radix-tree.c 62.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
/*
 * Copyright (C) 2001 Momchil Velikov
 * Portions Copyright (C) 2001 Christoph Hellwig
 * Copyright (C) 2005 SGI, Christoph Lameter
 * Copyright (C) 2006 Nick Piggin
 * Copyright (C) 2012 Konstantin Khlebnikov
 * Copyright (C) 2016 Intel, Matthew Wilcox
 * Copyright (C) 2016 Intel, Ross Zwisler
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/idr.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/kmemleak.h>
#include <linux/percpu.h>
#include <linux/preempt.h>		/* in_interrupt() */
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
#include <linux/slab.h>
#include <linux/string.h>


/* Number of nodes in fully populated tree of given height */
static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;

/*
 * Radix tree node cache.
 */
static struct kmem_cache *radix_tree_node_cachep;

/*
 * The radix tree is variable-height, so an insert operation not only has
 * to build the branch to its corresponding item, it also has to build the
 * branch to existing items if the size has to be increased (by
 * radix_tree_extend).
 *
 * The worst case is a zero height tree with just a single item at index 0,
 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
 * Hence:
 */
#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)

/*
 * The IDR does not have to be as high as the radix tree since it uses
 * signed integers, not unsigned longs.
 */
#define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1)
#define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \
						RADIX_TREE_MAP_SHIFT))
#define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1)

/*
 * The IDA is even shorter since it uses a bitmap at the last level.
 */
#define IDA_INDEX_BITS		(8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
#define IDA_MAX_PATH		(DIV_ROUND_UP(IDA_INDEX_BITS, \
						RADIX_TREE_MAP_SHIFT))
#define IDA_PRELOAD_SIZE	(IDA_MAX_PATH * 2 - 1)

/*
 * Per-cpu pool of preloaded nodes
 */
struct radix_tree_preload {
	unsigned nr;
	/* nodes->parent points to next preallocated node */
	struct radix_tree_node *nodes;
};
static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };

static inline struct radix_tree_node *entry_to_node(void *ptr)
{
	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
}

static inline void *node_to_entry(void *ptr)
{
	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
}

#define RADIX_TREE_RETRY	node_to_entry(NULL)

#ifdef CONFIG_RADIX_TREE_MULTIORDER
/* Sibling slots point directly to another slot in the same node */
static inline
bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
{
	void __rcu **ptr = node;
	return (parent->slots <= ptr) &&
			(ptr < parent->slots + RADIX_TREE_MAP_SIZE);
}
#else
static inline
bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
{
	return false;
}
#endif

static inline unsigned long
get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
{
	return slot - parent->slots;
}

static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
			struct radix_tree_node **nodep, unsigned long index)
{
	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
	void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);

#ifdef CONFIG_RADIX_TREE_MULTIORDER
	if (radix_tree_is_internal_node(entry)) {
		if (is_sibling_entry(parent, entry)) {
			void __rcu **sibentry;
			sibentry = (void __rcu **) entry_to_node(entry);
			offset = get_slot_offset(parent, sibentry);
			entry = rcu_dereference_raw(*sibentry);
		}
	}
#endif

	*nodep = (void *)entry;
	return offset;
}

static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
{
	return root->gfp_mask & __GFP_BITS_MASK;
}

static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
		int offset)
{
	__set_bit(offset, node->tags[tag]);
}

static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
		int offset)
{
	__clear_bit(offset, node->tags[tag]);
}

static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
		int offset)
{
	return test_bit(offset, node->tags[tag]);
}

static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
{
	root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
}

static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
{
	root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
}

static inline void root_tag_clear_all(struct radix_tree_root *root)
{
	root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1;
}

static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
{
	return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT));
}

static inline unsigned root_tags_get(const struct radix_tree_root *root)
{
	return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT;
}

static inline bool is_idr(const struct radix_tree_root *root)
{
	return !!(root->gfp_mask & ROOT_IS_IDR);
}

/*
 * Returns 1 if any slot in the node has this tag set.
 * Otherwise returns 0.
 */
static inline int any_tag_set(const struct radix_tree_node *node,
							unsigned int tag)
{
	unsigned idx;
	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
		if (node->tags[tag][idx])
			return 1;
	}
	return 0;
}

static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
{
	bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
}

/**
 * radix_tree_find_next_bit - find the next set bit in a memory region
 *
 * @addr: The address to base the search on
 * @size: The bitmap size in bits
 * @offset: The bitnumber to start searching at
 *
 * Unrollable variant of find_next_bit() for constant size arrays.
 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 * Returns next bit offset, or size if nothing found.
 */
static __always_inline unsigned long
radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
			 unsigned long offset)
{
	const unsigned long *addr = node->tags[tag];

	if (offset < RADIX_TREE_MAP_SIZE) {
		unsigned long tmp;

		addr += offset / BITS_PER_LONG;
		tmp = *addr >> (offset % BITS_PER_LONG);
		if (tmp)
			return __ffs(tmp) + offset;
		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
		while (offset < RADIX_TREE_MAP_SIZE) {
			tmp = *++addr;
			if (tmp)
				return __ffs(tmp) + offset;
			offset += BITS_PER_LONG;
		}
	}
	return RADIX_TREE_MAP_SIZE;
}

static unsigned int iter_offset(const struct radix_tree_iter *iter)
{
	return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
}

/*
 * The maximum index which can be stored in a radix tree
 */
static inline unsigned long shift_maxindex(unsigned int shift)
{
	return (RADIX_TREE_MAP_SIZE << shift) - 1;
}

static inline unsigned long node_maxindex(const struct radix_tree_node *node)
{
	return shift_maxindex(node->shift);
}

static unsigned long next_index(unsigned long index,
				const struct radix_tree_node *node,
				unsigned long offset)
{
	return (index & ~node_maxindex(node)) + (offset << node->shift);
}

#ifndef __KERNEL__
static void dump_node(struct radix_tree_node *node, unsigned long index)
{
	unsigned long i;

	pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
		node, node->offset, index, index | node_maxindex(node),
		node->parent,
		node->tags[0][0], node->tags[1][0], node->tags[2][0],
		node->shift, node->count, node->exceptional);

	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
		unsigned long first = index | (i << node->shift);
		unsigned long last = first | ((1UL << node->shift) - 1);
		void *entry = node->slots[i];
		if (!entry)
			continue;
		if (entry == RADIX_TREE_RETRY) {
			pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
					i, first, last, node);
		} else if (!radix_tree_is_internal_node(entry)) {
			pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
					entry, i, first, last, node);
		} else if (is_sibling_entry(node, entry)) {
			pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
					entry, i, first, last, node,
					*(void **)entry_to_node(entry));
		} else {
			dump_node(entry_to_node(entry), first);
		}
	}
}

/* For debug */
static void radix_tree_dump(struct radix_tree_root *root)
{
	pr_debug("radix root: %p rnode %p tags %x\n",
			root, root->rnode,
			root->gfp_mask >> ROOT_TAG_SHIFT);
	if (!radix_tree_is_internal_node(root->rnode))
		return;
	dump_node(entry_to_node(root->rnode), 0);
}

static void dump_ida_node(void *entry, unsigned long index)
{
	unsigned long i;

	if (!entry)
		return;

	if (radix_tree_is_internal_node(entry)) {
		struct radix_tree_node *node = entry_to_node(entry);

		pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
			node, node->offset, index * IDA_BITMAP_BITS,
			((index | node_maxindex(node)) + 1) *
				IDA_BITMAP_BITS - 1,
			node->parent, node->tags[0][0], node->shift,
			node->count);
		for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
			dump_ida_node(node->slots[i],
					index | (i << node->shift));
	} else if (radix_tree_exceptional_entry(entry)) {
		pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
				entry, (int)(index & RADIX_TREE_MAP_MASK),
				index * IDA_BITMAP_BITS,
				index * IDA_BITMAP_BITS + BITS_PER_LONG -
					RADIX_TREE_EXCEPTIONAL_SHIFT,
				(unsigned long)entry >>
					RADIX_TREE_EXCEPTIONAL_SHIFT);
	} else {
		struct ida_bitmap *bitmap = entry;

		pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
				(int)(index & RADIX_TREE_MAP_MASK),
				index * IDA_BITMAP_BITS,
				(index + 1) * IDA_BITMAP_BITS - 1);
		for (i = 0; i < IDA_BITMAP_LONGS; i++)
			pr_cont(" %lx", bitmap->bitmap[i]);
		pr_cont("\n");
	}
}

static void ida_dump(struct ida *ida)
{
	struct radix_tree_root *root = &ida->ida_rt;
	pr_debug("ida: %p node %p free %d\n", ida, root->rnode,
				root->gfp_mask >> ROOT_TAG_SHIFT);
	dump_ida_node(root->rnode, 0);
}
#endif

/*
 * This assumes that the caller has performed appropriate preallocation, and
 * that the caller has pinned this thread of control to the current CPU.
 */
static struct radix_tree_node *
radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
			struct radix_tree_root *root,
			unsigned int shift, unsigned int offset,
			unsigned int count, unsigned int exceptional)
{
	struct radix_tree_node *ret = NULL;

	/*
	 * Preload code isn't irq safe and it doesn't make sense to use
	 * preloading during an interrupt anyway as all the allocations have
	 * to be atomic. So just do normal allocation when in interrupt.
	 */
	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
		struct radix_tree_preload *rtp;

		/*
		 * Even if the caller has preloaded, try to allocate from the
		 * cache first for the new node to get accounted to the memory
		 * cgroup.
		 */
		ret = kmem_cache_alloc(radix_tree_node_cachep,
				       gfp_mask | __GFP_NOWARN);
		if (ret)
			goto out;

		/*
		 * Provided the caller has preloaded here, we will always
		 * succeed in getting a node here (and never reach
		 * kmem_cache_alloc)
		 */
		rtp = this_cpu_ptr(&radix_tree_preloads);
		if (rtp->nr) {
			ret = rtp->nodes;
			rtp->nodes = ret->parent;
			rtp->nr--;
		}
		/*
		 * Update the allocation stack trace as this is more useful
		 * for debugging.
		 */
		kmemleak_update_trace(ret);
		goto out;
	}
	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
out:
	BUG_ON(radix_tree_is_internal_node(ret));
	if (ret) {
		ret->shift = shift;
		ret->offset = offset;
		ret->count = count;
		ret->exceptional = exceptional;
		ret->parent = parent;
		ret->root = root;
	}
	return ret;
}

static void radix_tree_node_rcu_free(struct rcu_head *head)
{
	struct radix_tree_node *node =
			container_of(head, struct radix_tree_node, rcu_head);

	/*
	 * Must only free zeroed nodes into the slab.  We can be left with
	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
	 * and tags here.
	 */
	memset(node->slots, 0, sizeof(node->slots));
	memset(node->tags, 0, sizeof(node->tags));
	INIT_LIST_HEAD(&node->private_list);

	kmem_cache_free(radix_tree_node_cachep, node);
}

static inline void
radix_tree_node_free(struct radix_tree_node *node)
{
	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
}

/*
 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 * ensure that the addition of a single element in the tree cannot fail.  On
 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 * with preemption not disabled.
 *
 * To make use of this facility, the radix tree must be initialised without
 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 */
static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
{
	struct radix_tree_preload *rtp;
	struct radix_tree_node *node;
	int ret = -ENOMEM;

	/*
	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
	 * they should never be accounted to any particular memory cgroup.
	 */
	gfp_mask &= ~__GFP_ACCOUNT;

	preempt_disable();
	rtp = this_cpu_ptr(&radix_tree_preloads);
	while (rtp->nr < nr) {
		preempt_enable();
		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
		if (node == NULL)
			goto out;
		preempt_disable();
		rtp = this_cpu_ptr(&radix_tree_preloads);
		if (rtp->nr < nr) {
			node->parent = rtp->nodes;
			rtp->nodes = node;
			rtp->nr++;
		} else {
			kmem_cache_free(radix_tree_node_cachep, node);
		}
	}
	ret = 0;
out:
	return ret;
}

/*
 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 * ensure that the addition of a single element in the tree cannot fail.  On
 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 * with preemption not disabled.
 *
 * To make use of this facility, the radix tree must be initialised without
 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 */
int radix_tree_preload(gfp_t gfp_mask)
{
	/* Warn on non-sensical use... */
	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
}
EXPORT_SYMBOL(radix_tree_preload);

/*
 * The same as above function, except we don't guarantee preloading happens.
 * We do it, if we decide it helps. On success, return zero with preemption
 * disabled. On error, return -ENOMEM with preemption not disabled.
 */
int radix_tree_maybe_preload(gfp_t gfp_mask)
{
	if (gfpflags_allow_blocking(gfp_mask))
		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
	/* Preloading doesn't help anything with this gfp mask, skip it */
	preempt_disable();
	return 0;
}
EXPORT_SYMBOL(radix_tree_maybe_preload);

#ifdef CONFIG_RADIX_TREE_MULTIORDER
/*
 * Preload with enough objects to ensure that we can split a single entry
 * of order @old_order into many entries of size @new_order
 */
int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
							gfp_t gfp_mask)
{
	unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
	unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
				(new_order / RADIX_TREE_MAP_SHIFT);
	unsigned nr = 0;

	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
	BUG_ON(new_order >= old_order);

	while (layers--)
		nr = nr * RADIX_TREE_MAP_SIZE + 1;
	return __radix_tree_preload(gfp_mask, top * nr);
}
#endif

/*
 * The same as function above, but preload number of nodes required to insert
 * (1 << order) continuous naturally-aligned elements.
 */
int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
{
	unsigned long nr_subtrees;
	int nr_nodes, subtree_height;

	/* Preloading doesn't help anything with this gfp mask, skip it */
	if (!gfpflags_allow_blocking(gfp_mask)) {
		preempt_disable();
		return 0;
	}

	/*
	 * Calculate number and height of fully populated subtrees it takes to
	 * store (1 << order) elements.
	 */
	nr_subtrees = 1 << order;
	for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
			subtree_height++)
		nr_subtrees >>= RADIX_TREE_MAP_SHIFT;

	/*
	 * The worst case is zero height tree with a single item at index 0 and
	 * then inserting items starting at ULONG_MAX - (1 << order).
	 *
	 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
	 * 0-index item.
	 */
	nr_nodes = RADIX_TREE_MAX_PATH;

	/* Plus branch to fully populated subtrees. */
	nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;

	/* Root node is shared. */
	nr_nodes--;

	/* Plus nodes required to build subtrees. */
	nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];

	return __radix_tree_preload(gfp_mask, nr_nodes);
}

static unsigned radix_tree_load_root(const struct radix_tree_root *root,
		struct radix_tree_node **nodep, unsigned long *maxindex)
{
	struct radix_tree_node *node = rcu_dereference_raw(root->rnode);

	*nodep = node;

	if (likely(radix_tree_is_internal_node(node))) {
		node = entry_to_node(node);
		*maxindex = node_maxindex(node);
		return node->shift + RADIX_TREE_MAP_SHIFT;
	}

	*maxindex = 0;
	return 0;
}

/*
 *	Extend a radix tree so it can store key @index.
 */
static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
				unsigned long index, unsigned int shift)
{
	void *entry;
	unsigned int maxshift;
	int tag;

	/* Figure out what the shift should be.  */
	maxshift = shift;
	while (index > shift_maxindex(maxshift))
		maxshift += RADIX_TREE_MAP_SHIFT;

	entry = rcu_dereference_raw(root->rnode);
	if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
		goto out;

	do {
		struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
							root, shift, 0, 1, 0);
		if (!node)
			return -ENOMEM;

		if (is_idr(root)) {
			all_tag_set(node, IDR_FREE);
			if (!root_tag_get(root, IDR_FREE)) {
				tag_clear(node, IDR_FREE, 0);
				root_tag_set(root, IDR_FREE);
			}
		} else {
			/* Propagate the aggregated tag info to the new child */
			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
				if (root_tag_get(root, tag))
					tag_set(node, tag, 0);
			}
		}

		BUG_ON(shift > BITS_PER_LONG);
		if (radix_tree_is_internal_node(entry)) {
			entry_to_node(entry)->parent = node;
		} else if (radix_tree_exceptional_entry(entry)) {
			/* Moving an exceptional root->rnode to a node */
			node->exceptional = 1;
		}
		/*
		 * entry was already in the radix tree, so we do not need
		 * rcu_assign_pointer here
		 */
		node->slots[0] = (void __rcu *)entry;
		entry = node_to_entry(node);
		rcu_assign_pointer(root->rnode, entry);
		shift += RADIX_TREE_MAP_SHIFT;
	} while (shift <= maxshift);
out:
	return maxshift + RADIX_TREE_MAP_SHIFT;
}

/**
 *	radix_tree_shrink    -    shrink radix tree to minimum height
 *	@root		radix tree root
 */
static inline bool radix_tree_shrink(struct radix_tree_root *root,
				     radix_tree_update_node_t update_node,
				     void *private)
{
	bool shrunk = false;

	for (;;) {
		struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
		struct radix_tree_node *child;

		if (!radix_tree_is_internal_node(node))
			break;
		node = entry_to_node(node);

		/*
		 * The candidate node has more than one child, or its child
		 * is not at the leftmost slot, or the child is a multiorder
		 * entry, we cannot shrink.
		 */
		if (node->count != 1)
			break;
		child = rcu_dereference_raw(node->slots[0]);
		if (!child)
			break;
		if (!radix_tree_is_internal_node(child) && node->shift)
			break;

		if (radix_tree_is_internal_node(child))
			entry_to_node(child)->parent = NULL;

		/*
		 * We don't need rcu_assign_pointer(), since we are simply
		 * moving the node from one part of the tree to another: if it
		 * was safe to dereference the old pointer to it
		 * (node->slots[0]), it will be safe to dereference the new
		 * one (root->rnode) as far as dependent read barriers go.
		 */
		root->rnode = (void __rcu *)child;
		if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
			root_tag_clear(root, IDR_FREE);

		/*
		 * We have a dilemma here. The node's slot[0] must not be
		 * NULLed in case there are concurrent lookups expecting to
		 * find the item. However if this was a bottom-level node,
		 * then it may be subject to the slot pointer being visible
		 * to callers dereferencing it. If item corresponding to
		 * slot[0] is subsequently deleted, these callers would expect
		 * their slot to become empty sooner or later.
		 *
		 * For example, lockless pagecache will look up a slot, deref
		 * the page pointer, and if the page has 0 refcount it means it
		 * was concurrently deleted from pagecache so try the deref
		 * again. Fortunately there is already a requirement for logic
		 * to retry the entire slot lookup -- the indirect pointer
		 * problem (replacing direct root node with an indirect pointer
		 * also results in a stale slot). So tag the slot as indirect
		 * to force callers to retry.
		 */
		node->count = 0;
		if (!radix_tree_is_internal_node(child)) {
			node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
			if (update_node)
				update_node(node, private);
		}

		WARN_ON_ONCE(!list_empty(&node->private_list));
		radix_tree_node_free(node);
		shrunk = true;
	}

	return shrunk;
}

static bool delete_node(struct radix_tree_root *root,
			struct radix_tree_node *node,
			radix_tree_update_node_t update_node, void *private)
{
	bool deleted = false;

	do {
		struct radix_tree_node *parent;

		if (node->count) {
			if (node_to_entry(node) ==
					rcu_dereference_raw(root->rnode))
				deleted |= radix_tree_shrink(root, update_node,
								private);
			return deleted;
		}

		parent = node->parent;
		if (parent) {
			parent->slots[node->offset] = NULL;
			parent->count--;
		} else {
			/*
			 * Shouldn't the tags already have all been cleared
			 * by the caller?
			 */
			if (!is_idr(root))
				root_tag_clear_all(root);
			root->rnode = NULL;
		}

		WARN_ON_ONCE(!list_empty(&node->private_list));
		radix_tree_node_free(node);
		deleted = true;

		node = parent;
	} while (node);

	return deleted;
}

/**
 *	__radix_tree_create	-	create a slot in a radix tree
 *	@root:		radix tree root
 *	@index:		index key
 *	@order:		index occupies 2^order aligned slots
 *	@nodep:		returns node
 *	@slotp:		returns slot
 *
 *	Create, if necessary, and return the node and slot for an item
 *	at position @index in the radix tree @root.
 *
 *	Until there is more than one item in the tree, no nodes are
 *	allocated and @root->rnode is used as a direct slot instead of
 *	pointing to a node, in which case *@nodep will be NULL.
 *
 *	Returns -ENOMEM, or 0 for success.
 */
int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
			unsigned order, struct radix_tree_node **nodep,
			void __rcu ***slotp)
{
	struct radix_tree_node *node = NULL, *child;
	void __rcu **slot = (void __rcu **)&root->rnode;
	unsigned long maxindex;
	unsigned int shift, offset = 0;
	unsigned long max = index | ((1UL << order) - 1);
	gfp_t gfp = root_gfp_mask(root);

	shift = radix_tree_load_root(root, &child, &maxindex);

	/* Make sure the tree is high enough.  */
	if (order > 0 && max == ((1UL << order) - 1))
		max++;
	if (max > maxindex) {
		int error = radix_tree_extend(root, gfp, max, shift);
		if (error < 0)
			return error;
		shift = error;
		child = rcu_dereference_raw(root->rnode);
	}

	while (shift > order) {
		shift -= RADIX_TREE_MAP_SHIFT;
		if (child == NULL) {
			/* Have to add a child node.  */
			child = radix_tree_node_alloc(gfp, node, root, shift,
							offset, 0, 0);
			if (!child)
				return -ENOMEM;
			rcu_assign_pointer(*slot, node_to_entry(child));
			if (node)
				node->count++;
		} else if (!radix_tree_is_internal_node(child))
			break;

		/* Go a level down */
		node = entry_to_node(child);
		offset = radix_tree_descend(node, &child, index);
		slot = &node->slots[offset];
	}

	if (nodep)
		*nodep = node;
	if (slotp)
		*slotp = slot;
	return 0;
}

/*
 * Free any nodes below this node.  The tree is presumed to not need
 * shrinking, and any user data in the tree is presumed to not need a
 * destructor called on it.  If we need to add a destructor, we can
 * add that functionality later.  Note that we may not clear tags or
 * slots from the tree as an RCU walker may still have a pointer into
 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 * but we'll still have to clear those in rcu_free.
 */
static void radix_tree_free_nodes(struct radix_tree_node *node)
{
	unsigned offset = 0;
	struct radix_tree_node *child = entry_to_node(node);

	for (;;) {
		void *entry = rcu_dereference_raw(child->slots[offset]);
		if (radix_tree_is_internal_node(entry) &&
					!is_sibling_entry(child, entry)) {
			child = entry_to_node(entry);
			offset = 0;
			continue;
		}
		offset++;
		while (offset == RADIX_TREE_MAP_SIZE) {
			struct radix_tree_node *old = child;
			offset = child->offset + 1;
			child = child->parent;
			WARN_ON_ONCE(!list_empty(&old->private_list));
			radix_tree_node_free(old);
			if (old == entry_to_node(node))
				return;
		}
	}
}

#ifdef CONFIG_RADIX_TREE_MULTIORDER
static inline int insert_entries(struct radix_tree_node *node,
		void __rcu **slot, void *item, unsigned order, bool replace)
{
	struct radix_tree_node *child;
	unsigned i, n, tag, offset, tags = 0;

	if (node) {
		if (order > node->shift)
			n = 1 << (order - node->shift);
		else
			n = 1;
		offset = get_slot_offset(node, slot);
	} else {
		n = 1;
		offset = 0;
	}

	if (n > 1) {
		offset = offset & ~(n - 1);
		slot = &node->slots[offset];
	}
	child = node_to_entry(slot);

	for (i = 0; i < n; i++) {
		if (slot[i]) {
			if (replace) {
				node->count--;
				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
					if (tag_get(node, tag, offset + i))
						tags |= 1 << tag;
			} else
				return -EEXIST;
		}
	}

	for (i = 0; i < n; i++) {
		struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
		if (i) {
			rcu_assign_pointer(slot[i], child);
			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
				if (tags & (1 << tag))
					tag_clear(node, tag, offset + i);
		} else {
			rcu_assign_pointer(slot[i], item);
			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
				if (tags & (1 << tag))
					tag_set(node, tag, offset);
		}
		if (radix_tree_is_internal_node(old) &&
					!is_sibling_entry(node, old) &&
					(old != RADIX_TREE_RETRY))
			radix_tree_free_nodes(old);
		if (radix_tree_exceptional_entry(old))
			node->exceptional--;
	}
	if (node) {
		node->count += n;
		if (radix_tree_exceptional_entry(item))
			node->exceptional += n;
	}
	return n;
}
#else
static inline int insert_entries(struct radix_tree_node *node,
		void __rcu **slot, void *item, unsigned order, bool replace)
{
	if (*slot)
		return -EEXIST;
	rcu_assign_pointer(*slot, item);
	if (node) {
		node->count++;
		if (radix_tree_exceptional_entry(item))
			node->exceptional++;
	}
	return 1;
}
#endif

/**
 *	__radix_tree_insert    -    insert into a radix tree
 *	@root:		radix tree root
 *	@index:		index key
 *	@order:		key covers the 2^order indices around index
 *	@item:		item to insert
 *
 *	Insert an item into the radix tree at position @index.
 */
int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
			unsigned order, void *item)
{
	struct radix_tree_node *node;
	void __rcu **slot;
	int error;

	BUG_ON(radix_tree_is_internal_node(item));

	error = __radix_tree_create(root, index, order, &node, &slot);
	if (error)
		return error;

	error = insert_entries(node, slot, item, order, false);
	if (error < 0)
		return error;

	if (node) {
		unsigned offset = get_slot_offset(node, slot);
		BUG_ON(tag_get(node, 0, offset));
		BUG_ON(tag_get(node, 1, offset));
		BUG_ON(tag_get(node, 2, offset));
	} else {
		BUG_ON(root_tags_get(root));
	}

	return 0;
}
EXPORT_SYMBOL(__radix_tree_insert);

/**
 *	__radix_tree_lookup	-	lookup an item in a radix tree
 *	@root:		radix tree root
 *	@index:		index key
 *	@nodep:		returns node
 *	@slotp:		returns slot
 *
 *	Lookup and return the item at position @index in the radix
 *	tree @root.
 *
 *	Until there is more than one item in the tree, no nodes are
 *	allocated and @root->rnode is used as a direct slot instead of
 *	pointing to a node, in which case *@nodep will be NULL.
 */
void *__radix_tree_lookup(const struct radix_tree_root *root,
			  unsigned long index, struct radix_tree_node **nodep,
			  void __rcu ***slotp)
{
	struct radix_tree_node *node, *parent;
	unsigned long maxindex;
	void __rcu **slot;

 restart:
	parent = NULL;
	slot = (void __rcu **)&root->rnode;
	radix_tree_load_root(root, &node, &maxindex);
	if (index > maxindex)
		return NULL;

	while (radix_tree_is_internal_node(node)) {
		unsigned offset;

		if (node == RADIX_TREE_RETRY)
			goto restart;
		parent = entry_to_node(node);
		offset = radix_tree_descend(parent, &node, index);
		slot = parent->slots + offset;
	}

	if (nodep)
		*nodep = parent;
	if (slotp)
		*slotp = slot;
	return node;
}

/**
 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 *	@root:		radix tree root
 *	@index:		index key
 *
 *	Returns:  the slot corresponding to the position @index in the
 *	radix tree @root. This is useful for update-if-exists operations.
 *
 *	This function can be called under rcu_read_lock iff the slot is not
 *	modified by radix_tree_replace_slot, otherwise it must be called
 *	exclusive from other writers. Any dereference of the slot must be done
 *	using radix_tree_deref_slot.
 */
void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
				unsigned long index)
{
	void __rcu **slot;

	if (!__radix_tree_lookup(root, index, NULL, &slot))
		return NULL;
	return slot;
}
EXPORT_SYMBOL(radix_tree_lookup_slot);

/**
 *	radix_tree_lookup    -    perform lookup operation on a radix tree
 *	@root:		radix tree root
 *	@index:		index key
 *
 *	Lookup the item at the position @index in the radix tree @root.
 *
 *	This function can be called under rcu_read_lock, however the caller
 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 *	them safely). No RCU barriers are required to access or modify the
 *	returned item, however.
 */
void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
{
	return __radix_tree_lookup(root, index, NULL, NULL);
}
EXPORT_SYMBOL(radix_tree_lookup);

static inline void replace_sibling_entries(struct radix_tree_node *node,
				void __rcu **slot, int count, int exceptional)
{
#ifdef CONFIG_RADIX_TREE_MULTIORDER
	void *ptr = node_to_entry(slot);
	unsigned offset = get_slot_offset(node, slot) + 1;

	while (offset < RADIX_TREE_MAP_SIZE) {
		if (rcu_dereference_raw(node->slots[offset]) != ptr)
			break;
		if (count < 0) {
			node->slots[offset] = NULL;
			node->count--;
		}
		node->exceptional += exceptional;
		offset++;
	}
#endif
}

static void replace_slot(void __rcu **slot, void *item,
		struct radix_tree_node *node, int count, int exceptional)
{
	if (WARN_ON_ONCE(radix_tree_is_internal_node(item)))
		return;

	if (node && (count || exceptional)) {
		node->count += count;
		node->exceptional += exceptional;
		replace_sibling_entries(node, slot, count, exceptional);
	}

	rcu_assign_pointer(*slot, item);
}

static bool node_tag_get(const struct radix_tree_root *root,
				const struct radix_tree_node *node,
				unsigned int tag, unsigned int offset)
{
	if (node)
		return tag_get(node, tag, offset);
	return root_tag_get(root, tag);
}

/*
 * IDR users want to be able to store NULL in the tree, so if the slot isn't
 * free, don't adjust the count, even if it's transitioning between NULL and
 * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
 * have empty bits, but it only stores NULL in slots when they're being
 * deleted.
 */
static int calculate_count(struct radix_tree_root *root,
				struct radix_tree_node *node, void __rcu **slot,
				void *item, void *old)
{
	if (is_idr(root)) {
		unsigned offset = get_slot_offset(node, slot);
		bool free = node_tag_get(root, node, IDR_FREE, offset);
		if (!free)
			return 0;
		if (!old)
			return 1;
	}
	return !!item - !!old;
}

/**
 * __radix_tree_replace		- replace item in a slot
 * @root:		radix tree root
 * @node:		pointer to tree node
 * @slot:		pointer to slot in @node
 * @item:		new item to store in the slot.
 * @update_node:	callback for changing leaf nodes
 * @private:		private data to pass to @update_node
 *
 * For use with __radix_tree_lookup().  Caller must hold tree write locked
 * across slot lookup and replacement.
 */
void __radix_tree_replace(struct radix_tree_root *root,
			  struct radix_tree_node *node,
			  void __rcu **slot, void *item,
			  radix_tree_update_node_t update_node, void *private)
{
	void *old = rcu_dereference_raw(*slot);
	int exceptional = !!radix_tree_exceptional_entry(item) -
				!!radix_tree_exceptional_entry(old);
	int count = calculate_count(root, node, slot, item, old);

	/*
	 * This function supports replacing exceptional entries and
	 * deleting entries, but that needs accounting against the
	 * node unless the slot is root->rnode.
	 */
	WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->rnode) &&
			(count || exceptional));
	replace_slot(slot, item, node, count, exceptional);

	if (!node)
		return;

	if (update_node)
		update_node(node, private);

	delete_node(root, node, update_node, private);
}

/**
 * radix_tree_replace_slot	- replace item in a slot
 * @root:	radix tree root
 * @slot:	pointer to slot
 * @item:	new item to store in the slot.
 *
 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
 * across slot lookup and replacement.
 *
 * NOTE: This cannot be used to switch between non-entries (empty slots),
 * regular entries, and exceptional entries, as that requires accounting
 * inside the radix tree node. When switching from one type of entry or
 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
 * radix_tree_iter_replace().
 */
void radix_tree_replace_slot(struct radix_tree_root *root,
			     void __rcu **slot, void *item)
{
	__radix_tree_replace(root, NULL, slot, item, NULL, NULL);
}
EXPORT_SYMBOL(radix_tree_replace_slot);

/**
 * radix_tree_iter_replace - replace item in a slot
 * @root:	radix tree root
 * @slot:	pointer to slot
 * @item:	new item to store in the slot.
 *
 * For use with radix_tree_split() and radix_tree_for_each_slot().
 * Caller must hold tree write locked across split and replacement.
 */
void radix_tree_iter_replace(struct radix_tree_root *root,
				const struct radix_tree_iter *iter,
				void __rcu **slot, void *item)
{
	__radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
}

#ifdef CONFIG_RADIX_TREE_MULTIORDER
/**
 * radix_tree_join - replace multiple entries with one multiorder entry
 * @root: radix tree root
 * @index: an index inside the new entry
 * @order: order of the new entry
 * @item: new entry
 *
 * Call this function to replace several entries with one larger entry.
 * The existing entries are presumed to not need freeing as a result of
 * this call.
 *
 * The replacement entry will have all the tags set on it that were set
 * on any of the entries it is replacing.
 */
int radix_tree_join(struct radix_tree_root *root, unsigned long index,
			unsigned order, void *item)
{
	struct radix_tree_node *node;
	void __rcu **slot;
	int error;

	BUG_ON(radix_tree_is_internal_node(item));

	error = __radix_tree_create(root, index, order, &node, &slot);
	if (!error)
		error = insert_entries(node, slot, item, order, true);
	if (error > 0)
		error = 0;

	return error;
}

/**
 * radix_tree_split - Split an entry into smaller entries
 * @root: radix tree root
 * @index: An index within the large entry
 * @order: Order of new entries
 *
 * Call this function as the first step in replacing a multiorder entry
 * with several entries of lower order.  After this function returns,
 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
 * and call radix_tree_iter_replace() to set up each new entry.
 *
 * The tags from this entry are replicated to all the new entries.
 *
 * The radix tree should be locked against modification during the entire
 * replacement operation.  Lock-free lookups will see RADIX_TREE_RETRY which
 * should prompt RCU walkers to restart the lookup from the root.
 */
int radix_tree_split(struct radix_tree_root *root, unsigned long index,
				unsigned order)
{
	struct radix_tree_node *parent, *node, *child;
	void __rcu **slot;
	unsigned int offset, end;
	unsigned n, tag, tags = 0;
	gfp_t gfp = root_gfp_mask(root);

	if (!__radix_tree_lookup(root, index, &parent, &slot))
		return -ENOENT;
	if (!parent)
		return -ENOENT;

	offset = get_slot_offset(parent, slot);

	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
		if (tag_get(parent, tag, offset))
			tags |= 1 << tag;

	for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
		if (!is_sibling_entry(parent,
				rcu_dereference_raw(parent->slots[end])))
			break;
		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
			if (tags & (1 << tag))
				tag_set(parent, tag, end);
		/* rcu_assign_pointer ensures tags are set before RETRY */
		rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
	}
	rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
	parent->exceptional -= (end - offset);

	if (order == parent->shift)
		return 0;
	if (order > parent->shift) {
		while (offset < end)
			offset += insert_entries(parent, &parent->slots[offset],
					RADIX_TREE_RETRY, order, true);
		return 0;
	}

	node = parent;

	for (;;) {
		if (node->shift > order) {
			child = radix_tree_node_alloc(gfp, node, root,
					node->shift - RADIX_TREE_MAP_SHIFT,
					offset, 0, 0);
			if (!child)
				goto nomem;
			if (node != parent) {
				node->count++;
				rcu_assign_pointer(node->slots[offset],
							node_to_entry(child));
				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
					if (tags & (1 << tag))
						tag_set(node, tag, offset);
			}

			node = child;
			offset = 0;
			continue;
		}

		n = insert_entries(node, &node->slots[offset],
					RADIX_TREE_RETRY, order, false);
		BUG_ON(n > RADIX_TREE_MAP_SIZE);

		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
			if (tags & (1 << tag))
				tag_set(node, tag, offset);
		offset += n;

		while (offset == RADIX_TREE_MAP_SIZE) {
			if (node == parent)
				break;
			offset = node->offset;
			child = node;
			node = node->parent;
			rcu_assign_pointer(node->slots[offset],
						node_to_entry(child));
			offset++;
		}
		if ((node == parent) && (offset == end))
			return 0;
	}

 nomem:
	/* Shouldn't happen; did user forget to preload? */
	/* TODO: free all the allocated nodes */
	WARN_ON(1);
	return -ENOMEM;
}
#endif

static void node_tag_set(struct radix_tree_root *root,
				struct radix_tree_node *node,
				unsigned int tag, unsigned int offset)
{
	while (node) {
		if (tag_get(node, tag, offset))
			return;
		tag_set(node, tag, offset);
		offset = node->offset;
		node = node->parent;
	}

	if (!root_tag_get(root, tag))
		root_tag_set(root, tag);
}

/**
 *	radix_tree_tag_set - set a tag on a radix tree node
 *	@root:		radix tree root
 *	@index:		index key
 *	@tag:		tag index
 *
 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 *	corresponding to @index in the radix tree.  From
 *	the root all the way down to the leaf node.
 *
 *	Returns the address of the tagged item.  Setting a tag on a not-present
 *	item is a bug.
 */
void *radix_tree_tag_set(struct radix_tree_root *root,
			unsigned long index, unsigned int tag)
{
	struct radix_tree_node *node, *parent;
	unsigned long maxindex;

	radix_tree_load_root(root, &node, &maxindex);
	BUG_ON(index > maxindex);

	while (radix_tree_is_internal_node(node)) {
		unsigned offset;

		parent = entry_to_node(node);
		offset = radix_tree_descend(parent, &node, index);
		BUG_ON(!node);

		if (!tag_get(parent, tag, offset))
			tag_set(parent, tag, offset);
	}

	/* set the root's tag bit */
	if (!root_tag_get(root, tag))
		root_tag_set(root, tag);

	return node;
}
EXPORT_SYMBOL(radix_tree_tag_set);

/**
 * radix_tree_iter_tag_set - set a tag on the current iterator entry
 * @root:	radix tree root
 * @iter:	iterator state
 * @tag:	tag to set
 */
void radix_tree_iter_tag_set(struct radix_tree_root *root,
			const struct radix_tree_iter *iter, unsigned int tag)
{
	node_tag_set(root, iter->node, tag, iter_offset(iter));
}

static void node_tag_clear(struct radix_tree_root *root,
				struct radix_tree_node *node,
				unsigned int tag, unsigned int offset)
{
	while (node) {
		if (!tag_get(node, tag, offset))
			return;
		tag_clear(node, tag, offset);
		if (any_tag_set(node, tag))
			return;

		offset = node->offset;
		node = node->parent;
	}

	/* clear the root's tag bit */
	if (root_tag_get(root, tag))
		root_tag_clear(root, tag);
}

/**
 *	radix_tree_tag_clear - clear a tag on a radix tree node
 *	@root:		radix tree root
 *	@index:		index key
 *	@tag:		tag index
 *
 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
 *	corresponding to @index in the radix tree.  If this causes
 *	the leaf node to have no tags set then clear the tag in the
 *	next-to-leaf node, etc.
 *
 *	Returns the address of the tagged item on success, else NULL.  ie:
 *	has the same return value and semantics as radix_tree_lookup().
 */
void *radix_tree_tag_clear(struct radix_tree_root *root,
			unsigned long index, unsigned int tag)
{
	struct radix_tree_node *node, *parent;
	unsigned long maxindex;
	int uninitialized_var(offset);

	radix_tree_load_root(root, &node, &maxindex);
	if (index > maxindex)
		return NULL;

	parent = NULL;

	while (radix_tree_is_internal_node(node)) {
		parent = entry_to_node(node);
		offset = radix_tree_descend(parent, &node, index);
	}

	if (node)
		node_tag_clear(root, parent, tag, offset);

	return node;
}
EXPORT_SYMBOL(radix_tree_tag_clear);

/**
  * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
  * @root: radix tree root
  * @iter: iterator state
  * @tag: tag to clear
  */
void radix_tree_iter_tag_clear(struct radix_tree_root *root,
			const struct radix_tree_iter *iter, unsigned int tag)
{
	node_tag_clear(root, iter->node, tag, iter_offset(iter));
}

/**
 * radix_tree_tag_get - get a tag on a radix tree node
 * @root:		radix tree root
 * @index:		index key
 * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
 *
 * Return values:
 *
 *  0: tag not present or not set
 *  1: tag set
 *
 * Note that the return value of this function may not be relied on, even if
 * the RCU lock is held, unless tag modification and node deletion are excluded
 * from concurrency.
 */
int radix_tree_tag_get(const struct radix_tree_root *root,
			unsigned long index, unsigned int tag)
{
	struct radix_tree_node *node, *parent;
	unsigned long maxindex;

	if (!root_tag_get(root, tag))
		return 0;

	radix_tree_load_root(root, &node, &maxindex);
	if (index > maxindex)
		return 0;

	while (radix_tree_is_internal_node(node)) {
		unsigned offset;

		parent = entry_to_node(node);
		offset = radix_tree_descend(parent, &node, index);

		if (!tag_get(parent, tag, offset))
			return 0;
		if (node == RADIX_TREE_RETRY)
			break;
	}

	return 1;
}
EXPORT_SYMBOL(radix_tree_tag_get);

static inline void __set_iter_shift(struct radix_tree_iter *iter,
					unsigned int shift)
{
#ifdef CONFIG_RADIX_TREE_MULTIORDER
	iter->shift = shift;
#endif
}

/* Construct iter->tags bit-mask from node->tags[tag] array */
static void set_iter_tags(struct radix_tree_iter *iter,
				struct radix_tree_node *node, unsigned offset,
				unsigned tag)
{
	unsigned tag_long = offset / BITS_PER_LONG;
	unsigned tag_bit  = offset % BITS_PER_LONG;

	if (!node) {
		iter->tags = 1;
		return;
	}

	iter->tags = node->tags[tag][tag_long] >> tag_bit;

	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
		/* Pick tags from next element */
		if (tag_bit)
			iter->tags |= node->tags[tag][tag_long + 1] <<
						(BITS_PER_LONG - tag_bit);
		/* Clip chunk size, here only BITS_PER_LONG tags */
		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
	}
}

#ifdef CONFIG_RADIX_TREE_MULTIORDER
static void __rcu **skip_siblings(struct radix_tree_node **nodep,
			void __rcu **slot, struct radix_tree_iter *iter)
{
	void *sib = node_to_entry(slot - 1);

	while (iter->index < iter->next_index) {
		*nodep = rcu_dereference_raw(*slot);
		if (*nodep && *nodep != sib)
			return slot;
		slot++;
		iter->index = __radix_tree_iter_add(iter, 1);
		iter->tags >>= 1;
	}

	*nodep = NULL;
	return NULL;
}

void __rcu **__radix_tree_next_slot(void __rcu **slot,
				struct radix_tree_iter *iter, unsigned flags)
{
	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
	struct radix_tree_node *node = rcu_dereference_raw(*slot);

	slot = skip_siblings(&node, slot, iter);

	while (radix_tree_is_internal_node(node)) {
		unsigned offset;
		unsigned long next_index;

		if (node == RADIX_TREE_RETRY)
			return slot;
		node = entry_to_node(node);
		iter->node = node;
		iter->shift = node->shift;

		if (flags & RADIX_TREE_ITER_TAGGED) {
			offset = radix_tree_find_next_bit(node, tag, 0);
			if (offset == RADIX_TREE_MAP_SIZE)
				return NULL;
			slot = &node->slots[offset];
			iter->index = __radix_tree_iter_add(iter, offset);
			set_iter_tags(iter, node, offset, tag);
			node = rcu_dereference_raw(*slot);
		} else {
			offset = 0;
			slot = &node->slots[0];
			for (;;) {
				node = rcu_dereference_raw(*slot);
				if (node)
					break;
				slot++;
				offset++;
				if (offset == RADIX_TREE_MAP_SIZE)
					return NULL;
			}
			iter->index = __radix_tree_iter_add(iter, offset);
		}
		if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
			goto none;
		next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
		if (next_index < iter->next_index)
			iter->next_index = next_index;
	}

	return slot;
 none:
	iter->next_index = 0;
	return NULL;
}
EXPORT_SYMBOL(__radix_tree_next_slot);
#else
static void __rcu **skip_siblings(struct radix_tree_node **nodep,
			void __rcu **slot, struct radix_tree_iter *iter)
{
	return slot;
}
#endif

void __rcu **radix_tree_iter_resume(void __rcu **slot,
					struct radix_tree_iter *iter)
{
	struct radix_tree_node *node;

	slot++;
	iter->index = __radix_tree_iter_add(iter, 1);
	skip_siblings(&node, slot, iter);
	iter->next_index = iter->index;
	iter->tags = 0;
	return NULL;
}
EXPORT_SYMBOL(radix_tree_iter_resume);

/**
 * radix_tree_next_chunk - find next chunk of slots for iteration
 *
 * @root:	radix tree root
 * @iter:	iterator state
 * @flags:	RADIX_TREE_ITER_* flags and tag index
 * Returns:	pointer to chunk first slot, or NULL if iteration is over
 */
void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
			     struct radix_tree_iter *iter, unsigned flags)
{
	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
	struct radix_tree_node *node, *child;
	unsigned long index, offset, maxindex;

	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
		return NULL;

	/*
	 * Catch next_index overflow after ~0UL. iter->index never overflows
	 * during iterating; it can be zero only at the beginning.
	 * And we cannot overflow iter->next_index in a single step,
	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
	 *
	 * This condition also used by radix_tree_next_slot() to stop
	 * contiguous iterating, and forbid switching to the next chunk.
	 */
	index = iter->next_index;
	if (!index && iter->index)
		return NULL;

 restart:
	radix_tree_load_root(root, &child, &maxindex);
	if (index > maxindex)
		return NULL;
	if (!child)
		return NULL;

	if (!radix_tree_is_internal_node(child)) {
		/* Single-slot tree */
		iter->index = index;
		iter->next_index = maxindex + 1;
		iter->tags = 1;
		iter->node = NULL;
		__set_iter_shift(iter, 0);
		return (void __rcu **)&root->rnode;
	}

	do {
		node = entry_to_node(child);
		offset = radix_tree_descend(node, &child, index);

		if ((flags & RADIX_TREE_ITER_TAGGED) ?
				!tag_get(node, tag, offset) : !child) {
			/* Hole detected */
			if (flags & RADIX_TREE_ITER_CONTIG)
				return NULL;

			if (flags & RADIX_TREE_ITER_TAGGED)
				offset = radix_tree_find_next_bit(node, tag,
						offset + 1);
			else
				while (++offset	< RADIX_TREE_MAP_SIZE) {
					void *slot = rcu_dereference_raw(
							node->slots[offset]);
					if (is_sibling_entry(node, slot))
						continue;
					if (slot)
						break;
				}
			index &= ~node_maxindex(node);
			index += offset << node->shift;
			/* Overflow after ~0UL */
			if (!index)
				return NULL;
			if (offset == RADIX_TREE_MAP_SIZE)
				goto restart;
			child = rcu_dereference_raw(node->slots[offset]);
		}

		if (!child)
			goto restart;
		if (child == RADIX_TREE_RETRY)
			break;
	} while (radix_tree_is_internal_node(child));

	/* Update the iterator state */
	iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
	iter->next_index = (index | node_maxindex(node)) + 1;
	iter->node = node;
	__set_iter_shift(iter, node->shift);

	if (flags & RADIX_TREE_ITER_TAGGED)
		set_iter_tags(iter, node, offset, tag);

	return node->slots + offset;
}
EXPORT_SYMBOL(radix_tree_next_chunk);

/**
 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
 *	@root:		radix tree root
 *	@results:	where the results of the lookup are placed
 *	@first_index:	start the lookup from this key
 *	@max_items:	place up to this many items at *results
 *
 *	Performs an index-ascending scan of the tree for present items.  Places
 *	them at *@results and returns the number of items which were placed at
 *	*@results.
 *
 *	The implementation is naive.
 *
 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
 *	rcu_read_lock. In this case, rather than the returned results being
 *	an atomic snapshot of the tree at a single point in time, the
 *	semantics of an RCU protected gang lookup are as though multiple
 *	radix_tree_lookups have been issued in individual locks, and results
 *	stored in 'results'.
 */
unsigned int
radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
			unsigned long first_index, unsigned int max_items)
{
	struct radix_tree_iter iter;
	void __rcu **slot;
	unsigned int ret = 0;

	if (unlikely(!max_items))
		return 0;

	radix_tree_for_each_slot(slot, root, &iter, first_index) {
		results[ret] = rcu_dereference_raw(*slot);
		if (!results[ret])
			continue;
		if (radix_tree_is_internal_node(results[ret])) {
			slot = radix_tree_iter_retry(&iter);
			continue;
		}
		if (++ret == max_items)
			break;
	}

	return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup);

/**
 *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
 *	@root:		radix tree root
 *	@results:	where the results of the lookup are placed
 *	@indices:	where their indices should be placed (but usually NULL)
 *	@first_index:	start the lookup from this key
 *	@max_items:	place up to this many items at *results
 *
 *	Performs an index-ascending scan of the tree for present items.  Places
 *	their slots at *@results and returns the number of items which were
 *	placed at *@results.
 *
 *	The implementation is naive.
 *
 *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
 *	be dereferenced with radix_tree_deref_slot, and if using only RCU
 *	protection, radix_tree_deref_slot may fail requiring a retry.
 */
unsigned int
radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
			void __rcu ***results, unsigned long *indices,
			unsigned long first_index, unsigned int max_items)
{
	struct radix_tree_iter iter;
	void __rcu **slot;
	unsigned int ret = 0;

	if (unlikely(!max_items))
		return 0;

	radix_tree_for_each_slot(slot, root, &iter, first_index) {
		results[ret] = slot;
		if (indices)
			indices[ret] = iter.index;
		if (++ret == max_items)
			break;
	}

	return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup_slot);

/**
 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
 *	                             based on a tag
 *	@root:		radix tree root
 *	@results:	where the results of the lookup are placed
 *	@first_index:	start the lookup from this key
 *	@max_items:	place up to this many items at *results
 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
 *
 *	Performs an index-ascending scan of the tree for present items which
 *	have the tag indexed by @tag set.  Places the items at *@results and
 *	returns the number of items which were placed at *@results.
 */
unsigned int
radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
		unsigned long first_index, unsigned int max_items,
		unsigned int tag)
{
	struct radix_tree_iter iter;
	void __rcu **slot;
	unsigned int ret = 0;

	if (unlikely(!max_items))
		return 0;

	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
		results[ret] = rcu_dereference_raw(*slot);
		if (!results[ret])
			continue;
		if (radix_tree_is_internal_node(results[ret])) {
			slot = radix_tree_iter_retry(&iter);
			continue;
		}
		if (++ret == max_items)
			break;
	}

	return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup_tag);

/**
 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
 *					  radix tree based on a tag
 *	@root:		radix tree root
 *	@results:	where the results of the lookup are placed
 *	@first_index:	start the lookup from this key
 *	@max_items:	place up to this many items at *results
 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
 *
 *	Performs an index-ascending scan of the tree for present items which
 *	have the tag indexed by @tag set.  Places the slots at *@results and
 *	returns the number of slots which were placed at *@results.
 */
unsigned int
radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
		void __rcu ***results, unsigned long first_index,
		unsigned int max_items, unsigned int tag)
{
	struct radix_tree_iter iter;
	void __rcu **slot;
	unsigned int ret = 0;

	if (unlikely(!max_items))
		return 0;

	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
		results[ret] = slot;
		if (++ret == max_items)
			break;
	}

	return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);

/**
 *	__radix_tree_delete_node    -    try to free node after clearing a slot
 *	@root:		radix tree root
 *	@node:		node containing @index
 *	@update_node:	callback for changing leaf nodes
 *	@private:	private data to pass to @update_node
 *
 *	After clearing the slot at @index in @node from radix tree
 *	rooted at @root, call this function to attempt freeing the
 *	node and shrinking the tree.
 */
void __radix_tree_delete_node(struct radix_tree_root *root,
			      struct radix_tree_node *node,
			      radix_tree_update_node_t update_node,
			      void *private)
{
	delete_node(root, node, update_node, private);
}

static bool __radix_tree_delete(struct radix_tree_root *root,
				struct radix_tree_node *node, void __rcu **slot)
{
	void *old = rcu_dereference_raw(*slot);
	int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0;
	unsigned offset = get_slot_offset(node, slot);
	int tag;

	if (is_idr(root))
		node_tag_set(root, node, IDR_FREE, offset);
	else
		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
			node_tag_clear(root, node, tag, offset);

	replace_slot(slot, NULL, node, -1, exceptional);
	return node && delete_node(root, node, NULL, NULL);
}

/**
 * radix_tree_iter_delete - delete the entry at this iterator position
 * @root: radix tree root
 * @iter: iterator state
 * @slot: pointer to slot
 *
 * Delete the entry at the position currently pointed to by the iterator.
 * This may result in the current node being freed; if it is, the iterator
 * is advanced so that it will not reference the freed memory.  This
 * function may be called without any locking if there are no other threads
 * which can access this tree.
 */
void radix_tree_iter_delete(struct radix_tree_root *root,
				struct radix_tree_iter *iter, void __rcu **slot)
{
	if (__radix_tree_delete(root, iter->node, slot))
		iter->index = iter->next_index;
}

/**
 * radix_tree_delete_item - delete an item from a radix tree
 * @root: radix tree root
 * @index: index key
 * @item: expected item
 *
 * Remove @item at @index from the radix tree rooted at @root.
 *
 * Return: the deleted entry, or %NULL if it was not present
 * or the entry at the given @index was not @item.
 */
void *radix_tree_delete_item(struct radix_tree_root *root,
			     unsigned long index, void *item)
{
	struct radix_tree_node *node = NULL;
	void __rcu **slot;
	void *entry;

	entry = __radix_tree_lookup(root, index, &node, &slot);
	if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
						get_slot_offset(node, slot))))
		return NULL;

	if (item && entry != item)
		return NULL;

	__radix_tree_delete(root, node, slot);

	return entry;
}
EXPORT_SYMBOL(radix_tree_delete_item);

/**
 * radix_tree_delete - delete an entry from a radix tree
 * @root: radix tree root
 * @index: index key
 *
 * Remove the entry at @index from the radix tree rooted at @root.
 *
 * Return: The deleted entry, or %NULL if it was not present.
 */
void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
{
	return radix_tree_delete_item(root, index, NULL);
}
EXPORT_SYMBOL(radix_tree_delete);

void radix_tree_clear_tags(struct radix_tree_root *root,
			   struct radix_tree_node *node,
			   void __rcu **slot)
{
	if (node) {
		unsigned int tag, offset = get_slot_offset(node, slot);
		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
			node_tag_clear(root, node, tag, offset);
	} else {
		root_tag_clear_all(root);
	}
}

/**
 *	radix_tree_tagged - test whether any items in the tree are tagged
 *	@root:		radix tree root
 *	@tag:		tag to test
 */
int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
{
	return root_tag_get(root, tag);
}
EXPORT_SYMBOL(radix_tree_tagged);

/**
 * idr_preload - preload for idr_alloc()
 * @gfp_mask: allocation mask to use for preloading
 *
 * Preallocate memory to use for the next call to idr_alloc().  This function
 * returns with preemption disabled.  It will be enabled by idr_preload_end().
 */
void idr_preload(gfp_t gfp_mask)
{
	__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE);
}
EXPORT_SYMBOL(idr_preload);

/**
 * ida_pre_get - reserve resources for ida allocation
 * @ida: ida handle
 * @gfp: memory allocation flags
 *
 * This function should be called before calling ida_get_new_above().  If it
 * is unable to allocate memory, it will return %0.  On success, it returns %1.
 */
int ida_pre_get(struct ida *ida, gfp_t gfp)
{
	__radix_tree_preload(gfp, IDA_PRELOAD_SIZE);
	/*
	 * The IDA API has no preload_end() equivalent.  Instead,
	 * ida_get_new() can return -EAGAIN, prompting the caller
	 * to return to the ida_pre_get() step.
	 */
	preempt_enable();

	if (!this_cpu_read(ida_bitmap)) {
		struct ida_bitmap *bitmap = kmalloc(sizeof(*bitmap), gfp);
		if (!bitmap)
			return 0;
		if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap))
			kfree(bitmap);
	}

	return 1;
}
EXPORT_SYMBOL(ida_pre_get);

void __rcu **idr_get_free(struct radix_tree_root *root,
			struct radix_tree_iter *iter, gfp_t gfp, int end)
{
	struct radix_tree_node *node = NULL, *child;
	void __rcu **slot = (void __rcu **)&root->rnode;
	unsigned long maxindex, start = iter->next_index;
	unsigned long max = end > 0 ? end - 1 : INT_MAX;
	unsigned int shift, offset = 0;

 grow:
	shift = radix_tree_load_root(root, &child, &maxindex);
	if (!radix_tree_tagged(root, IDR_FREE))
		start = max(start, maxindex + 1);
	if (start > max)
		return ERR_PTR(-ENOSPC);

	if (start > maxindex) {
		int error = radix_tree_extend(root, gfp, start, shift);
		if (error < 0)
			return ERR_PTR(error);
		shift = error;
		child = rcu_dereference_raw(root->rnode);
	}

	while (shift) {
		shift -= RADIX_TREE_MAP_SHIFT;
		if (child == NULL) {
			/* Have to add a child node.  */
			child = radix_tree_node_alloc(gfp, node, root, shift,
							offset, 0, 0);
			if (!child)
				return ERR_PTR(-ENOMEM);
			all_tag_set(child, IDR_FREE);
			rcu_assign_pointer(*slot, node_to_entry(child));
			if (node)
				node->count++;
		} else if (!radix_tree_is_internal_node(child))
			break;

		node = entry_to_node(child);
		offset = radix_tree_descend(node, &child, start);
		if (!tag_get(node, IDR_FREE, offset)) {
			offset = radix_tree_find_next_bit(node, IDR_FREE,
							offset + 1);
			start = next_index(start, node, offset);
			if (start > max)
				return ERR_PTR(-ENOSPC);
			while (offset == RADIX_TREE_MAP_SIZE) {
				offset = node->offset + 1;
				node = node->parent;
				if (!node)
					goto grow;
				shift = node->shift;
			}
			child = rcu_dereference_raw(node->slots[offset]);
		}
		slot = &node->slots[offset];
	}

	iter->index = start;
	if (node)
		iter->next_index = 1 + min(max, (start | node_maxindex(node)));
	else
		iter->next_index = 1;
	iter->node = node;
	__set_iter_shift(iter, shift);
	set_iter_tags(iter, node, offset, IDR_FREE);

	return slot;
}

/**
 * idr_destroy - release all internal memory from an IDR
 * @idr: idr handle
 *
 * After this function is called, the IDR is empty, and may be reused or
 * the data structure containing it may be freed.
 *
 * A typical clean-up sequence for objects stored in an idr tree will use
 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
 * free the memory used to keep track of those objects.
 */
void idr_destroy(struct idr *idr)
{
	struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode);
	if (radix_tree_is_internal_node(node))
		radix_tree_free_nodes(node);
	idr->idr_rt.rnode = NULL;
	root_tag_set(&idr->idr_rt, IDR_FREE);
}
EXPORT_SYMBOL(idr_destroy);

static void
radix_tree_node_ctor(void *arg)
{
	struct radix_tree_node *node = arg;

	memset(node, 0, sizeof(*node));
	INIT_LIST_HEAD(&node->private_list);
}

static __init unsigned long __maxindex(unsigned int height)
{
	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
	int shift = RADIX_TREE_INDEX_BITS - width;

	if (shift < 0)
		return ~0UL;
	if (shift >= BITS_PER_LONG)
		return 0UL;
	return ~0UL >> shift;
}

static __init void radix_tree_init_maxnodes(void)
{
	unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
	unsigned int i, j;

	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
		height_to_maxindex[i] = __maxindex(i);
	for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
		for (j = i; j > 0; j--)
			height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
	}
}

static int radix_tree_cpu_dead(unsigned int cpu)
{
	struct radix_tree_preload *rtp;
	struct radix_tree_node *node;

	/* Free per-cpu pool of preloaded nodes */
	rtp = &per_cpu(radix_tree_preloads, cpu);
	while (rtp->nr) {
		node = rtp->nodes;
		rtp->nodes = node->parent;
		kmem_cache_free(radix_tree_node_cachep, node);
		rtp->nr--;
	}
	kfree(per_cpu(ida_bitmap, cpu));
	per_cpu(ida_bitmap, cpu) = NULL;
	return 0;
}

void __init radix_tree_init(void)
{
	int ret;

	BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
			sizeof(struct radix_tree_node), 0,
			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
			radix_tree_node_ctor);
	radix_tree_init_maxnodes();
	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
					NULL, radix_tree_cpu_dead);
	WARN_ON(ret < 0);
}