERVAL && interval != NULL &&
	    nft_set_elem_active(&interval->ext, genmask) &&
	    !nft_set_elem_expired(&interval->ext) &&
	    ((!nft_rbtree_interval_end(interval) &&
	      !(flags & NFT_SET_ELEM_INTERVAL_END)) ||
	     (nft_rbtree_interval_end(interval) &&
	      (flags & NFT_SET_ELEM_INTERVAL_END)))) {
		*elem = interval;
		return true;
	}

	return false;
}

static void *nft_rbtree_get(const struct net *net, const struct nft_set *set,
			    const struct nft_set_elem *elem, unsigned int flags)
{
	struct nft_rbtree *priv = nft_set_priv(set);
	unsigned int seq = read_seqcount_begin(&priv->count);
	struct nft_rbtree_elem *rbe = ERR_PTR(-ENOENT);
	const u32 *key = (const u32 *)&elem->key.val;
	u8 genmask = nft_genmask_cur(net);
	bool ret;

	ret = __nft_rbtree_get(net, set, key, &rbe, seq, flags, genmask);
	if (ret || !read_seqcount_retry(&priv->count, seq))
		return rbe;

	read_lock_bh(&priv->lock);
	seq = read_seqcount_begin(&priv->count);
	ret = __nft_rbtree_get(net, set, key, &rbe, seq, flags, genmask);
	if (!ret)
		rbe = ERR_PTR(-ENOENT);
	read_unlock_bh(&priv->lock);

	return rbe;
}

static int __nft_rbtree_insert(const struct net *net, const struct nft_set *set,
			       struct nft_rbtree_elem *new,
			       struct nft_set_ext **ext)
{
	bool overlap = false, dup_end_left = false, dup_end_right = false;
	struct nft_rbtree *priv = nft_set_priv(set);
	u8 genmask = nft_genmask_next(net);
	struct nft_rbtree_elem *rbe;
	struct rb_node *parent, **p;
	int d;

	/* Detect overlaps as we descend the tree. Set the flag in these cases:
	 *
	 * a1. _ _ __>|  ?_ _ __|  (insert end before existing end)
	 * a2. _ _ ___|  ?_ _ _>|  (insert end after existing end)
	 * a3. _ _ ___? >|_ _ __|  (insert start before existing end)
	 *
	 * and clear it later on, as we eventually reach the points indicated by
	 * '?' above, in the cases described below. We'll always meet these
	 * later, locally, due to tree ordering, and overlaps for the intervals
	 * that are the closest together are always evaluated last.
	 *
	 * b1. _ _ __>|  !_ _ __|  (insert end before existing start)
	 * b2. _ _ ___|  !_ _ _>|  (insert end after existing start)
	 * b3. _ _ ___! >|_ _ __|  (insert start after existing end, as a leaf)
	 *            '--' no nodes falling in this range
	 * b4.          >|_ _   !  (insert start before existing start)
	 *
	 * Case a3. resolves to b3.:
	 * - if the inserted start element is the leftmost, because the '0'
	 *   element in the tree serves as end element
	 * - otherwise, if an existing end is found immediately to the left. If
	 *   there are existing nodes in between, we need to further descend the
	 *   tree before we can conclude the new start isn't causing an overlap
	 *
	 * or to b4., which, preceded by a3., means we already traversed one or
	 * more existing intervals entirely, from the right.
	 *
	 * For a new, rightmost pair of elements, we'll hit cases b3. and b2.,
	 * in that order.
	 *
	 * The flag is also cleared in two special cases:
	 *
	 * b5. |__ _ _!|<_ _ _   (insert start right before existing end)
	 * b6. |__ _ >|!__ _ _   (insert end right after existing start)
	 *
	 * which always happen as last step and imply that no further
	 * overlapping is possible.
	 *
	 * Another special case comes from the fact that start elements matching
	 * an already existing start element are allowed: insertion is not
	 * performed but we return -EEXIST in that case, and the error will be
	 * cleared by the caller if NLM_F_EXCL is not present in the request.
	 * This way, request for insertion of an exact overlap isn't reported as
	 * error to userspace if not desired.
	 *
	 * However, if the existing start matches a pre-existing start, but the
	 * end element doesn't match the corresponding pre-existing end element,
	 * we need to report a partial overlap. This is a local condition that
	 * can be noticed without need for a tracking flag, by checking for a
	 * local duplicated end for a corresponding start, from left and right,
	 * separately.
	 */

	parent = NULL;
	p = &priv->root.rb_node;
	while (*p != NULL) {
		parent = *p;
		rbe = rb_entry(parent, struct nft_rbtree_elem, node);
		d = memcmp(nft_set_ext_key(&rbe->ext),
			   nft_set_ext_key(&new->ext),
			   set->klen);
		if (d < 0) {
			p = &parent->rb_left;

			if (nft_rbtree_interval_start(new)) {
				if (nft_rbtree_interval_end(rbe) &&
				    nft_set_elem_active(&rbe->ext, genmask) &&
				    !nft_set_elem_expired(&rbe->ext) && !*p)
					overlap = false;
			} else {
				if (dup_end_left && !*p)
					return -ENOTEMPTY;

				overlap = nft_rbtree_interval_end(rbe) &&
					  nft_set_elem_active(&rbe->ext,
							      genmask) &&
					  !nft_set_elem_expired(&rbe->ext);

				if (overlap) {
					dup_end_right = true;
					continue;
				}
			}
		} else if (d > 0) {
			p = &parent->rb_right;

			if (nft_rbtree_interval_end(new)) {
				if (dup_end_right && !*p)
					return -ENOTEMPTY;

				overlap = nft_rbtree_interval_end(rbe) &&
					  nft_set_elem_active(&rbe->ext,
							      genmask) &&
					  !nft_set_elem_expired(&rbe->ext);

				if (overlap) {
					dup_end_left = true;
					continue;
				}
			} else if (nft_set_elem_active(&rbe->ext, genmask) &&
				   !nft_set_elem_expired(&rbe->ext)) {
				overlap = nft_rbtree_interval_end(rbe);
			}
		} else {
			if (nft_rbtree_interval_end(rbe) &&
			    nft_rbtree_interval_start(new)) {
				p = &parent->rb_left;

				if (nft_set_elem_active(&rbe->ext, genmask) &&
				    !nft_set_elem_expired(&rbe->ext))
					overlap = false;
			} else if (nft_rbtree_interval_start(rbe) &&
				   nft_rbtree_interval_end(new)) {
				p = &parent->rb_right;

				if (nft_set_elem_active(&rbe->ext, genmask) &&
				    !nft_set_elem_expired(&rbe->ext))
					overlap = false;
			} else if (nft_set_elem_active(&rbe->ext, genmask) &&
				   !nft_set_elem_expired(&rbe->ext)) {
				*ext = &rbe->ext;
				return -EEXIST;
			} else {
				p = &parent->rb_left;
			}
		}

		dup_end_left = dup_end_right = false;
	}

	if (overlap)
		return -ENOTEMPTY;

	rb_link_node_rcu(&new->node, parent, p);
	rb_insert_color(&new->node, &priv->root);
	return 0;
}

static int nft_rbtree_insert(const struct net *net, const struct nft_set *set,
			     const struct nft_set_elem *elem,
			     struct nft_set_ext **ext)
{
	struct nft_rbtree *priv = nft_set_priv(set);
	struct nft_rbtree_elem *rbe = elem->priv;
	int err;

	write_lock_bh(&priv->lock);
	write_seqcount_begin(&priv->count);
	err = __nft_rbtree_insert(net, set, rbe, ext);
	write_seqcount_end(&priv->count);
	write_unlock_bh(&priv->lock);

	return err;
}

static void nft_rbtree_remove(const struct net *net,
			      const struct nft_set *set,
			      const struct nft_set_elem *elem)
{
	struct nft_rbtree *priv = nft_set_priv(set);
	struct nft_rbtree_elem *rbe = elem->priv;

	write_lock_bh(&priv->lock);
	write_seqcount_begin(&priv->count);
	rb_erase(&rbe->node, &priv->root);
	write_seqcount_end(&priv->count);
	write_unlock_bh(&priv->lock);
}

static void nft_rbtree_activate(const struct net *net,
				const struct nft_set *set,
				const struct nft_set_elem *elem)
{
	struct nft_rbtree_elem *rbe = elem->priv;

	nft_set_elem_change_active(net, set, &rbe->ext);
	nft_set_elem_clear_busy(&rbe->ext);
}

static bool nft_rbtree_flush(const struct net *net,
			     const struct nft_set *set, void *priv)
{
	struct nft_rbtree_elem *rbe = priv;

	if (!nft_set_elem_mark_busy(&rbe->ext) ||
	    !nft_is_active(net, &rbe->ext)) {
		nft_set_elem_change_active(net, set, &rbe->ext);
		return true;
	}
	return false;
}

static void *nft_rbtree_deactivate(const struct net *net,
				   const struct nft_set *set,
				   const struct nft_set_elem *elem)
{
	const struct nft_rbtree *priv = nft_set_priv(set);
	const struct rb_node *parent = priv->root.rb_node;
	struct nft_rbtree_elem *rbe, *this = elem->priv;
	u8 genmask = nft_genmask_next(net);
	int d;

	while (parent != NULL) {
		rbe = rb_entry(parent, struct nft_rbtree_elem, node);

		d = memcmp(nft_set_ext_key(&rbe->ext), &elem->key.val,
					   set->klen);
		if (d < 0)
			parent = parent->rb_left;
		else if (d > 0)
			parent = parent->rb_right;
		else {
			if (nft_rbtree_interval_end(rbe) &&
			    nft_rbtree_interval_start(this)) {
				parent = parent->rb_left;
				continue;
			} else if (nft_rbtree_interval_start(rbe) &&
				   nft_rbtree_interval_end(this)) {
				parent = parent->rb_right;
				continue;
			} else if (!nft_set_elem_active(&rbe->ext, genmask)) {
				parent = parent->rb_left;
				continue;
			}
			nft_rbtree_flush(net, set, rbe);
			return rbe;
		}
	}
	return NULL;
}

static void nft_rbtree_walk(const struct nft_ctx *ctx,
			    struct nft_set *set,
			    struct nft_set_iter *iter)
{
	struct nft_rbtree *priv = nft_set_priv(set);
	struct nft_rbtree_elem *rbe;
	struct nft_set_elem elem;
	struct rb_node *node;

	read_lock_bh(&priv->lock);
	for (node = rb_first(&priv->root); node != NULL; node = rb_next(node)) {
		rbe = rb_entry(node, struct nft_rbtree_elem, node);

		if (iter->count < iter->skip)
			goto cont;
		if (nft_set_elem_expired(&rbe->ext))
			goto cont;
		if (!nft_set_elem_active(&rbe->ext, iter->genmask))
			goto cont;

		elem.priv = rbe;

		iter->err = iter->fn(ctx, set, iter, &elem);
		if (iter->err < 0) {
			read_unlock_bh(&priv->lock);
			return;
		}
cont:
		iter->count++;
	}
	read_unlock_bh(&priv->lock);
}

static void nft_rbtree_gc(struct work_struct *work)
{
	struct nft_rbtree_elem *rbe, *rbe_end = NULL, *rbe_prev = NULL;
	struct nft_set_gc_batch *gcb = NULL;
	struct nft_rbtree *priv;
	struct rb_node *node;
	struct nft_set *set;

	priv = container_of(work, struct nft_rbtree, gc_work.work);
	set  = nft_set_container_of(priv);

	write_lock_bh(&priv->lock);
	write_seqcount_begin(&priv->count);
	for (node = rb_first(&priv->root); node != NULL; node = rb_next(node)) {
		rbe = rb_entry(node, struct nft_rbtree_elem, node);

		if (nft_rbtree_interval_end(rbe)) {
			rbe_end = rbe;
			continue;
		}
		if (!nft_set_elem_expired(&rbe->ext))
			continue;
		if (nft_set_elem_mark_busy(&rbe->ext))
			continue;

		if (rbe_prev) {
			rb_erase(&rbe_prev->node, &priv->root);
			rbe_prev = NULL;
		}
		gcb = nft_set_gc_batch_check(set, gcb, GFP_ATOMIC);
		if (!gcb)
			break;

		atomic_dec(&set->nelems);
		nft_set_gc_batch_add(gcb, rbe);
		rbe_prev = rbe;

		if (rbe_end) {
			atomic_dec(&set->nelems);
			nft_set_gc_batch_add(gcb, rbe_end);
			rb_erase(&rbe_end->node, &priv->root);
			rbe_end = NULL;
		}
		node = rb_next(node);
		if (!node)
			break;
	}
	if (rbe_prev)
		rb_erase(&rbe_prev->node, &priv->root);
	write_seqcount_end(&priv->count);
	write_unlock_bh(&priv->lock);

	nft_set_gc_batch_complete(gcb);

	queue_delayed_work(system_power_efficient_wq, &priv->gc_work,
			   nft_set_gc_interval(set));
}

static u64 nft_rbtree_privsize(const struct nlattr * const nla[],
			       const struct nft_set_desc *desc)
{
	return sizeof(struct nft_rbtree);
}

static int nft_rbtree_init(const struct nft_set *set,
			   const struct nft_set_desc *desc,
			   const struct nlattr * const nla[])
{
	struct nft_rbtree *priv = nft_set_priv(set);

	rwlock_init(&priv->lock);
	seqcount_rwlock_init(&priv->count, &priv->lock);
	priv->root = RB_ROOT;

	INIT_DEFERRABLE_WORK(&priv->gc_work, nft_rbtree_gc);
	if (set->flags & NFT_SET_TIMEOUT)
		queue_delayed_work(system_power_efficient_wq, &priv->gc_work,
				   nft_set_gc_interval(set));

	return 0;
}

static void nft_rbtree_destroy(const struct nft_set *set)
{
	struct nft_rbtree *priv = nft_set_priv(set);
	struct nft_rbtree_elem *rbe;
	struct rb_node *node;

	cancel_delayed_work_sync(&priv->gc_work);
	rcu_barrier();
	while ((node = priv->root.rb_node) != NULL) {
		rb_erase(node, &priv->root);
		rbe = rb_entry(node, struct nft_rbtree_elem, node);
		nft_set_elem_destroy(set, rbe, true);
	}
}

static bool nft_rbtree_estimate(const struct nft_set_desc *desc, u32 features,
				struct nft_set_estimate *est)
{
	if (desc->field_count > 1)
		return false;

	if (desc->size)
		est->size = sizeof(struct nft_rbtree) +
			    desc->size * sizeof(struct nft_rbtree_elem);
	else
		est->size = ~0;

	est->lookup = NFT_SET_CLASS_O_LOG_N;
	est->space  = NFT_SET_CLASS_O_N;

	return true;
}

const struct nft_set_type nft_set_rbtree_type = {
	.features	= NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT | NFT_SET_TIMEOUT,
	.ops		= {
		.privsize	= nft_rbtree_privsize,
		.elemsize	= offsetof(struct nft_rbtree_elem, ext),
		.estimate	= nft_rbtree_estimate,
		.init		= nft_rbtree_init,
		.destroy	= nft_rbtree_destroy,
		.insert		= nft_rbtree_insert,
		.remove		= nft_rbtree_remove,
		.deactivate	= nft_rbtree_deactivate,
		.flush		= nft_rbtree_flush,
		.activate	= nft_rbtree_activate,
		.lookup		= nft_rbtree_lookup,
		.walk		= nft_rbtree_walk,
		.get		= nft_rbtree_get,
	},
};