psci.c 13.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2012 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 */

#include <linux/arm-smccc.h>
#include <linux/preempt.h>
#include <linux/kvm_host.h>
#include <linux/uaccess.h>
#include <linux/wait.h>

#include <asm/cputype.h>
#include <asm/kvm_emulate.h>

#include <kvm/arm_psci.h>
#include <kvm/arm_hypercalls.h>

/*
 * This is an implementation of the Power State Coordination Interface
 * as described in ARM document number ARM DEN 0022A.
 */

#define AFFINITY_MASK(level)	~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1)

static unsigned long psci_affinity_mask(unsigned long affinity_level)
{
	if (affinity_level <= 3)
		return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level);

	return 0;
}

static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu)
{
	/*
	 * NOTE: For simplicity, we make VCPU suspend emulation to be
	 * same-as WFI (Wait-for-interrupt) emulation.
	 *
	 * This means for KVM the wakeup events are interrupts and
	 * this is consistent with intended use of StateID as described
	 * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A).
	 *
	 * Further, we also treat power-down request to be same as
	 * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2
	 * specification (ARM DEN 0022A). This means all suspend states
	 * for KVM will preserve the register state.
	 */
	kvm_vcpu_block(vcpu);
	kvm_clear_request(KVM_REQ_UNHALT, vcpu);

	return PSCI_RET_SUCCESS;
}

static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
	kvm_vcpu_kick(vcpu);
}

static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
{
	struct vcpu_reset_state *reset_state;
	struct kvm *kvm = source_vcpu->kvm;
	struct kvm_vcpu *vcpu = NULL;
	unsigned long cpu_id;

	cpu_id = smccc_get_arg1(source_vcpu) & MPIDR_HWID_BITMASK;
	if (vcpu_mode_is_32bit(source_vcpu))
		cpu_id &= ~((u32) 0);

	vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id);

	/*
	 * Make sure the caller requested a valid CPU and that the CPU is
	 * turned off.
	 */
	if (!vcpu)
		return PSCI_RET_INVALID_PARAMS;
	if (!vcpu->arch.power_off) {
		if (kvm_psci_version(source_vcpu, kvm) != KVM_ARM_PSCI_0_1)
			return PSCI_RET_ALREADY_ON;
		else
			return PSCI_RET_INVALID_PARAMS;
	}

	reset_state = &vcpu->arch.reset_state;

	reset_state->pc = smccc_get_arg2(source_vcpu);

	/* Propagate caller endianness */
	reset_state->be = kvm_vcpu_is_be(source_vcpu);

	/*
	 * NOTE: We always update r0 (or x0) because for PSCI v0.1
	 * the general purpose registers are undefined upon CPU_ON.
	 */
	reset_state->r0 = smccc_get_arg3(source_vcpu);

	WRITE_ONCE(reset_state->reset, true);
	kvm_make_request(KVM_REQ_VCPU_RESET, vcpu);

	/*
	 * Make sure the reset request is observed if the change to
	 * power_state is observed.
	 */
	smp_wmb();

	vcpu->arch.power_off = false;
	kvm_vcpu_wake_up(vcpu);

	return PSCI_RET_SUCCESS;
}

static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
{
	int i, matching_cpus = 0;
	unsigned long mpidr;
	unsigned long target_affinity;
	unsigned long target_affinity_mask;
	unsigned long lowest_affinity_level;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tmp;

	target_affinity = smccc_get_arg1(vcpu);
	lowest_affinity_level = smccc_get_arg2(vcpu);

	/* Determine target affinity mask */
	target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
	if (!target_affinity_mask)
		return PSCI_RET_INVALID_PARAMS;

	/* Ignore other bits of target affinity */
	target_affinity &= target_affinity_mask;

	/*
	 * If one or more VCPU matching target affinity are running
	 * then ON else OFF
	 */
	kvm_for_each_vcpu(i, tmp, kvm) {
		mpidr = kvm_vcpu_get_mpidr_aff(tmp);
		if ((mpidr & target_affinity_mask) == target_affinity) {
			matching_cpus++;
			if (!tmp->arch.power_off)
				return PSCI_0_2_AFFINITY_LEVEL_ON;
		}
	}

	if (!matching_cpus)
		return PSCI_RET_INVALID_PARAMS;

	return PSCI_0_2_AFFINITY_LEVEL_OFF;
}

static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type)
{
	int i;
	struct kvm_vcpu *tmp;

	/*
	 * The KVM ABI specifies that a system event exit may call KVM_RUN
	 * again and may perform shutdown/reboot at a later time that when the
	 * actual request is made.  Since we are implementing PSCI and a
	 * caller of PSCI reboot and shutdown expects that the system shuts
	 * down or reboots immediately, let's make sure that VCPUs are not run
	 * after this call is handled and before the VCPUs have been
	 * re-initialized.
	 */
	kvm_for_each_vcpu(i, tmp, vcpu->kvm)
		tmp->arch.power_off = true;
	kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP);

	memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
	vcpu->run->system_event.type = type;
	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
}

static void kvm_psci_system_off(struct kvm_vcpu *vcpu)
{
	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN);
}

static void kvm_psci_system_reset(struct kvm_vcpu *vcpu)
{
	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET);
}

static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu)
{
	int i;

	/*
	 * Zero the input registers' upper 32 bits. They will be fully
	 * zeroed on exit, so we're fine changing them in place.
	 */
	for (i = 1; i < 4; i++)
		vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i)));
}

static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn)
{
	switch(fn) {
	case PSCI_0_2_FN64_CPU_SUSPEND:
	case PSCI_0_2_FN64_CPU_ON:
	case PSCI_0_2_FN64_AFFINITY_INFO:
		/* Disallow these functions for 32bit guests */
		if (vcpu_mode_is_32bit(vcpu))
			return PSCI_RET_NOT_SUPPORTED;
		break;
	}

	return 0;
}

static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
{
	struct kvm *kvm = vcpu->kvm;
	u32 psci_fn = smccc_get_function(vcpu);
	unsigned long val;
	int ret = 1;

	val = kvm_psci_check_allowed_function(vcpu, psci_fn);
	if (val)
		goto out;

	switch (psci_fn) {
	case PSCI_0_2_FN_PSCI_VERSION:
		/*
		 * Bits[31:16] = Major Version = 0
		 * Bits[15:0] = Minor Version = 2
		 */
		val = KVM_ARM_PSCI_0_2;
		break;
	case PSCI_0_2_FN_CPU_SUSPEND:
	case PSCI_0_2_FN64_CPU_SUSPEND:
		val = kvm_psci_vcpu_suspend(vcpu);
		break;
	case PSCI_0_2_FN_CPU_OFF:
		kvm_psci_vcpu_off(vcpu);
		val = PSCI_RET_SUCCESS;
		break;
	case PSCI_0_2_FN_CPU_ON:
		kvm_psci_narrow_to_32bit(vcpu);
		fallthrough;
	case PSCI_0_2_FN64_CPU_ON:
		mutex_lock(&kvm->lock);
		val = kvm_psci_vcpu_on(vcpu);
		mutex_unlock(&kvm->lock);
		break;
	case PSCI_0_2_FN_AFFINITY_INFO:
		kvm_psci_narrow_to_32bit(vcpu);
		fallthrough;
	case PSCI_0_2_FN64_AFFINITY_INFO:
		val = kvm_psci_vcpu_affinity_info(vcpu);
		break;
	case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
		/*
		 * Trusted OS is MP hence does not require migration
	         * or
		 * Trusted OS is not present
		 */
		val = PSCI_0_2_TOS_MP;
		break;
	case PSCI_0_2_FN_SYSTEM_OFF:
		kvm_psci_system_off(vcpu);
		/*
		 * We shouldn't be going back to guest VCPU after
		 * receiving SYSTEM_OFF request.
		 *
		 * If user space accidentally/deliberately resumes
		 * guest VCPU after SYSTEM_OFF request then guest
		 * VCPU should see internal failure from PSCI return
		 * value. To achieve this, we preload r0 (or x0) with
		 * PSCI return value INTERNAL_FAILURE.
		 */
		val = PSCI_RET_INTERNAL_FAILURE;
		ret = 0;
		break;
	case PSCI_0_2_FN_SYSTEM_RESET:
		kvm_psci_system_reset(vcpu);
		/*
		 * Same reason as SYSTEM_OFF for preloading r0 (or x0)
		 * with PSCI return value INTERNAL_FAILURE.
		 */
		val = PSCI_RET_INTERNAL_FAILURE;
		ret = 0;
		break;
	default:
		val = PSCI_RET_NOT_SUPPORTED;
		break;
	}

out:
	smccc_set_retval(vcpu, val, 0, 0, 0);
	return ret;
}

static int kvm_psci_1_0_call(struct kvm_vcpu *vcpu)
{
	u32 psci_fn = smccc_get_function(vcpu);
	u32 feature;
	unsigned long val;
	int ret = 1;

	switch(psci_fn) {
	case PSCI_0_2_FN_PSCI_VERSION:
		val = KVM_ARM_PSCI_1_0;
		break;
	case PSCI_1_0_FN_PSCI_FEATURES:
		feature = smccc_get_arg1(vcpu);
		val = kvm_psci_check_allowed_function(vcpu, feature);
		if (val)
			break;

		switch(feature) {
		case PSCI_0_2_FN_PSCI_VERSION:
		case PSCI_0_2_FN_CPU_SUSPEND:
		case PSCI_0_2_FN64_CPU_SUSPEND:
		case PSCI_0_2_FN_CPU_OFF:
		case PSCI_0_2_FN_CPU_ON:
		case PSCI_0_2_FN64_CPU_ON:
		case PSCI_0_2_FN_AFFINITY_INFO:
		case PSCI_0_2_FN64_AFFINITY_INFO:
		case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
		case PSCI_0_2_FN_SYSTEM_OFF:
		case PSCI_0_2_FN_SYSTEM_RESET:
		case PSCI_1_0_FN_PSCI_FEATURES:
		case ARM_SMCCC_VERSION_FUNC_ID:
			val = 0;
			break;
		default:
			val = PSCI_RET_NOT_SUPPORTED;
			break;
		}
		break;
	default:
		return kvm_psci_0_2_call(vcpu);
	}

	smccc_set_retval(vcpu, val, 0, 0, 0);
	return ret;
}

static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
{
	struct kvm *kvm = vcpu->kvm;
	u32 psci_fn = smccc_get_function(vcpu);
	unsigned long val;

	switch (psci_fn) {
	case KVM_PSCI_FN_CPU_OFF:
		kvm_psci_vcpu_off(vcpu);
		val = PSCI_RET_SUCCESS;
		break;
	case KVM_PSCI_FN_CPU_ON:
		mutex_lock(&kvm->lock);
		val = kvm_psci_vcpu_on(vcpu);
		mutex_unlock(&kvm->lock);
		break;
	default:
		val = PSCI_RET_NOT_SUPPORTED;
		break;
	}

	smccc_set_retval(vcpu, val, 0, 0, 0);
	return 1;
}

/**
 * kvm_psci_call - handle PSCI call if r0 value is in range
 * @vcpu: Pointer to the VCPU struct
 *
 * Handle PSCI calls from guests through traps from HVC instructions.
 * The calling convention is similar to SMC calls to the secure world
 * where the function number is placed in r0.
 *
 * This function returns: > 0 (success), 0 (success but exit to user
 * space), and < 0 (errors)
 *
 * Errors:
 * -EINVAL: Unrecognized PSCI function
 */
int kvm_psci_call(struct kvm_vcpu *vcpu)
{
	switch (kvm_psci_version(vcpu, vcpu->kvm)) {
	case KVM_ARM_PSCI_1_0:
		return kvm_psci_1_0_call(vcpu);
	case KVM_ARM_PSCI_0_2:
		return kvm_psci_0_2_call(vcpu);
	case KVM_ARM_PSCI_0_1:
		return kvm_psci_0_1_call(vcpu);
	default:
		return -EINVAL;
	};
}

int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu)
{
	return 3;		/* PSCI version and two workaround registers */
}

int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	if (put_user(KVM_REG_ARM_PSCI_VERSION, uindices++))
		return -EFAULT;

	if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1, uindices++))
		return -EFAULT;

	if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2, uindices++))
		return -EFAULT;

	return 0;
}

#define KVM_REG_FEATURE_LEVEL_WIDTH	4
#define KVM_REG_FEATURE_LEVEL_MASK	(BIT(KVM_REG_FEATURE_LEVEL_WIDTH) - 1)

/*
 * Convert the workaround level into an easy-to-compare number, where higher
 * values mean better protection.
 */
static int get_kernel_wa_level(u64 regid)
{
	switch (regid) {
	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
		switch (arm64_get_spectre_v2_state()) {
		case SPECTRE_VULNERABLE:
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
		case SPECTRE_MITIGATED:
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL;
		case SPECTRE_UNAFFECTED:
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED;
		}
		return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
		switch (arm64_get_spectre_v4_state()) {
		case SPECTRE_MITIGATED:
			/*
			 * As for the hypercall discovery, we pretend we
			 * don't have any FW mitigation if SSBS is there at
			 * all times.
			 */
			if (cpus_have_final_cap(ARM64_SSBS))
				return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
			fallthrough;
		case SPECTRE_UNAFFECTED:
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
		case SPECTRE_VULNERABLE:
			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
		}
	}

	return -EINVAL;
}

int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	void __user *uaddr = (void __user *)(long)reg->addr;
	u64 val;

	switch (reg->id) {
	case KVM_REG_ARM_PSCI_VERSION:
		val = kvm_psci_version(vcpu, vcpu->kvm);
		break;
	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
		val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK;
		break;
	default:
		return -ENOENT;
	}

	if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)))
		return -EFAULT;

	return 0;
}

int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	void __user *uaddr = (void __user *)(long)reg->addr;
	u64 val;
	int wa_level;

	if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)))
		return -EFAULT;

	switch (reg->id) {
	case KVM_REG_ARM_PSCI_VERSION:
	{
		bool wants_02;

		wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features);

		switch (val) {
		case KVM_ARM_PSCI_0_1:
			if (wants_02)
				return -EINVAL;
			vcpu->kvm->arch.psci_version = val;
			return 0;
		case KVM_ARM_PSCI_0_2:
		case KVM_ARM_PSCI_1_0:
			if (!wants_02)
				return -EINVAL;
			vcpu->kvm->arch.psci_version = val;
			return 0;
		}
		break;
	}

	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
		if (val & ~KVM_REG_FEATURE_LEVEL_MASK)
			return -EINVAL;

		if (get_kernel_wa_level(reg->id) < val)
			return -EINVAL;

		return 0;

	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
		if (val & ~(KVM_REG_FEATURE_LEVEL_MASK |
			    KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED))
			return -EINVAL;

		/* The enabled bit must not be set unless the level is AVAIL. */
		if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) &&
		    (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL)
			return -EINVAL;

		/*
		 * Map all the possible incoming states to the only two we
		 * really want to deal with.
		 */
		switch (val & KVM_REG_FEATURE_LEVEL_MASK) {
		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL:
		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN:
			wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
			break;
		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL:
		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED:
			wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
			break;
		default:
			return -EINVAL;
		}

		/*
		 * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the
		 * other way around.
		 */
		if (get_kernel_wa_level(reg->id) < wa_level)
			return -EINVAL;

		return 0;
	default:
		return -ENOENT;
	}

	return -EINVAL;
}