rtc-ab-b5ze-s3.c 28.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
// SPDX-License-Identifier: GPL-2.0+
/*
 * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
 *                  I2C RTC / Alarm chip
 *
 * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
 *
 * Detailed datasheet of the chip is available here:
 *
 *  http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
 *
 * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
 *
 */

#include <linux/module.h>
#include <linux/rtc.h>
#include <linux/i2c.h>
#include <linux/bcd.h>
#include <linux/of.h>
#include <linux/regmap.h>
#include <linux/interrupt.h>

#define DRV_NAME "rtc-ab-b5ze-s3"

/* Control section */
#define ABB5ZES3_REG_CTRL1	   0x00	   /* Control 1 register */
#define ABB5ZES3_REG_CTRL1_CIE	   BIT(0)  /* Pulse interrupt enable */
#define ABB5ZES3_REG_CTRL1_AIE	   BIT(1)  /* Alarm interrupt enable */
#define ABB5ZES3_REG_CTRL1_SIE	   BIT(2)  /* Second interrupt enable */
#define ABB5ZES3_REG_CTRL1_PM	   BIT(3)  /* 24h/12h mode */
#define ABB5ZES3_REG_CTRL1_SR	   BIT(4)  /* Software reset */
#define ABB5ZES3_REG_CTRL1_STOP	   BIT(5)  /* RTC circuit enable */
#define ABB5ZES3_REG_CTRL1_CAP	   BIT(7)

#define ABB5ZES3_REG_CTRL2	   0x01	   /* Control 2 register */
#define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */
#define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */
#define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */
#define ABB5ZES3_REG_CTRL2_AF	   BIT(3)  /* Alarm interrupt status */
#define ABB5ZES3_REG_CTRL2_SF	   BIT(4)  /* Second interrupt status */
#define ABB5ZES3_REG_CTRL2_CTBF	   BIT(5)  /* Countdown timer B int. status */
#define ABB5ZES3_REG_CTRL2_CTAF	   BIT(6)  /* Countdown timer A int. status */
#define ABB5ZES3_REG_CTRL2_WTAF	   BIT(7)  /* Watchdog timer A int. status */

#define ABB5ZES3_REG_CTRL3	   0x02	   /* Control 3 register */
#define ABB5ZES3_REG_CTRL3_PM2	   BIT(7)  /* Power Management bit 2 */
#define ABB5ZES3_REG_CTRL3_PM1	   BIT(6)  /* Power Management bit 1 */
#define ABB5ZES3_REG_CTRL3_PM0	   BIT(5)  /* Power Management bit 0 */
#define ABB5ZES3_REG_CTRL3_BSF	   BIT(3)  /* Battery switchover int. status */
#define ABB5ZES3_REG_CTRL3_BLF	   BIT(2)  /* Battery low int. status */
#define ABB5ZES3_REG_CTRL3_BSIE	   BIT(1)  /* Battery switchover int. enable */
#define ABB5ZES3_REG_CTRL3_BLIE	   BIT(0)  /* Battery low int. enable */

#define ABB5ZES3_CTRL_SEC_LEN	   3

/* RTC section */
#define ABB5ZES3_REG_RTC_SC	   0x03	   /* RTC Seconds register */
#define ABB5ZES3_REG_RTC_SC_OSC	   BIT(7)  /* Clock integrity status */
#define ABB5ZES3_REG_RTC_MN	   0x04	   /* RTC Minutes register */
#define ABB5ZES3_REG_RTC_HR	   0x05	   /* RTC Hours register */
#define ABB5ZES3_REG_RTC_HR_PM	   BIT(5)  /* RTC Hours PM bit */
#define ABB5ZES3_REG_RTC_DT	   0x06	   /* RTC Date register */
#define ABB5ZES3_REG_RTC_DW	   0x07	   /* RTC Day of the week register */
#define ABB5ZES3_REG_RTC_MO	   0x08	   /* RTC Month register */
#define ABB5ZES3_REG_RTC_YR	   0x09	   /* RTC Year register */

#define ABB5ZES3_RTC_SEC_LEN	   7

/* Alarm section (enable bits are all active low) */
#define ABB5ZES3_REG_ALRM_MN	   0x0A	   /* Alarm - minute register */
#define ABB5ZES3_REG_ALRM_MN_AE	   BIT(7)  /* Minute enable */
#define ABB5ZES3_REG_ALRM_HR	   0x0B	   /* Alarm - hours register */
#define ABB5ZES3_REG_ALRM_HR_AE	   BIT(7)  /* Hour enable */
#define ABB5ZES3_REG_ALRM_DT	   0x0C	   /* Alarm - date register */
#define ABB5ZES3_REG_ALRM_DT_AE	   BIT(7)  /* Date (day of the month) enable */
#define ABB5ZES3_REG_ALRM_DW	   0x0D	   /* Alarm - day of the week reg. */
#define ABB5ZES3_REG_ALRM_DW_AE	   BIT(7)  /* Day of the week enable */

#define ABB5ZES3_ALRM_SEC_LEN	   4

/* Frequency offset section */
#define ABB5ZES3_REG_FREQ_OF	   0x0E	   /* Frequency offset register */
#define ABB5ZES3_REG_FREQ_OF_MODE  0x0E	   /* Offset mode: 2 hours / minute */

/* CLOCKOUT section */
#define ABB5ZES3_REG_TIM_CLK	   0x0F	   /* Timer & Clockout register */
#define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */
#define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */
#define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */
#define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */
#define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */
#define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */
#define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*	       - 10 : timer	*/
#define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */

/* Timer A Section */
#define ABB5ZES3_REG_TIMA_CLK	   0x10	   /* Timer A clock register */
#define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */
#define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */
#define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */
#define ABB5ZES3_REG_TIMA	   0x11	   /* Timer A register */

#define ABB5ZES3_TIMA_SEC_LEN	   2

/* Timer B Section */
#define ABB5ZES3_REG_TIMB_CLK	   0x12	   /* Timer B clock register */
#define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
#define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
#define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
#define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
#define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
#define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
#define ABB5ZES3_REG_TIMB	   0x13	   /* Timer B register */
#define ABB5ZES3_TIMB_SEC_LEN	   2

#define ABB5ZES3_MEM_MAP_LEN	   0x14

struct abb5zes3_rtc_data {
	struct rtc_device *rtc;
	struct regmap *regmap;

	int irq;

	bool battery_low;
	bool timer_alarm; /* current alarm is via timer A */
};

/*
 * Try and match register bits w/ fixed null values to see whether we
 * are dealing with an ABB5ZES3.
 */
static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
{
	u8 regs[ABB5ZES3_MEM_MAP_LEN];
	static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
						       0x80, 0xc0, 0xc0, 0xf8,
						       0xe0, 0x00, 0x00, 0x40,
						       0x40, 0x78, 0x00, 0x00,
						       0xf8, 0x00, 0x88, 0x00 };
	int ret, i;

	ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
	if (ret)
		return ret;

	for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
		if (regs[i] & mask[i]) /* check if bits are cleared */
			return -ENODEV;
	}

	return 0;
}

/* Clear alarm status bit. */
static int _abb5zes3_rtc_clear_alarm(struct device *dev)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	int ret;

	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
				 ABB5ZES3_REG_CTRL2_AF, 0);
	if (ret)
		dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);

	return ret;
}

/* Enable or disable alarm (i.e. alarm interrupt generation) */
static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	int ret;

	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
				 ABB5ZES3_REG_CTRL1_AIE,
				 enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
	if (ret)
		dev_err(dev, "%s: writing alarm INT failed (%d)\n",
			__func__, ret);

	return ret;
}

/* Enable or disable timer (watchdog timer A interrupt generation) */
static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	int ret;

	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
				 ABB5ZES3_REG_CTRL2_WTAIE,
				 enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
	if (ret)
		dev_err(dev, "%s: writing timer INT failed (%d)\n",
			__func__, ret);

	return ret;
}

/*
 * Note: we only read, so regmap inner lock protection is sufficient, i.e.
 * we do not need driver's main lock protection.
 */
static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
	int ret = 0;

	/*
	 * As we need to read CTRL1 register anyway to access 24/12h
	 * mode bit, we do a single bulk read of both control and RTC
	 * sections (they are consecutive). This also ease indexing
	 * of register values after bulk read.
	 */
	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
			       sizeof(regs));
	if (ret) {
		dev_err(dev, "%s: reading RTC time failed (%d)\n",
			__func__, ret);
		return ret;
	}

	/* If clock integrity is not guaranteed, do not return a time value */
	if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC)
		return -ENODATA;

	tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
	tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);

	if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
		if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
			tm->tm_hour += 12;
	} else {						/* 24hr mode */
		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
	}

	tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
	tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
	tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
	tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;

	return ret;
}

static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
	int ret;

	regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
	regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
	regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
	regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
	regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
	regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
	regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);

	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
				regs + ABB5ZES3_REG_RTC_SC,
				ABB5ZES3_RTC_SEC_LEN);

	return ret;
}

/*
 * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
 * given number of seconds.
 */
static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
{
	*taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
	*timer_a = secs;
}

/*
 * Return current number of seconds in Timer A. As we only use
 * timer A with a 1Hz freq, this is what we expect to have.
 */
static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
{
	if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
		return -EINVAL;

	*secs = timer_a;

	return 0;
}

/*
 * Read alarm currently configured via a watchdog timer using timer A. This
 * is done by reading current RTC time and adding remaining timer time.
 */
static int _abb5zes3_rtc_read_timer(struct device *dev,
				    struct rtc_wkalrm *alarm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
	u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
	unsigned long rtc_secs;
	unsigned int reg;
	u8 timer_secs;
	int ret;

	/*
	 * Instead of doing two separate calls, because they are consecutive,
	 * we grab both clockout register and Timer A section. The latter is
	 * used to decide if timer A is enabled (as a watchdog timer).
	 */
	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
			       ABB5ZES3_TIMA_SEC_LEN + 1);
	if (ret) {
		dev_err(dev, "%s: reading Timer A section failed (%d)\n",
			__func__, ret);
		return ret;
	}

	/* get current time ... */
	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
	if (ret)
		return ret;

	/* ... convert to seconds ... */
	rtc_secs = rtc_tm_to_time64(&rtc_tm);

	/* ... add remaining timer A time ... */
	ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
	if (ret)
		return ret;

	/* ... and convert back. */
	rtc_time64_to_tm(rtc_secs + timer_secs, alarm_tm);

	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
	if (ret) {
		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
			__func__, ret);
		return ret;
	}

	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);

	return 0;
}

/* Read alarm currently configured via a RTC alarm registers. */
static int _abb5zes3_rtc_read_alarm(struct device *dev,
				    struct rtc_wkalrm *alarm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
	unsigned long rtc_secs, alarm_secs;
	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
	unsigned int reg;
	int ret;

	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
			       ABB5ZES3_ALRM_SEC_LEN);
	if (ret) {
		dev_err(dev, "%s: reading alarm section failed (%d)\n",
			__func__, ret);
		return ret;
	}

	alarm_tm->tm_sec  = 0;
	alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f);
	alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
	alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
	alarm_tm->tm_wday = -1;

	/*
	 * The alarm section does not store year/month. We use the ones in rtc
	 * section as a basis and increment month and then year if needed to get
	 * alarm after current time.
	 */
	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
	if (ret)
		return ret;

	alarm_tm->tm_year = rtc_tm.tm_year;
	alarm_tm->tm_mon = rtc_tm.tm_mon;

	rtc_secs = rtc_tm_to_time64(&rtc_tm);
	alarm_secs = rtc_tm_to_time64(alarm_tm);

	if (alarm_secs < rtc_secs) {
		if (alarm_tm->tm_mon == 11) {
			alarm_tm->tm_mon = 0;
			alarm_tm->tm_year += 1;
		} else {
			alarm_tm->tm_mon += 1;
		}
	}

	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
	if (ret) {
		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
			__func__, ret);
		return ret;
	}

	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);

	return 0;
}

/*
 * As the Alarm mechanism supported by the chip is only accurate to the
 * minute, we use the watchdog timer mechanism provided by timer A
 * (up to 256 seconds w/ a second accuracy) for low alarm values (below
 * 4 minutes). Otherwise, we use the common alarm mechanism provided
 * by the chip. In order for that to work, we keep track of currently
 * configured timer type via 'timer_alarm' flag in our private data
 * structure.
 */
static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	int ret;

	if (data->timer_alarm)
		ret = _abb5zes3_rtc_read_timer(dev, alarm);
	else
		ret = _abb5zes3_rtc_read_alarm(dev, alarm);

	return ret;
}

/*
 * Set alarm using chip alarm mechanism. It is only accurate to the
 * minute (not the second). The function expects alarm interrupt to
 * be disabled.
 */
static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	struct rtc_time *alarm_tm = &alarm->time;
	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
	struct rtc_time rtc_tm;
	int ret, enable = 1;

	if (!alarm->enabled) {
		enable = 0;
	} else {
		unsigned long rtc_secs, alarm_secs;

		/*
		 * Chip only support alarms up to one month in the future. Let's
		 * return an error if we get something after that limit.
		 * Comparison is done by incrementing rtc_tm month field by one
		 * and checking alarm value is still below.
		 */
		ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
		if (ret)
			return ret;

		if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
			rtc_tm.tm_mon = 0;
			rtc_tm.tm_year += 1;
		} else {
			rtc_tm.tm_mon += 1;
		}

		rtc_secs = rtc_tm_to_time64(&rtc_tm);
		alarm_secs = rtc_tm_to_time64(alarm_tm);

		if (alarm_secs > rtc_secs) {
			dev_err(dev, "%s: alarm maximum is one month in the future (%d)\n",
				__func__, ret);
			return -EINVAL;
		}
	}

	/*
	 * Program all alarm registers but DW one. For each register, setting
	 * MSB to 0 enables associated alarm.
	 */
	regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
	regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
	regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
	regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */

	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
				ABB5ZES3_ALRM_SEC_LEN);
	if (ret < 0) {
		dev_err(dev, "%s: writing ALARM section failed (%d)\n",
			__func__, ret);
		return ret;
	}

	/* Record currently configured alarm is not a timer */
	data->timer_alarm = 0;

	/* Enable or disable alarm interrupt generation */
	return _abb5zes3_rtc_update_alarm(dev, enable);
}

/*
 * Set alarm using timer watchdog (via timer A) mechanism. The function expects
 * timer A interrupt to be disabled.
 */
static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
				   u8 secs)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	u8 regs[ABB5ZES3_TIMA_SEC_LEN];
	u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
	int ret = 0;

	/* Program given number of seconds to Timer A registers */
	sec_to_timer_a(secs, &regs[0], &regs[1]);
	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
				ABB5ZES3_TIMA_SEC_LEN);
	if (ret < 0) {
		dev_err(dev, "%s: writing timer section failed\n", __func__);
		return ret;
	}

	/* Configure Timer A as a watchdog timer */
	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
				 mask, ABB5ZES3_REG_TIM_CLK_TAC1);
	if (ret)
		dev_err(dev, "%s: failed to update timer\n", __func__);

	/* Record currently configured alarm is a timer */
	data->timer_alarm = 1;

	/* Enable or disable timer interrupt generation */
	return _abb5zes3_rtc_update_timer(dev, alarm->enabled);
}

/*
 * The chip has an alarm which is only accurate to the minute. In order to
 * handle alarms below that limit, we use the watchdog timer function of
 * timer A. More precisely, the timer method is used for alarms below 240
 * seconds.
 */
static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	struct rtc_time *alarm_tm = &alarm->time;
	unsigned long rtc_secs, alarm_secs;
	struct rtc_time rtc_tm;
	int ret;

	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
	if (ret)
		return ret;

	rtc_secs = rtc_tm_to_time64(&rtc_tm);
	alarm_secs = rtc_tm_to_time64(alarm_tm);

	/* Let's first disable both the alarm and the timer interrupts */
	ret = _abb5zes3_rtc_update_alarm(dev, false);
	if (ret < 0) {
		dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
			ret);
		return ret;
	}
	ret = _abb5zes3_rtc_update_timer(dev, false);
	if (ret < 0) {
		dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
			ret);
		return ret;
	}

	data->timer_alarm = 0;

	/*
	 * Let's now configure the alarm; if we are expected to ring in
	 * more than 240s, then we setup an alarm. Otherwise, a timer.
	 */
	if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
		ret = _abb5zes3_rtc_set_timer(dev, alarm,
					      alarm_secs - rtc_secs);
	else
		ret = _abb5zes3_rtc_set_alarm(dev, alarm);

	if (ret)
		dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
			ret);

	return ret;
}

/* Enable or disable battery low irq generation */
static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
						       bool enable)
{
	return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
				  ABB5ZES3_REG_CTRL3_BLIE,
				  enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
}

/*
 * Check current RTC status and enable/disable what needs to be. Return 0 if
 * everything went ok and a negative value upon error.
 */
static int abb5zes3_rtc_check_setup(struct device *dev)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	struct regmap *regmap = data->regmap;
	unsigned int reg;
	int ret;
	u8 mask;

	/*
	 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
	 * is disabled here to prevent polluting the interrupt line and
	 * uselessly triggering the IRQ handler we install for alarm and battery
	 * low events. Note: this is done before clearing int. status below
	 * in this function.
	 * We also disable all timers and set timer interrupt to permanent (not
	 * pulsed).
	 */
	mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
		ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
		ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
		ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
	ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
				 ABB5ZES3_REG_TIM_CLK_COF0 |
				 ABB5ZES3_REG_TIM_CLK_COF1 |
				 ABB5ZES3_REG_TIM_CLK_COF2);
	if (ret < 0) {
		dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
			__func__, ret);
		return ret;
	}

	/*
	 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
	 * individually by clearing/setting MSB of each associated register. So,
	 * we set all alarm enable bits to disable current alarm setting.
	 */
	mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
		ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
	if (ret < 0) {
		dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
			__func__, ret);
		return ret;
	}

	/* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
	mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
		ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
		ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
	if (ret < 0) {
		dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
			__func__, ret);
		return ret;
	}

	/*
	 * Set Control 2 register (timer int. disabled, alarm status cleared).
	 * WTAF is read-only and cleared automatically by reading the register.
	 */
	mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
		ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
		ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
		ABB5ZES3_REG_CTRL2_CTAF);
	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
	if (ret < 0) {
		dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
			__func__, ret);
		return ret;
	}

	/*
	 * Enable battery low detection function and battery switchover function
	 * (standard mode). Disable associated interrupts. Clear battery
	 * switchover flag but not battery low flag. The latter is checked
	 * later below.
	 */
	mask = (ABB5ZES3_REG_CTRL3_PM0  | ABB5ZES3_REG_CTRL3_PM1 |
		ABB5ZES3_REG_CTRL3_PM2  | ABB5ZES3_REG_CTRL3_BLIE |
		ABB5ZES3_REG_CTRL3_BSIE | ABB5ZES3_REG_CTRL3_BSF);
	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
	if (ret < 0) {
		dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
			__func__, ret);
		return ret;
	}

	/* Check oscillator integrity flag */
	ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
	if (ret < 0) {
		dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
			__func__, ret);
		return ret;
	}

	if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
		dev_err(dev, "clock integrity not guaranteed. Osc. has stopped or has been interrupted.\n");
		dev_err(dev, "change battery (if not already done) and then set time to reset osc. failure flag.\n");
	}

	/*
	 * Check battery low flag at startup: this allows reporting battery
	 * is low at startup when IRQ line is not connected. Note: we record
	 * current status to avoid reenabling this interrupt later in probe
	 * function if battery is low.
	 */
	ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
	if (ret < 0) {
		dev_err(dev, "%s: unable to read battery low flag (%d)\n",
			__func__, ret);
		return ret;
	}

	data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
	if (data->battery_low) {
		dev_err(dev, "RTC battery is low; please, consider changing it!\n");

		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
		if (ret)
			dev_err(dev, "%s: disabling battery low interrupt generation failed (%d)\n",
				__func__, ret);
	}

	return ret;
}

static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
					 unsigned int enable)
{
	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
	int ret = 0;

	if (rtc_data->irq) {
		if (rtc_data->timer_alarm)
			ret = _abb5zes3_rtc_update_timer(dev, enable);
		else
			ret = _abb5zes3_rtc_update_alarm(dev, enable);
	}

	return ret;
}

static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
{
	struct i2c_client *client = data;
	struct device *dev = &client->dev;
	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
	struct rtc_device *rtc = rtc_data->rtc;
	u8 regs[ABB5ZES3_CTRL_SEC_LEN];
	int ret, handled = IRQ_NONE;

	ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
			       ABB5ZES3_CTRL_SEC_LEN);
	if (ret) {
		dev_err(dev, "%s: unable to read control section (%d)!\n",
			__func__, ret);
		return handled;
	}

	/*
	 * Check battery low detection flag and disable battery low interrupt
	 * generation if flag is set (interrupt can only be cleared when
	 * battery is replaced).
	 */
	if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
		dev_err(dev, "RTC battery is low; please change it!\n");

		_abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);

		handled = IRQ_HANDLED;
	}

	/* Check alarm flag */
	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
		dev_dbg(dev, "RTC alarm!\n");

		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);

		/* Acknowledge and disable the alarm */
		_abb5zes3_rtc_clear_alarm(dev);
		_abb5zes3_rtc_update_alarm(dev, 0);

		handled = IRQ_HANDLED;
	}

	/* Check watchdog Timer A flag */
	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
		dev_dbg(dev, "RTC timer!\n");

		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);

		/*
		 * Acknowledge and disable the alarm. Note: WTAF
		 * flag had been cleared when reading CTRL2
		 */
		_abb5zes3_rtc_update_timer(dev, 0);

		rtc_data->timer_alarm = 0;

		handled = IRQ_HANDLED;
	}

	return handled;
}

static const struct rtc_class_ops rtc_ops = {
	.read_time = _abb5zes3_rtc_read_time,
	.set_time = abb5zes3_rtc_set_time,
	.read_alarm = abb5zes3_rtc_read_alarm,
	.set_alarm = abb5zes3_rtc_set_alarm,
	.alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
};

static const struct regmap_config abb5zes3_rtc_regmap_config = {
	.reg_bits = 8,
	.val_bits = 8,
};

static int abb5zes3_probe(struct i2c_client *client,
			  const struct i2c_device_id *id)
{
	struct abb5zes3_rtc_data *data = NULL;
	struct device *dev = &client->dev;
	struct regmap *regmap;
	int ret;

	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
				     I2C_FUNC_SMBUS_BYTE_DATA |
				     I2C_FUNC_SMBUS_I2C_BLOCK))
		return -ENODEV;

	regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
	if (IS_ERR(regmap)) {
		ret = PTR_ERR(regmap);
		dev_err(dev, "%s: regmap allocation failed: %d\n",
			__func__, ret);
		return ret;
	}

	ret = abb5zes3_i2c_validate_chip(regmap);
	if (ret)
		return ret;

	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	data->regmap = regmap;
	dev_set_drvdata(dev, data);

	ret = abb5zes3_rtc_check_setup(dev);
	if (ret)
		return ret;

	data->rtc = devm_rtc_allocate_device(dev);
	ret = PTR_ERR_OR_ZERO(data->rtc);
	if (ret) {
		dev_err(dev, "%s: unable to allocate RTC device (%d)\n",
			__func__, ret);
		return ret;
	}

	if (client->irq > 0) {
		ret = devm_request_threaded_irq(dev, client->irq, NULL,
						_abb5zes3_rtc_interrupt,
						IRQF_SHARED | IRQF_ONESHOT,
						DRV_NAME, client);
		if (!ret) {
			device_init_wakeup(dev, true);
			data->irq = client->irq;
			dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
				client->irq);
		} else {
			dev_err(dev, "%s: irq %d unavailable (%d)\n",
				__func__, client->irq, ret);
			goto err;
		}
	}

	data->rtc->ops = &rtc_ops;
	data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
	data->rtc->range_max = RTC_TIMESTAMP_END_2099;

	/* Enable battery low detection interrupt if battery not already low */
	if (!data->battery_low && data->irq) {
		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
		if (ret) {
			dev_err(dev, "%s: enabling battery low interrupt generation failed (%d)\n",
				__func__, ret);
			goto err;
		}
	}

	ret = rtc_register_device(data->rtc);

err:
	if (ret && data->irq)
		device_init_wakeup(dev, false);
	return ret;
}

#ifdef CONFIG_PM_SLEEP
static int abb5zes3_rtc_suspend(struct device *dev)
{
	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		return enable_irq_wake(rtc_data->irq);

	return 0;
}

static int abb5zes3_rtc_resume(struct device *dev)
{
	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		return disable_irq_wake(rtc_data->irq);

	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
			 abb5zes3_rtc_resume);

#ifdef CONFIG_OF
static const struct of_device_id abb5zes3_dt_match[] = {
	{ .compatible = "abracon,abb5zes3" },
	{ },
};
MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
#endif

static const struct i2c_device_id abb5zes3_id[] = {
	{ "abb5zes3", 0 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, abb5zes3_id);

static struct i2c_driver abb5zes3_driver = {
	.driver = {
		.name = DRV_NAME,
		.pm = &abb5zes3_rtc_pm_ops,
		.of_match_table = of_match_ptr(abb5zes3_dt_match),
	},
	.probe	  = abb5zes3_probe,
	.id_table = abb5zes3_id,
};
module_i2c_driver(abb5zes3_driver);

MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
MODULE_LICENSE("GPL");