vfio_pci_config.c 49.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
// SPDX-License-Identifier: GPL-2.0-only
/*
 * VFIO PCI config space virtualization
 *
 * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
 *     Author: Alex Williamson <alex.williamson@redhat.com>
 *
 * Derived from original vfio:
 * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
 * Author: Tom Lyon, pugs@cisco.com
 */

/*
 * This code handles reading and writing of PCI configuration registers.
 * This is hairy because we want to allow a lot of flexibility to the
 * user driver, but cannot trust it with all of the config fields.
 * Tables determine which fields can be read and written, as well as
 * which fields are 'virtualized' - special actions and translations to
 * make it appear to the user that he has control, when in fact things
 * must be negotiated with the underlying OS.
 */

#include <linux/fs.h>
#include <linux/pci.h>
#include <linux/uaccess.h>
#include <linux/vfio.h>
#include <linux/slab.h>

#include "vfio_pci_private.h"

/* Fake capability ID for standard config space */
#define PCI_CAP_ID_BASIC	0

#define is_bar(offset)	\
	((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
	 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))

/*
 * Lengths of PCI Config Capabilities
 *   0: Removed from the user visible capability list
 *   FF: Variable length
 */
static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
	[PCI_CAP_ID_BASIC]	= PCI_STD_HEADER_SIZEOF, /* pci config header */
	[PCI_CAP_ID_PM]		= PCI_PM_SIZEOF,
	[PCI_CAP_ID_AGP]	= PCI_AGP_SIZEOF,
	[PCI_CAP_ID_VPD]	= PCI_CAP_VPD_SIZEOF,
	[PCI_CAP_ID_SLOTID]	= 0,		/* bridge - don't care */
	[PCI_CAP_ID_MSI]	= 0xFF,		/* 10, 14, 20, or 24 */
	[PCI_CAP_ID_CHSWP]	= 0,		/* cpci - not yet */
	[PCI_CAP_ID_PCIX]	= 0xFF,		/* 8 or 24 */
	[PCI_CAP_ID_HT]		= 0xFF,		/* hypertransport */
	[PCI_CAP_ID_VNDR]	= 0xFF,		/* variable */
	[PCI_CAP_ID_DBG]	= 0,		/* debug - don't care */
	[PCI_CAP_ID_CCRC]	= 0,		/* cpci - not yet */
	[PCI_CAP_ID_SHPC]	= 0,		/* hotswap - not yet */
	[PCI_CAP_ID_SSVID]	= 0,		/* bridge - don't care */
	[PCI_CAP_ID_AGP3]	= 0,		/* AGP8x - not yet */
	[PCI_CAP_ID_SECDEV]	= 0,		/* secure device not yet */
	[PCI_CAP_ID_EXP]	= 0xFF,		/* 20 or 44 */
	[PCI_CAP_ID_MSIX]	= PCI_CAP_MSIX_SIZEOF,
	[PCI_CAP_ID_SATA]	= 0xFF,
	[PCI_CAP_ID_AF]		= PCI_CAP_AF_SIZEOF,
};

/*
 * Lengths of PCIe/PCI-X Extended Config Capabilities
 *   0: Removed or masked from the user visible capability list
 *   FF: Variable length
 */
static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
	[PCI_EXT_CAP_ID_ERR]	=	PCI_ERR_ROOT_COMMAND,
	[PCI_EXT_CAP_ID_VC]	=	0xFF,
	[PCI_EXT_CAP_ID_DSN]	=	PCI_EXT_CAP_DSN_SIZEOF,
	[PCI_EXT_CAP_ID_PWR]	=	PCI_EXT_CAP_PWR_SIZEOF,
	[PCI_EXT_CAP_ID_RCLD]	=	0,	/* root only - don't care */
	[PCI_EXT_CAP_ID_RCILC]	=	0,	/* root only - don't care */
	[PCI_EXT_CAP_ID_RCEC]	=	0,	/* root only - don't care */
	[PCI_EXT_CAP_ID_MFVC]	=	0xFF,
	[PCI_EXT_CAP_ID_VC9]	=	0xFF,	/* same as CAP_ID_VC */
	[PCI_EXT_CAP_ID_RCRB]	=	0,	/* root only - don't care */
	[PCI_EXT_CAP_ID_VNDR]	=	0xFF,
	[PCI_EXT_CAP_ID_CAC]	=	0,	/* obsolete */
	[PCI_EXT_CAP_ID_ACS]	=	0xFF,
	[PCI_EXT_CAP_ID_ARI]	=	PCI_EXT_CAP_ARI_SIZEOF,
	[PCI_EXT_CAP_ID_ATS]	=	PCI_EXT_CAP_ATS_SIZEOF,
	[PCI_EXT_CAP_ID_SRIOV]	=	PCI_EXT_CAP_SRIOV_SIZEOF,
	[PCI_EXT_CAP_ID_MRIOV]	=	0,	/* not yet */
	[PCI_EXT_CAP_ID_MCAST]	=	PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
	[PCI_EXT_CAP_ID_PRI]	=	PCI_EXT_CAP_PRI_SIZEOF,
	[PCI_EXT_CAP_ID_AMD_XXX] =	0,	/* not yet */
	[PCI_EXT_CAP_ID_REBAR]	=	0xFF,
	[PCI_EXT_CAP_ID_DPA]	=	0xFF,
	[PCI_EXT_CAP_ID_TPH]	=	0xFF,
	[PCI_EXT_CAP_ID_LTR]	=	PCI_EXT_CAP_LTR_SIZEOF,
	[PCI_EXT_CAP_ID_SECPCI]	=	0,	/* not yet */
	[PCI_EXT_CAP_ID_PMUX]	=	0,	/* not yet */
	[PCI_EXT_CAP_ID_PASID]	=	0,	/* not yet */
};

/*
 * Read/Write Permission Bits - one bit for each bit in capability
 * Any field can be read if it exists, but what is read depends on
 * whether the field is 'virtualized', or just pass thru to the
 * hardware.  Any virtualized field is also virtualized for writes.
 * Writes are only permitted if they have a 1 bit here.
 */
struct perm_bits {
	u8	*virt;		/* read/write virtual data, not hw */
	u8	*write;		/* writeable bits */
	int	(*readfn)(struct vfio_pci_device *vdev, int pos, int count,
			  struct perm_bits *perm, int offset, __le32 *val);
	int	(*writefn)(struct vfio_pci_device *vdev, int pos, int count,
			   struct perm_bits *perm, int offset, __le32 val);
};

#define	NO_VIRT		0
#define	ALL_VIRT	0xFFFFFFFFU
#define	NO_WRITE	0
#define	ALL_WRITE	0xFFFFFFFFU

static int vfio_user_config_read(struct pci_dev *pdev, int offset,
				 __le32 *val, int count)
{
	int ret = -EINVAL;
	u32 tmp_val = 0;

	switch (count) {
	case 1:
	{
		u8 tmp;
		ret = pci_user_read_config_byte(pdev, offset, &tmp);
		tmp_val = tmp;
		break;
	}
	case 2:
	{
		u16 tmp;
		ret = pci_user_read_config_word(pdev, offset, &tmp);
		tmp_val = tmp;
		break;
	}
	case 4:
		ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
		break;
	}

	*val = cpu_to_le32(tmp_val);

	return ret;
}

static int vfio_user_config_write(struct pci_dev *pdev, int offset,
				  __le32 val, int count)
{
	int ret = -EINVAL;
	u32 tmp_val = le32_to_cpu(val);

	switch (count) {
	case 1:
		ret = pci_user_write_config_byte(pdev, offset, tmp_val);
		break;
	case 2:
		ret = pci_user_write_config_word(pdev, offset, tmp_val);
		break;
	case 4:
		ret = pci_user_write_config_dword(pdev, offset, tmp_val);
		break;
	}

	return ret;
}

static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
				    int count, struct perm_bits *perm,
				    int offset, __le32 *val)
{
	__le32 virt = 0;

	memcpy(val, vdev->vconfig + pos, count);

	memcpy(&virt, perm->virt + offset, count);

	/* Any non-virtualized bits? */
	if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
		struct pci_dev *pdev = vdev->pdev;
		__le32 phys_val = 0;
		int ret;

		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
		if (ret)
			return ret;

		*val = (phys_val & ~virt) | (*val & virt);
	}

	return count;
}

static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
				     int count, struct perm_bits *perm,
				     int offset, __le32 val)
{
	__le32 virt = 0, write = 0;

	memcpy(&write, perm->write + offset, count);

	if (!write)
		return count; /* drop, no writable bits */

	memcpy(&virt, perm->virt + offset, count);

	/* Virtualized and writable bits go to vconfig */
	if (write & virt) {
		__le32 virt_val = 0;

		memcpy(&virt_val, vdev->vconfig + pos, count);

		virt_val &= ~(write & virt);
		virt_val |= (val & (write & virt));

		memcpy(vdev->vconfig + pos, &virt_val, count);
	}

	/* Non-virtualzed and writable bits go to hardware */
	if (write & ~virt) {
		struct pci_dev *pdev = vdev->pdev;
		__le32 phys_val = 0;
		int ret;

		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
		if (ret)
			return ret;

		phys_val &= ~(write & ~virt);
		phys_val |= (val & (write & ~virt));

		ret = vfio_user_config_write(pdev, pos, phys_val, count);
		if (ret)
			return ret;
	}

	return count;
}

/* Allow direct read from hardware, except for capability next pointer */
static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
				   int count, struct perm_bits *perm,
				   int offset, __le32 *val)
{
	int ret;

	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
	if (ret)
		return ret;

	if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
		if (offset < 4)
			memcpy(val, vdev->vconfig + pos, count);
	} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
		if (offset == PCI_CAP_LIST_ID && count > 1)
			memcpy(val, vdev->vconfig + pos,
			       min(PCI_CAP_FLAGS, count));
		else if (offset == PCI_CAP_LIST_NEXT)
			memcpy(val, vdev->vconfig + pos, 1);
	}

	return count;
}

/* Raw access skips any kind of virtualization */
static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
				 int count, struct perm_bits *perm,
				 int offset, __le32 val)
{
	int ret;

	ret = vfio_user_config_write(vdev->pdev, pos, val, count);
	if (ret)
		return ret;

	return count;
}

static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
				int count, struct perm_bits *perm,
				int offset, __le32 *val)
{
	int ret;

	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
	if (ret)
		return ret;

	return count;
}

/* Virt access uses only virtualization */
static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos,
				  int count, struct perm_bits *perm,
				  int offset, __le32 val)
{
	memcpy(vdev->vconfig + pos, &val, count);
	return count;
}

static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos,
				 int count, struct perm_bits *perm,
				 int offset, __le32 *val)
{
	memcpy(val, vdev->vconfig + pos, count);
	return count;
}

/* Default capability regions to read-only, no-virtualization */
static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
	[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
};
static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
	[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
};
/*
 * Default unassigned regions to raw read-write access.  Some devices
 * require this to function as they hide registers between the gaps in
 * config space (be2net).  Like MMIO and I/O port registers, we have
 * to trust the hardware isolation.
 */
static struct perm_bits unassigned_perms = {
	.readfn = vfio_raw_config_read,
	.writefn = vfio_raw_config_write
};

static struct perm_bits virt_perms = {
	.readfn = vfio_virt_config_read,
	.writefn = vfio_virt_config_write
};

static void free_perm_bits(struct perm_bits *perm)
{
	kfree(perm->virt);
	kfree(perm->write);
	perm->virt = NULL;
	perm->write = NULL;
}

static int alloc_perm_bits(struct perm_bits *perm, int size)
{
	/*
	 * Round up all permission bits to the next dword, this lets us
	 * ignore whether a read/write exceeds the defined capability
	 * structure.  We can do this because:
	 *  - Standard config space is already dword aligned
	 *  - Capabilities are all dword aligned (bits 0:1 of next reserved)
	 *  - Express capabilities defined as dword aligned
	 */
	size = round_up(size, 4);

	/*
	 * Zero state is
	 * - All Readable, None Writeable, None Virtualized
	 */
	perm->virt = kzalloc(size, GFP_KERNEL);
	perm->write = kzalloc(size, GFP_KERNEL);
	if (!perm->virt || !perm->write) {
		free_perm_bits(perm);
		return -ENOMEM;
	}

	perm->readfn = vfio_default_config_read;
	perm->writefn = vfio_default_config_write;

	return 0;
}

/*
 * Helper functions for filling in permission tables
 */
static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
{
	p->virt[off] = virt;
	p->write[off] = write;
}

/* Handle endian-ness - pci and tables are little-endian */
static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
{
	*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
	*(__le16 *)(&p->write[off]) = cpu_to_le16(write);
}

/* Handle endian-ness - pci and tables are little-endian */
static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
{
	*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
	*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
}

/*
 * Restore the *real* BARs after we detect a FLR or backdoor reset.
 * (backdoor = some device specific technique that we didn't catch)
 */
static void vfio_bar_restore(struct vfio_pci_device *vdev)
{
	struct pci_dev *pdev = vdev->pdev;
	u32 *rbar = vdev->rbar;
	u16 cmd;
	int i;

	if (pdev->is_virtfn)
		return;

	pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__);

	for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
		pci_user_write_config_dword(pdev, i, *rbar);

	pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);

	if (vdev->nointx) {
		pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
		cmd |= PCI_COMMAND_INTX_DISABLE;
		pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
	}
}

static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
{
	unsigned long flags = pci_resource_flags(pdev, bar);
	u32 val;

	if (flags & IORESOURCE_IO)
		return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);

	val = PCI_BASE_ADDRESS_SPACE_MEMORY;

	if (flags & IORESOURCE_PREFETCH)
		val |= PCI_BASE_ADDRESS_MEM_PREFETCH;

	if (flags & IORESOURCE_MEM_64)
		val |= PCI_BASE_ADDRESS_MEM_TYPE_64;

	return cpu_to_le32(val);
}

/*
 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
 * to reflect the hardware capabilities.  This implements BAR sizing.
 */
static void vfio_bar_fixup(struct vfio_pci_device *vdev)
{
	struct pci_dev *pdev = vdev->pdev;
	int i;
	__le32 *vbar;
	u64 mask;

	vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];

	for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) {
		int bar = i + PCI_STD_RESOURCES;

		if (!pci_resource_start(pdev, bar)) {
			*vbar = 0; /* Unmapped by host = unimplemented to user */
			continue;
		}

		mask = ~(pci_resource_len(pdev, bar) - 1);

		*vbar &= cpu_to_le32((u32)mask);
		*vbar |= vfio_generate_bar_flags(pdev, bar);

		if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
			vbar++;
			*vbar &= cpu_to_le32((u32)(mask >> 32));
			i++;
		}
	}

	vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];

	/*
	 * NB. REGION_INFO will have reported zero size if we weren't able
	 * to read the ROM, but we still return the actual BAR size here if
	 * it exists (or the shadow ROM space).
	 */
	if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
		mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
		mask |= PCI_ROM_ADDRESS_ENABLE;
		*vbar &= cpu_to_le32((u32)mask);
	} else if (pdev->resource[PCI_ROM_RESOURCE].flags &
					IORESOURCE_ROM_SHADOW) {
		mask = ~(0x20000 - 1);
		mask |= PCI_ROM_ADDRESS_ENABLE;
		*vbar &= cpu_to_le32((u32)mask);
	} else
		*vbar = 0;

	vdev->bardirty = false;
}

static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
				  int count, struct perm_bits *perm,
				  int offset, __le32 *val)
{
	if (is_bar(offset)) /* pos == offset for basic config */
		vfio_bar_fixup(vdev);

	count = vfio_default_config_read(vdev, pos, count, perm, offset, val);

	/* Mask in virtual memory enable for SR-IOV devices */
	if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
		u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
		u32 tmp_val = le32_to_cpu(*val);

		tmp_val |= cmd & PCI_COMMAND_MEMORY;
		*val = cpu_to_le32(tmp_val);
	}

	return count;
}

/* Test whether BARs match the value we think they should contain */
static bool vfio_need_bar_restore(struct vfio_pci_device *vdev)
{
	int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
	u32 bar;

	for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
		if (vdev->rbar[i]) {
			ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
			if (ret || vdev->rbar[i] != bar)
				return true;
		}
	}

	return false;
}

static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
				   int count, struct perm_bits *perm,
				   int offset, __le32 val)
{
	struct pci_dev *pdev = vdev->pdev;
	__le16 *virt_cmd;
	u16 new_cmd = 0;
	int ret;

	virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];

	if (offset == PCI_COMMAND) {
		bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
		u16 phys_cmd;

		ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
		if (ret)
			return ret;

		new_cmd = le32_to_cpu(val);

		phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
		virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
		new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);

		phys_io = !!(phys_cmd & PCI_COMMAND_IO);
		virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
		new_io = !!(new_cmd & PCI_COMMAND_IO);

		/*
		 * If the user is writing mem/io enable (new_mem/io) and we
		 * think it's already enabled (virt_mem/io), but the hardware
		 * shows it disabled (phys_mem/io, then the device has
		 * undergone some kind of backdoor reset and needs to be
		 * restored before we allow it to enable the bars.
		 * SR-IOV devices will trigger this, but we catch them later
		 */
		if ((new_mem && virt_mem && !phys_mem) ||
		    (new_io && virt_io && !phys_io) ||
		    vfio_need_bar_restore(vdev))
			vfio_bar_restore(vdev);
	}

	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
	if (count < 0)
		return count;

	/*
	 * Save current memory/io enable bits in vconfig to allow for
	 * the test above next time.
	 */
	if (offset == PCI_COMMAND) {
		u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;

		*virt_cmd &= cpu_to_le16(~mask);
		*virt_cmd |= cpu_to_le16(new_cmd & mask);
	}

	/* Emulate INTx disable */
	if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
		bool virt_intx_disable;

		virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
				       PCI_COMMAND_INTX_DISABLE);

		if (virt_intx_disable && !vdev->virq_disabled) {
			vdev->virq_disabled = true;
			vfio_pci_intx_mask(vdev);
		} else if (!virt_intx_disable && vdev->virq_disabled) {
			vdev->virq_disabled = false;
			vfio_pci_intx_unmask(vdev);
		}
	}

	if (is_bar(offset))
		vdev->bardirty = true;

	return count;
}

/* Permissions for the Basic PCI Header */
static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
{
	if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
		return -ENOMEM;

	perm->readfn = vfio_basic_config_read;
	perm->writefn = vfio_basic_config_write;

	/* Virtualized for SR-IOV functions, which just have FFFF */
	p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
	p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);

	/*
	 * Virtualize INTx disable, we use it internally for interrupt
	 * control and can emulate it for non-PCI 2.3 devices.
	 */
	p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);

	/* Virtualize capability list, we might want to skip/disable */
	p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);

	/* No harm to write */
	p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
	p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
	p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);

	/* Virtualize all bars, can't touch the real ones */
	p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
	p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
	p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
	p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
	p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
	p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
	p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);

	/* Allow us to adjust capability chain */
	p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);

	/* Sometimes used by sw, just virtualize */
	p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);

	/* Virtualize interrupt pin to allow hiding INTx */
	p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);

	return 0;
}

static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
				int count, struct perm_bits *perm,
				int offset, __le32 val)
{
	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
	if (count < 0)
		return count;

	if (offset == PCI_PM_CTRL) {
		pci_power_t state;

		switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
		case 0:
			state = PCI_D0;
			break;
		case 1:
			state = PCI_D1;
			break;
		case 2:
			state = PCI_D2;
			break;
		case 3:
			state = PCI_D3hot;
			break;
		}

		vfio_pci_set_power_state(vdev, state);
	}

	return count;
}

/* Permissions for the Power Management capability */
static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
{
	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
		return -ENOMEM;

	perm->writefn = vfio_pm_config_write;

	/*
	 * We always virtualize the next field so we can remove
	 * capabilities from the chain if we want to.
	 */
	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);

	/*
	 * Power management is defined *per function*, so we can let
	 * the user change power state, but we trap and initiate the
	 * change ourselves, so the state bits are read-only.
	 */
	p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
	return 0;
}

static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
				 int count, struct perm_bits *perm,
				 int offset, __le32 val)
{
	struct pci_dev *pdev = vdev->pdev;
	__le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
	__le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
	u16 addr;
	u32 data;

	/*
	 * Write through to emulation.  If the write includes the upper byte
	 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
	 * have work to do.
	 */
	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
	if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
	    offset + count <= PCI_VPD_ADDR + 1)
		return count;

	addr = le16_to_cpu(*paddr);

	if (addr & PCI_VPD_ADDR_F) {
		data = le32_to_cpu(*pdata);
		if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
			return count;
	} else {
		data = 0;
		if (pci_read_vpd(pdev, addr, 4, &data) < 0)
			return count;
		*pdata = cpu_to_le32(data);
	}

	/*
	 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
	 * signal completion.  If an error occurs above, we assume that not
	 * toggling this bit will induce a driver timeout.
	 */
	addr ^= PCI_VPD_ADDR_F;
	*paddr = cpu_to_le16(addr);

	return count;
}

/* Permissions for Vital Product Data capability */
static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
{
	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
		return -ENOMEM;

	perm->writefn = vfio_vpd_config_write;

	/*
	 * We always virtualize the next field so we can remove
	 * capabilities from the chain if we want to.
	 */
	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);

	/*
	 * Both the address and data registers are virtualized to
	 * enable access through the pci_vpd_read/write functions
	 */
	p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
	p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);

	return 0;
}

/* Permissions for PCI-X capability */
static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
{
	/* Alloc 24, but only 8 are used in v0 */
	if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
		return -ENOMEM;

	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);

	p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
	p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
	return 0;
}

static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos,
				 int count, struct perm_bits *perm,
				 int offset, __le32 val)
{
	__le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
				  offset + PCI_EXP_DEVCTL);
	int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;

	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
	if (count < 0)
		return count;

	/*
	 * The FLR bit is virtualized, if set and the device supports PCIe
	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
	 * requires it to be always read as zero.  NB, reset_function might
	 * not use a PCIe FLR, we don't have that level of granularity.
	 */
	if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
		u32 cap;
		int ret;

		*ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);

		ret = pci_user_read_config_dword(vdev->pdev,
						 pos - offset + PCI_EXP_DEVCAP,
						 &cap);

		if (!ret && (cap & PCI_EXP_DEVCAP_FLR))
			pci_try_reset_function(vdev->pdev);
	}

	/*
	 * MPS is virtualized to the user, writes do not change the physical
	 * register since determining a proper MPS value requires a system wide
	 * device view.  The MRRS is largely independent of MPS, but since the
	 * user does not have that system-wide view, they might set a safe, but
	 * inefficiently low value.  Here we allow writes through to hardware,
	 * but we set the floor to the physical device MPS setting, so that
	 * we can at least use full TLPs, as defined by the MPS value.
	 *
	 * NB, if any devices actually depend on an artificially low MRRS
	 * setting, this will need to be revisited, perhaps with a quirk
	 * though pcie_set_readrq().
	 */
	if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
		readrq = 128 <<
			((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
		readrq = max(readrq, pcie_get_mps(vdev->pdev));

		pcie_set_readrq(vdev->pdev, readrq);
	}

	return count;
}

/* Permissions for PCI Express capability */
static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
{
	/* Alloc largest of possible sizes */
	if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
		return -ENOMEM;

	perm->writefn = vfio_exp_config_write;

	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);

	/*
	 * Allow writes to device control fields, except devctl_phantom,
	 * which could confuse IOMMU, MPS, which can break communication
	 * with other physical devices, and the ARI bit in devctl2, which
	 * is set at probe time.  FLR and MRRS get virtualized via our
	 * writefn.
	 */
	p_setw(perm, PCI_EXP_DEVCTL,
	       PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
	       PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
	p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
	return 0;
}

static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos,
				int count, struct perm_bits *perm,
				int offset, __le32 val)
{
	u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;

	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
	if (count < 0)
		return count;

	/*
	 * The FLR bit is virtualized, if set and the device supports AF
	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
	 * requires it to be always read as zero.  NB, reset_function might
	 * not use an AF FLR, we don't have that level of granularity.
	 */
	if (*ctrl & PCI_AF_CTRL_FLR) {
		u8 cap;
		int ret;

		*ctrl &= ~PCI_AF_CTRL_FLR;

		ret = pci_user_read_config_byte(vdev->pdev,
						pos - offset + PCI_AF_CAP,
						&cap);

		if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP))
			pci_try_reset_function(vdev->pdev);
	}

	return count;
}

/* Permissions for Advanced Function capability */
static int __init init_pci_cap_af_perm(struct perm_bits *perm)
{
	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
		return -ENOMEM;

	perm->writefn = vfio_af_config_write;

	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
	p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
	return 0;
}

/* Permissions for Advanced Error Reporting extended capability */
static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
{
	u32 mask;

	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
		return -ENOMEM;

	/*
	 * Virtualize the first dword of all express capabilities
	 * because it includes the next pointer.  This lets us later
	 * remove capabilities from the chain if we need to.
	 */
	p_setd(perm, 0, ALL_VIRT, NO_WRITE);

	/* Writable bits mask */
	mask =	PCI_ERR_UNC_UND |		/* Undefined */
		PCI_ERR_UNC_DLP |		/* Data Link Protocol */
		PCI_ERR_UNC_SURPDN |		/* Surprise Down */
		PCI_ERR_UNC_POISON_TLP |	/* Poisoned TLP */
		PCI_ERR_UNC_FCP |		/* Flow Control Protocol */
		PCI_ERR_UNC_COMP_TIME |		/* Completion Timeout */
		PCI_ERR_UNC_COMP_ABORT |	/* Completer Abort */
		PCI_ERR_UNC_UNX_COMP |		/* Unexpected Completion */
		PCI_ERR_UNC_RX_OVER |		/* Receiver Overflow */
		PCI_ERR_UNC_MALF_TLP |		/* Malformed TLP */
		PCI_ERR_UNC_ECRC |		/* ECRC Error Status */
		PCI_ERR_UNC_UNSUP |		/* Unsupported Request */
		PCI_ERR_UNC_ACSV |		/* ACS Violation */
		PCI_ERR_UNC_INTN |		/* internal error */
		PCI_ERR_UNC_MCBTLP |		/* MC blocked TLP */
		PCI_ERR_UNC_ATOMEG |		/* Atomic egress blocked */
		PCI_ERR_UNC_TLPPRE;		/* TLP prefix blocked */
	p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
	p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
	p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);

	mask =	PCI_ERR_COR_RCVR |		/* Receiver Error Status */
		PCI_ERR_COR_BAD_TLP |		/* Bad TLP Status */
		PCI_ERR_COR_BAD_DLLP |		/* Bad DLLP Status */
		PCI_ERR_COR_REP_ROLL |		/* REPLAY_NUM Rollover */
		PCI_ERR_COR_REP_TIMER |		/* Replay Timer Timeout */
		PCI_ERR_COR_ADV_NFAT |		/* Advisory Non-Fatal */
		PCI_ERR_COR_INTERNAL |		/* Corrected Internal */
		PCI_ERR_COR_LOG_OVER;		/* Header Log Overflow */
	p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
	p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);

	mask =	PCI_ERR_CAP_ECRC_GENE |		/* ECRC Generation Enable */
		PCI_ERR_CAP_ECRC_CHKE;		/* ECRC Check Enable */
	p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
	return 0;
}

/* Permissions for Power Budgeting extended capability */
static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
{
	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
		return -ENOMEM;

	p_setd(perm, 0, ALL_VIRT, NO_WRITE);

	/* Writing the data selector is OK, the info is still read-only */
	p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
	return 0;
}

/*
 * Initialize the shared permission tables
 */
void vfio_pci_uninit_perm_bits(void)
{
	free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);

	free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
	free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
	free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
	free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
	free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);

	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
}

int __init vfio_pci_init_perm_bits(void)
{
	int ret;

	/* Basic config space */
	ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);

	/* Capabilities */
	ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
	ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
	ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
	cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
	ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
	ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);

	/* Extended capabilities */
	ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
	ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
	ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;

	if (ret)
		vfio_pci_uninit_perm_bits();

	return ret;
}

static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
{
	u8 cap;
	int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
						 PCI_STD_HEADER_SIZEOF;
	cap = vdev->pci_config_map[pos];

	if (cap == PCI_CAP_ID_BASIC)
		return 0;

	/* XXX Can we have to abutting capabilities of the same type? */
	while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
		pos--;

	return pos;
}

static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
				int count, struct perm_bits *perm,
				int offset, __le32 *val)
{
	/* Update max available queue size from msi_qmax */
	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
		__le16 *flags;
		int start;

		start = vfio_find_cap_start(vdev, pos);

		flags = (__le16 *)&vdev->vconfig[start];

		*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
		*flags |= cpu_to_le16(vdev->msi_qmax << 1);
	}

	return vfio_default_config_read(vdev, pos, count, perm, offset, val);
}

static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
				 int count, struct perm_bits *perm,
				 int offset, __le32 val)
{
	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
	if (count < 0)
		return count;

	/* Fixup and write configured queue size and enable to hardware */
	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
		__le16 *pflags;
		u16 flags;
		int start, ret;

		start = vfio_find_cap_start(vdev, pos);

		pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];

		flags = le16_to_cpu(*pflags);

		/* MSI is enabled via ioctl */
		if  (!is_msi(vdev))
			flags &= ~PCI_MSI_FLAGS_ENABLE;

		/* Check queue size */
		if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
			flags &= ~PCI_MSI_FLAGS_QSIZE;
			flags |= vdev->msi_qmax << 4;
		}

		/* Write back to virt and to hardware */
		*pflags = cpu_to_le16(flags);
		ret = pci_user_write_config_word(vdev->pdev,
						 start + PCI_MSI_FLAGS,
						 flags);
		if (ret)
			return ret;
	}

	return count;
}

/*
 * MSI determination is per-device, so this routine gets used beyond
 * initialization time. Don't add __init
 */
static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
{
	if (alloc_perm_bits(perm, len))
		return -ENOMEM;

	perm->readfn = vfio_msi_config_read;
	perm->writefn = vfio_msi_config_write;

	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);

	/*
	 * The upper byte of the control register is reserved,
	 * just setup the lower byte.
	 */
	p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
	p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
	if (flags & PCI_MSI_FLAGS_64BIT) {
		p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
		p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
		if (flags & PCI_MSI_FLAGS_MASKBIT) {
			p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
			p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
		}
	} else {
		p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
		if (flags & PCI_MSI_FLAGS_MASKBIT) {
			p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
			p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
		}
	}
	return 0;
}

/* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
{
	struct pci_dev *pdev = vdev->pdev;
	int len, ret;
	u16 flags;

	ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
	if (ret)
		return pcibios_err_to_errno(ret);

	len = 10; /* Minimum size */
	if (flags & PCI_MSI_FLAGS_64BIT)
		len += 4;
	if (flags & PCI_MSI_FLAGS_MASKBIT)
		len += 10;

	if (vdev->msi_perm)
		return len;

	vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
	if (!vdev->msi_perm)
		return -ENOMEM;

	ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
	if (ret) {
		kfree(vdev->msi_perm);
		return ret;
	}

	return len;
}

/* Determine extended capability length for VC (2 & 9) and MFVC */
static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
{
	struct pci_dev *pdev = vdev->pdev;
	u32 tmp;
	int ret, evcc, phases, vc_arb;
	int len = PCI_CAP_VC_BASE_SIZEOF;

	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
	if (ret)
		return pcibios_err_to_errno(ret);

	evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
	if (ret)
		return pcibios_err_to_errno(ret);

	if (tmp & PCI_VC_CAP2_128_PHASE)
		phases = 128;
	else if (tmp & PCI_VC_CAP2_64_PHASE)
		phases = 64;
	else if (tmp & PCI_VC_CAP2_32_PHASE)
		phases = 32;
	else
		phases = 0;

	vc_arb = phases * 4;

	/*
	 * Port arbitration tables are root & switch only;
	 * function arbitration tables are function 0 only.
	 * In either case, we'll never let user write them so
	 * we don't care how big they are
	 */
	len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
	if (vc_arb) {
		len = round_up(len, 16);
		len += vc_arb / 8;
	}
	return len;
}

static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
{
	struct pci_dev *pdev = vdev->pdev;
	u32 dword;
	u16 word;
	u8 byte;
	int ret;

	switch (cap) {
	case PCI_CAP_ID_MSI:
		return vfio_msi_cap_len(vdev, pos);
	case PCI_CAP_ID_PCIX:
		ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
		if (ret)
			return pcibios_err_to_errno(ret);

		if (PCI_X_CMD_VERSION(word)) {
			if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
				/* Test for extended capabilities */
				pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
						      &dword);
				vdev->extended_caps = (dword != 0);
			}
			return PCI_CAP_PCIX_SIZEOF_V2;
		} else
			return PCI_CAP_PCIX_SIZEOF_V0;
	case PCI_CAP_ID_VNDR:
		/* length follows next field */
		ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
		if (ret)
			return pcibios_err_to_errno(ret);

		return byte;
	case PCI_CAP_ID_EXP:
		if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
			/* Test for extended capabilities */
			pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
			vdev->extended_caps = (dword != 0);
		}

		/* length based on version and type */
		if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
				return 0xc; /* "All Devices" only, no link */
			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
		} else {
			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
				return 0x2c; /* No link */
			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
		}
	case PCI_CAP_ID_HT:
		ret = pci_read_config_byte(pdev, pos + 3, &byte);
		if (ret)
			return pcibios_err_to_errno(ret);

		return (byte & HT_3BIT_CAP_MASK) ?
			HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
	case PCI_CAP_ID_SATA:
		ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
		if (ret)
			return pcibios_err_to_errno(ret);

		byte &= PCI_SATA_REGS_MASK;
		if (byte == PCI_SATA_REGS_INLINE)
			return PCI_SATA_SIZEOF_LONG;
		else
			return PCI_SATA_SIZEOF_SHORT;
	default:
		pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n",
			 __func__, cap, pos);
	}

	return 0;
}

static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
{
	struct pci_dev *pdev = vdev->pdev;
	u8 byte;
	u32 dword;
	int ret;

	switch (ecap) {
	case PCI_EXT_CAP_ID_VNDR:
		ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
		if (ret)
			return pcibios_err_to_errno(ret);

		return dword >> PCI_VSEC_HDR_LEN_SHIFT;
	case PCI_EXT_CAP_ID_VC:
	case PCI_EXT_CAP_ID_VC9:
	case PCI_EXT_CAP_ID_MFVC:
		return vfio_vc_cap_len(vdev, epos);
	case PCI_EXT_CAP_ID_ACS:
		ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
		if (ret)
			return pcibios_err_to_errno(ret);

		if (byte & PCI_ACS_EC) {
			int bits;

			ret = pci_read_config_byte(pdev,
						   epos + PCI_ACS_EGRESS_BITS,
						   &byte);
			if (ret)
				return pcibios_err_to_errno(ret);

			bits = byte ? round_up(byte, 32) : 256;
			return 8 + (bits / 8);
		}
		return 8;

	case PCI_EXT_CAP_ID_REBAR:
		ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
		if (ret)
			return pcibios_err_to_errno(ret);

		byte &= PCI_REBAR_CTRL_NBAR_MASK;
		byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;

		return 4 + (byte * 8);
	case PCI_EXT_CAP_ID_DPA:
		ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
		if (ret)
			return pcibios_err_to_errno(ret);

		byte &= PCI_DPA_CAP_SUBSTATE_MASK;
		return PCI_DPA_BASE_SIZEOF + byte + 1;
	case PCI_EXT_CAP_ID_TPH:
		ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
		if (ret)
			return pcibios_err_to_errno(ret);

		if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
			int sts;

			sts = dword & PCI_TPH_CAP_ST_MASK;
			sts >>= PCI_TPH_CAP_ST_SHIFT;
			return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
		}
		return PCI_TPH_BASE_SIZEOF;
	default:
		pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n",
			 __func__, ecap, epos);
	}

	return 0;
}

static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
				   int offset, int size)
{
	struct pci_dev *pdev = vdev->pdev;
	int ret = 0;

	/*
	 * We try to read physical config space in the largest chunks
	 * we can, assuming that all of the fields support dword access.
	 * pci_save_state() makes this same assumption and seems to do ok.
	 */
	while (size) {
		int filled;

		if (size >= 4 && !(offset % 4)) {
			__le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
			u32 dword;

			ret = pci_read_config_dword(pdev, offset, &dword);
			if (ret)
				return ret;
			*dwordp = cpu_to_le32(dword);
			filled = 4;
		} else if (size >= 2 && !(offset % 2)) {
			__le16 *wordp = (__le16 *)&vdev->vconfig[offset];
			u16 word;

			ret = pci_read_config_word(pdev, offset, &word);
			if (ret)
				return ret;
			*wordp = cpu_to_le16(word);
			filled = 2;
		} else {
			u8 *byte = &vdev->vconfig[offset];
			ret = pci_read_config_byte(pdev, offset, byte);
			if (ret)
				return ret;
			filled = 1;
		}

		offset += filled;
		size -= filled;
	}

	return ret;
}

static int vfio_cap_init(struct vfio_pci_device *vdev)
{
	struct pci_dev *pdev = vdev->pdev;
	u8 *map = vdev->pci_config_map;
	u16 status;
	u8 pos, *prev, cap;
	int loops, ret, caps = 0;

	/* Any capabilities? */
	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
	if (ret)
		return ret;

	if (!(status & PCI_STATUS_CAP_LIST))
		return 0; /* Done */

	ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
	if (ret)
		return ret;

	/* Mark the previous position in case we want to skip a capability */
	prev = &vdev->vconfig[PCI_CAPABILITY_LIST];

	/* We can bound our loop, capabilities are dword aligned */
	loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
	while (pos && loops--) {
		u8 next;
		int i, len = 0;

		ret = pci_read_config_byte(pdev, pos, &cap);
		if (ret)
			return ret;

		ret = pci_read_config_byte(pdev,
					   pos + PCI_CAP_LIST_NEXT, &next);
		if (ret)
			return ret;

		if (cap <= PCI_CAP_ID_MAX) {
			len = pci_cap_length[cap];
			if (len == 0xFF) { /* Variable length */
				len = vfio_cap_len(vdev, cap, pos);
				if (len < 0)
					return len;
			}
		}

		if (!len) {
			pci_info(pdev, "%s: hiding cap %#x@%#x\n", __func__,
				 cap, pos);
			*prev = next;
			pos = next;
			continue;
		}

		/* Sanity check, do we overlap other capabilities? */
		for (i = 0; i < len; i++) {
			if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
				continue;

			pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
				 __func__, pos + i, map[pos + i], cap);
		}

		BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);

		memset(map + pos, cap, len);
		ret = vfio_fill_vconfig_bytes(vdev, pos, len);
		if (ret)
			return ret;

		prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
		pos = next;
		caps++;
	}

	/* If we didn't fill any capabilities, clear the status flag */
	if (!caps) {
		__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
		*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
	}

	return 0;
}

static int vfio_ecap_init(struct vfio_pci_device *vdev)
{
	struct pci_dev *pdev = vdev->pdev;
	u8 *map = vdev->pci_config_map;
	u16 epos;
	__le32 *prev = NULL;
	int loops, ret, ecaps = 0;

	if (!vdev->extended_caps)
		return 0;

	epos = PCI_CFG_SPACE_SIZE;

	loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;

	while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
		u32 header;
		u16 ecap;
		int i, len = 0;
		bool hidden = false;

		ret = pci_read_config_dword(pdev, epos, &header);
		if (ret)
			return ret;

		ecap = PCI_EXT_CAP_ID(header);

		if (ecap <= PCI_EXT_CAP_ID_MAX) {
			len = pci_ext_cap_length[ecap];
			if (len == 0xFF) {
				len = vfio_ext_cap_len(vdev, ecap, epos);
				if (len < 0)
					return ret;
			}
		}

		if (!len) {
			pci_info(pdev, "%s: hiding ecap %#x@%#x\n",
				 __func__, ecap, epos);

			/* If not the first in the chain, we can skip over it */
			if (prev) {
				u32 val = epos = PCI_EXT_CAP_NEXT(header);
				*prev &= cpu_to_le32(~(0xffcU << 20));
				*prev |= cpu_to_le32(val << 20);
				continue;
			}

			/*
			 * Otherwise, fill in a placeholder, the direct
			 * readfn will virtualize this automatically
			 */
			len = PCI_CAP_SIZEOF;
			hidden = true;
		}

		for (i = 0; i < len; i++) {
			if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
				continue;

			pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
				 __func__, epos + i, map[epos + i], ecap);
		}

		/*
		 * Even though ecap is 2 bytes, we're currently a long way
		 * from exceeding 1 byte capabilities.  If we ever make it
		 * up to 0xFE we'll need to up this to a two-byte, byte map.
		 */
		BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);

		memset(map + epos, ecap, len);
		ret = vfio_fill_vconfig_bytes(vdev, epos, len);
		if (ret)
			return ret;

		/*
		 * If we're just using this capability to anchor the list,
		 * hide the real ID.  Only count real ecaps.  XXX PCI spec
		 * indicates to use cap id = 0, version = 0, next = 0 if
		 * ecaps are absent, hope users check all the way to next.
		 */
		if (hidden)
			*(__le32 *)&vdev->vconfig[epos] &=
				cpu_to_le32((0xffcU << 20));
		else
			ecaps++;

		prev = (__le32 *)&vdev->vconfig[epos];
		epos = PCI_EXT_CAP_NEXT(header);
	}

	if (!ecaps)
		*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;

	return 0;
}

/*
 * Nag about hardware bugs, hopefully to have vendors fix them, but at least
 * to collect a list of dependencies for the VF INTx pin quirk below.
 */
static const struct pci_device_id known_bogus_vf_intx_pin[] = {
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
	{}
};

/*
 * For each device we allocate a pci_config_map that indicates the
 * capability occupying each dword and thus the struct perm_bits we
 * use for read and write.  We also allocate a virtualized config
 * space which tracks reads and writes to bits that we emulate for
 * the user.  Initial values filled from device.
 *
 * Using shared struct perm_bits between all vfio-pci devices saves
 * us from allocating cfg_size buffers for virt and write for every
 * device.  We could remove vconfig and allocate individual buffers
 * for each area requiring emulated bits, but the array of pointers
 * would be comparable in size (at least for standard config space).
 */
int vfio_config_init(struct vfio_pci_device *vdev)
{
	struct pci_dev *pdev = vdev->pdev;
	u8 *map, *vconfig;
	int ret;

	/*
	 * Config space, caps and ecaps are all dword aligned, so we could
	 * use one byte per dword to record the type.  However, there are
	 * no requiremenst on the length of a capability, so the gap between
	 * capabilities needs byte granularity.
	 */
	map = kmalloc(pdev->cfg_size, GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
	if (!vconfig) {
		kfree(map);
		return -ENOMEM;
	}

	vdev->pci_config_map = map;
	vdev->vconfig = vconfig;

	memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
	memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
	       pdev->cfg_size - PCI_STD_HEADER_SIZEOF);

	ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
	if (ret)
		goto out;

	vdev->bardirty = true;

	/*
	 * XXX can we just pci_load_saved_state/pci_restore_state?
	 * may need to rebuild vconfig after that
	 */

	/* For restore after reset */
	vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
	vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
	vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
	vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
	vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
	vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
	vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);

	if (pdev->is_virtfn) {
		*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
		*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);

		/*
		 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
		 * does not apply to VFs and VFs must implement this register
		 * as read-only with value zero.  Userspace is not readily able
		 * to identify whether a device is a VF and thus that the pin
		 * definition on the device is bogus should it violate this
		 * requirement.  We already virtualize the pin register for
		 * other purposes, so we simply need to replace the bogus value
		 * and consider VFs when we determine INTx IRQ count.
		 */
		if (vconfig[PCI_INTERRUPT_PIN] &&
		    !pci_match_id(known_bogus_vf_intx_pin, pdev))
			pci_warn(pdev,
				 "Hardware bug: VF reports bogus INTx pin %d\n",
				 vconfig[PCI_INTERRUPT_PIN]);

		vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
	}

	if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
		vconfig[PCI_INTERRUPT_PIN] = 0;

	ret = vfio_cap_init(vdev);
	if (ret)
		goto out;

	ret = vfio_ecap_init(vdev);
	if (ret)
		goto out;

	return 0;

out:
	kfree(map);
	vdev->pci_config_map = NULL;
	kfree(vconfig);
	vdev->vconfig = NULL;
	return pcibios_err_to_errno(ret);
}

void vfio_config_free(struct vfio_pci_device *vdev)
{
	kfree(vdev->vconfig);
	vdev->vconfig = NULL;
	kfree(vdev->pci_config_map);
	vdev->pci_config_map = NULL;
	kfree(vdev->msi_perm);
	vdev->msi_perm = NULL;
}

/*
 * Find the remaining number of bytes in a dword that match the given
 * position.  Stop at either the end of the capability or the dword boundary.
 */
static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
					   loff_t pos)
{
	u8 cap = vdev->pci_config_map[pos];
	size_t i;

	for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
		/* nop */;

	return i;
}

static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
				 size_t count, loff_t *ppos, bool iswrite)
{
	struct pci_dev *pdev = vdev->pdev;
	struct perm_bits *perm;
	__le32 val = 0;
	int cap_start = 0, offset;
	u8 cap_id;
	ssize_t ret;

	if (*ppos < 0 || *ppos >= pdev->cfg_size ||
	    *ppos + count > pdev->cfg_size)
		return -EFAULT;

	/*
	 * Chop accesses into aligned chunks containing no more than a
	 * single capability.  Caller increments to the next chunk.
	 */
	count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
	if (count >= 4 && !(*ppos % 4))
		count = 4;
	else if (count >= 2 && !(*ppos % 2))
		count = 2;
	else
		count = 1;

	ret = count;

	cap_id = vdev->pci_config_map[*ppos];

	if (cap_id == PCI_CAP_ID_INVALID) {
		perm = &unassigned_perms;
		cap_start = *ppos;
	} else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
		perm = &virt_perms;
		cap_start = *ppos;
	} else {
		if (*ppos >= PCI_CFG_SPACE_SIZE) {
			WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);

			perm = &ecap_perms[cap_id];
			cap_start = vfio_find_cap_start(vdev, *ppos);
		} else {
			WARN_ON(cap_id > PCI_CAP_ID_MAX);

			perm = &cap_perms[cap_id];

			if (cap_id == PCI_CAP_ID_MSI)
				perm = vdev->msi_perm;

			if (cap_id > PCI_CAP_ID_BASIC)
				cap_start = vfio_find_cap_start(vdev, *ppos);
		}
	}

	WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
	WARN_ON(cap_start > *ppos);

	offset = *ppos - cap_start;

	if (iswrite) {
		if (!perm->writefn)
			return ret;

		if (copy_from_user(&val, buf, count))
			return -EFAULT;

		ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
	} else {
		if (perm->readfn) {
			ret = perm->readfn(vdev, *ppos, count,
					   perm, offset, &val);
			if (ret < 0)
				return ret;
		}

		if (copy_to_user(buf, &val, count))
			return -EFAULT;
	}

	return ret;
}

ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
			   size_t count, loff_t *ppos, bool iswrite)
{
	size_t done = 0;
	int ret = 0;
	loff_t pos = *ppos;

	pos &= VFIO_PCI_OFFSET_MASK;

	while (count) {
		ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
		if (ret < 0)
			return ret;

		count -= ret;
		done += ret;
		buf += ret;
		pos += ret;
	}

	*ppos += done;

	return done;
}