kmod.c 14.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
/*
	kmod, the new module loader (replaces kerneld)
	Kirk Petersen

	Reorganized not to be a daemon by Adam Richter, with guidance
	from Greg Zornetzer.

	Modified to avoid chroot and file sharing problems.
	Mikael Pettersson

	Limit the concurrent number of kmod modprobes to catch loops from
	"modprobe needs a service that is in a module".
	Keith Owens <kaos@ocs.com.au> December 1999

	Unblock all signals when we exec a usermode process.
	Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000

	call_usermodehelper wait flag, and remove exec_usermodehelper.
	Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/syscalls.h>
#include <linux/unistd.h>
#include <linux/kmod.h>
#include <linux/slab.h>
#include <linux/completion.h>
#include <linux/cred.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/workqueue.h>
#include <linux/security.h>
#include <linux/mount.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/resource.h>
#include <linux/notifier.h>
#include <linux/suspend.h>
#include <linux/rwsem.h>
#include <asm/uaccess.h>

#include <trace/events/module.h>

extern int max_threads;

static struct workqueue_struct *khelper_wq;

#define CAP_BSET	(void *)1
#define CAP_PI		(void *)2

static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
static DEFINE_SPINLOCK(umh_sysctl_lock);
static DECLARE_RWSEM(umhelper_sem);

#ifdef CONFIG_MODULES

/*
	modprobe_path is set via /proc/sys.
*/
char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";

/**
 * __request_module - try to load a kernel module
 * @wait: wait (or not) for the operation to complete
 * @fmt: printf style format string for the name of the module
 * @...: arguments as specified in the format string
 *
 * Load a module using the user mode module loader. The function returns
 * zero on success or a negative errno code on failure. Note that a
 * successful module load does not mean the module did not then unload
 * and exit on an error of its own. Callers must check that the service
 * they requested is now available not blindly invoke it.
 *
 * If module auto-loading support is disabled then this function
 * becomes a no-operation.
 */
int __request_module(bool wait, const char *fmt, ...)
{
	va_list args;
	char module_name[MODULE_NAME_LEN];
	unsigned int max_modprobes;
	int ret;
	char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
	static char *envp[] = { "HOME=/",
				"TERM=linux",
				"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
				NULL };
	static atomic_t kmod_concurrent = ATOMIC_INIT(0);
#define MAX_KMOD_CONCURRENT 50	/* Completely arbitrary value - KAO */
	static int kmod_loop_msg;

	va_start(args, fmt);
	ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
	va_end(args);
	if (ret >= MODULE_NAME_LEN)
		return -ENAMETOOLONG;

	ret = security_kernel_module_request(module_name);
	if (ret)
		return ret;

	/* If modprobe needs a service that is in a module, we get a recursive
	 * loop.  Limit the number of running kmod threads to max_threads/2 or
	 * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
	 * would be to run the parents of this process, counting how many times
	 * kmod was invoked.  That would mean accessing the internals of the
	 * process tables to get the command line, proc_pid_cmdline is static
	 * and it is not worth changing the proc code just to handle this case. 
	 * KAO.
	 *
	 * "trace the ppid" is simple, but will fail if someone's
	 * parent exits.  I think this is as good as it gets. --RR
	 */
	max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
	atomic_inc(&kmod_concurrent);
	if (atomic_read(&kmod_concurrent) > max_modprobes) {
		/* We may be blaming an innocent here, but unlikely */
		if (kmod_loop_msg < 5) {
			printk(KERN_ERR
			       "request_module: runaway loop modprobe %s\n",
			       module_name);
			kmod_loop_msg++;
		}
		atomic_dec(&kmod_concurrent);
		return -ENOMEM;
	}

	trace_module_request(module_name, wait, _RET_IP_);

	ret = call_usermodehelper_fns(modprobe_path, argv, envp,
			wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC,
			NULL, NULL, NULL);

	atomic_dec(&kmod_concurrent);
	return ret;
}
EXPORT_SYMBOL(__request_module);
#endif /* CONFIG_MODULES */

/*
 * This is the task which runs the usermode application
 */
static int ____call_usermodehelper(void *data)
{
	struct subprocess_info *sub_info = data;
	struct cred *new;
	int retval;

	spin_lock_irq(&current->sighand->siglock);
	flush_signal_handlers(current, 1);
	spin_unlock_irq(&current->sighand->siglock);

	/* We can run anywhere, unlike our parent keventd(). */
	set_cpus_allowed_ptr(current, cpu_all_mask);

	/*
	 * Our parent is keventd, which runs with elevated scheduling priority.
	 * Avoid propagating that into the userspace child.
	 */
	set_user_nice(current, 0);

	retval = -ENOMEM;
	new = prepare_kernel_cred(current);
	if (!new)
		goto fail;

	spin_lock(&umh_sysctl_lock);
	new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
	new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
					     new->cap_inheritable);
	spin_unlock(&umh_sysctl_lock);

	if (sub_info->init) {
		retval = sub_info->init(sub_info, new);
		if (retval) {
			abort_creds(new);
			goto fail;
		}
	}

	commit_creds(new);

	retval = kernel_execve(sub_info->path,
			       (const char *const *)sub_info->argv,
			       (const char *const *)sub_info->envp);

	/* Exec failed? */
fail:
	sub_info->retval = retval;
	do_exit(0);
}

void call_usermodehelper_freeinfo(struct subprocess_info *info)
{
	if (info->cleanup)
		(*info->cleanup)(info);
	kfree(info);
}
EXPORT_SYMBOL(call_usermodehelper_freeinfo);

/* Keventd can't block, but this (a child) can. */
static int wait_for_helper(void *data)
{
	struct subprocess_info *sub_info = data;
	pid_t pid;

	/* If SIGCLD is ignored sys_wait4 won't populate the status. */
	spin_lock_irq(&current->sighand->siglock);
	current->sighand->action[SIGCHLD-1].sa.sa_handler = SIG_DFL;
	spin_unlock_irq(&current->sighand->siglock);

	pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
	if (pid < 0) {
		sub_info->retval = pid;
	} else {
		int ret = -ECHILD;
		/*
		 * Normally it is bogus to call wait4() from in-kernel because
		 * wait4() wants to write the exit code to a userspace address.
		 * But wait_for_helper() always runs as keventd, and put_user()
		 * to a kernel address works OK for kernel threads, due to their
		 * having an mm_segment_t which spans the entire address space.
		 *
		 * Thus the __user pointer cast is valid here.
		 */
		sys_wait4(pid, (int __user *)&ret, 0, NULL);

		/*
		 * If ret is 0, either ____call_usermodehelper failed and the
		 * real error code is already in sub_info->retval or
		 * sub_info->retval is 0 anyway, so don't mess with it then.
		 */
		if (ret)
			sub_info->retval = ret;
	}

	complete(sub_info->complete);
	return 0;
}

/* This is run by khelper thread  */
static void __call_usermodehelper(struct work_struct *work)
{
	struct subprocess_info *sub_info =
		container_of(work, struct subprocess_info, work);
	enum umh_wait wait = sub_info->wait;
	pid_t pid;

	/* CLONE_VFORK: wait until the usermode helper has execve'd
	 * successfully We need the data structures to stay around
	 * until that is done.  */
	if (wait == UMH_WAIT_PROC)
		pid = kernel_thread(wait_for_helper, sub_info,
				    CLONE_FS | CLONE_FILES | SIGCHLD);
	else
		pid = kernel_thread(____call_usermodehelper, sub_info,
				    CLONE_VFORK | SIGCHLD);

	switch (wait) {
	case UMH_NO_WAIT:
		call_usermodehelper_freeinfo(sub_info);
		break;

	case UMH_WAIT_PROC:
		if (pid > 0)
			break;
		/* FALLTHROUGH */
	case UMH_WAIT_EXEC:
		if (pid < 0)
			sub_info->retval = pid;
		complete(sub_info->complete);
	}
}

/*
 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
 * (used for preventing user land processes from being created after the user
 * land has been frozen during a system-wide hibernation or suspend operation).
 * Should always be manipulated under umhelper_sem acquired for write.
 */
static int usermodehelper_disabled = 1;

/* Number of helpers running */
static atomic_t running_helpers = ATOMIC_INIT(0);

/*
 * Wait queue head used by usermodehelper_disable() to wait for all running
 * helpers to finish.
 */
static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);

/*
 * Time to wait for running_helpers to become zero before the setting of
 * usermodehelper_disabled in usermodehelper_disable() fails
 */
#define RUNNING_HELPERS_TIMEOUT	(5 * HZ)

void read_lock_usermodehelper(void)
{
	down_read(&umhelper_sem);
}
EXPORT_SYMBOL_GPL(read_lock_usermodehelper);

void read_unlock_usermodehelper(void)
{
	up_read(&umhelper_sem);
}
EXPORT_SYMBOL_GPL(read_unlock_usermodehelper);

/**
 * usermodehelper_disable - prevent new helpers from being started
 */
int usermodehelper_disable(void)
{
	long retval;

	down_write(&umhelper_sem);
	usermodehelper_disabled = 1;
	up_write(&umhelper_sem);

	/*
	 * From now on call_usermodehelper_exec() won't start any new
	 * helpers, so it is sufficient if running_helpers turns out to
	 * be zero at one point (it may be increased later, but that
	 * doesn't matter).
	 */
	retval = wait_event_timeout(running_helpers_waitq,
					atomic_read(&running_helpers) == 0,
					RUNNING_HELPERS_TIMEOUT);
	if (retval)
		return 0;

	down_write(&umhelper_sem);
	usermodehelper_disabled = 0;
	up_write(&umhelper_sem);
	return -EAGAIN;
}

/**
 * usermodehelper_enable - allow new helpers to be started again
 */
void usermodehelper_enable(void)
{
	down_write(&umhelper_sem);
	usermodehelper_disabled = 0;
	up_write(&umhelper_sem);
}

/**
 * usermodehelper_is_disabled - check if new helpers are allowed to be started
 */
bool usermodehelper_is_disabled(void)
{
	return usermodehelper_disabled;
}
EXPORT_SYMBOL_GPL(usermodehelper_is_disabled);

static void helper_lock(void)
{
	atomic_inc(&running_helpers);
	smp_mb__after_atomic_inc();
}

static void helper_unlock(void)
{
	if (atomic_dec_and_test(&running_helpers))
		wake_up(&running_helpers_waitq);
}

/**
 * call_usermodehelper_setup - prepare to call a usermode helper
 * @path: path to usermode executable
 * @argv: arg vector for process
 * @envp: environment for process
 * @gfp_mask: gfp mask for memory allocation
 *
 * Returns either %NULL on allocation failure, or a subprocess_info
 * structure.  This should be passed to call_usermodehelper_exec to
 * exec the process and free the structure.
 */
struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
						  char **envp, gfp_t gfp_mask)
{
	struct subprocess_info *sub_info;
	sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
	if (!sub_info)
		goto out;

	INIT_WORK(&sub_info->work, __call_usermodehelper);
	sub_info->path = path;
	sub_info->argv = argv;
	sub_info->envp = envp;
  out:
	return sub_info;
}
EXPORT_SYMBOL(call_usermodehelper_setup);

/**
 * call_usermodehelper_setfns - set a cleanup/init function
 * @info: a subprocess_info returned by call_usermodehelper_setup
 * @cleanup: a cleanup function
 * @init: an init function
 * @data: arbitrary context sensitive data
 *
 * The init function is used to customize the helper process prior to
 * exec.  A non-zero return code causes the process to error out, exit,
 * and return the failure to the calling process
 *
 * The cleanup function is just before ethe subprocess_info is about to
 * be freed.  This can be used for freeing the argv and envp.  The
 * Function must be runnable in either a process context or the
 * context in which call_usermodehelper_exec is called.
 */
void call_usermodehelper_setfns(struct subprocess_info *info,
		    int (*init)(struct subprocess_info *info, struct cred *new),
		    void (*cleanup)(struct subprocess_info *info),
		    void *data)
{
	info->cleanup = cleanup;
	info->init = init;
	info->data = data;
}
EXPORT_SYMBOL(call_usermodehelper_setfns);

/**
 * call_usermodehelper_exec - start a usermode application
 * @sub_info: information about the subprocessa
 * @wait: wait for the application to finish and return status.
 *        when -1 don't wait at all, but you get no useful error back when
 *        the program couldn't be exec'ed. This makes it safe to call
 *        from interrupt context.
 *
 * Runs a user-space application.  The application is started
 * asynchronously if wait is not set, and runs as a child of keventd.
 * (ie. it runs with full root capabilities).
 */
int call_usermodehelper_exec(struct subprocess_info *sub_info,
			     enum umh_wait wait)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int retval = 0;

	helper_lock();
	if (sub_info->path[0] == '\0')
		goto out;

	if (!khelper_wq || usermodehelper_disabled) {
		retval = -EBUSY;
		goto out;
	}

	sub_info->complete = &done;
	sub_info->wait = wait;

	queue_work(khelper_wq, &sub_info->work);
	if (wait == UMH_NO_WAIT)	/* task has freed sub_info */
		goto unlock;
	wait_for_completion(&done);
	retval = sub_info->retval;

out:
	call_usermodehelper_freeinfo(sub_info);
unlock:
	helper_unlock();
	return retval;
}
EXPORT_SYMBOL(call_usermodehelper_exec);

static int proc_cap_handler(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
	kernel_cap_t new_cap;
	int err, i;

	if (write && (!capable(CAP_SETPCAP) ||
		      !capable(CAP_SYS_MODULE)))
		return -EPERM;

	/*
	 * convert from the global kernel_cap_t to the ulong array to print to
	 * userspace if this is a read.
	 */
	spin_lock(&umh_sysctl_lock);
	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)  {
		if (table->data == CAP_BSET)
			cap_array[i] = usermodehelper_bset.cap[i];
		else if (table->data == CAP_PI)
			cap_array[i] = usermodehelper_inheritable.cap[i];
		else
			BUG();
	}
	spin_unlock(&umh_sysctl_lock);

	t = *table;
	t.data = &cap_array;

	/*
	 * actually read or write and array of ulongs from userspace.  Remember
	 * these are least significant 32 bits first
	 */
	err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;

	/*
	 * convert from the sysctl array of ulongs to the kernel_cap_t
	 * internal representation
	 */
	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
		new_cap.cap[i] = cap_array[i];

	/*
	 * Drop everything not in the new_cap (but don't add things)
	 */
	spin_lock(&umh_sysctl_lock);
	if (write) {
		if (table->data == CAP_BSET)
			usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
		if (table->data == CAP_PI)
			usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
	}
	spin_unlock(&umh_sysctl_lock);

	return 0;
}

struct ctl_table usermodehelper_table[] = {
	{
		.procname	= "bset",
		.data		= CAP_BSET,
		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
		.mode		= 0600,
		.proc_handler	= proc_cap_handler,
	},
	{
		.procname	= "inheritable",
		.data		= CAP_PI,
		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
		.mode		= 0600,
		.proc_handler	= proc_cap_handler,
	},
	{ }
};

void __init usermodehelper_init(void)
{
	khelper_wq = create_singlethread_workqueue("khelper");
	BUG_ON(!khelper_wq);
}