smp_64.c 38.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
// SPDX-License-Identifier: GPL-2.0
/* smp.c: Sparc64 SMP support.
 *
 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
 */

#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/sched/mm.h>
#include <linux/sched/hotplug.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/cache.h>
#include <linux/jiffies.h>
#include <linux/profile.h>
#include <linux/memblock.h>
#include <linux/vmalloc.h>
#include <linux/ftrace.h>
#include <linux/cpu.h>
#include <linux/slab.h>
#include <linux/kgdb.h>

#include <asm/head.h>
#include <asm/ptrace.h>
#include <linux/atomic.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/cpudata.h>
#include <asm/hvtramp.h>
#include <asm/io.h>
#include <asm/timer.h>
#include <asm/setup.h>

#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/page.h>
#include <asm/oplib.h>
#include <linux/uaccess.h>
#include <asm/starfire.h>
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include <asm/sections.h>
#include <asm/prom.h>
#include <asm/mdesc.h>
#include <asm/ldc.h>
#include <asm/hypervisor.h>
#include <asm/pcr.h>

#include "cpumap.h"
#include "kernel.h"

DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };

cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
	[0 ... NR_CPUS-1] = CPU_MASK_NONE };

cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
	[0 ... NR_CPUS - 1] = CPU_MASK_NONE };

EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
EXPORT_SYMBOL(cpu_core_map);
EXPORT_SYMBOL(cpu_core_sib_map);
EXPORT_SYMBOL(cpu_core_sib_cache_map);

static cpumask_t smp_commenced_mask;

static DEFINE_PER_CPU(bool, poke);
static bool cpu_poke;

void smp_info(struct seq_file *m)
{
	int i;
	
	seq_printf(m, "State:\n");
	for_each_online_cpu(i)
		seq_printf(m, "CPU%d:\t\tonline\n", i);
}

void smp_bogo(struct seq_file *m)
{
	int i;
	
	for_each_online_cpu(i)
		seq_printf(m,
			   "Cpu%dClkTck\t: %016lx\n",
			   i, cpu_data(i).clock_tick);
}

extern void setup_sparc64_timer(void);

static volatile unsigned long callin_flag = 0;

void smp_callin(void)
{
	int cpuid = hard_smp_processor_id();

	__local_per_cpu_offset = __per_cpu_offset(cpuid);

	if (tlb_type == hypervisor)
		sun4v_ktsb_register();

	__flush_tlb_all();

	setup_sparc64_timer();

	if (cheetah_pcache_forced_on)
		cheetah_enable_pcache();

	callin_flag = 1;
	__asm__ __volatile__("membar #Sync\n\t"
			     "flush  %%g6" : : : "memory");

	/* Clear this or we will die instantly when we
	 * schedule back to this idler...
	 */
	current_thread_info()->new_child = 0;

	/* Attach to the address space of init_task. */
	mmgrab(&init_mm);
	current->active_mm = &init_mm;

	/* inform the notifiers about the new cpu */
	notify_cpu_starting(cpuid);

	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
		rmb();

	set_cpu_online(cpuid, true);

	/* idle thread is expected to have preempt disabled */
	preempt_disable();

	local_irq_enable();

	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
}

void cpu_panic(void)
{
	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
	panic("SMP bolixed\n");
}

/* This tick register synchronization scheme is taken entirely from
 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 *
 * The only change I've made is to rework it so that the master
 * initiates the synchonization instead of the slave. -DaveM
 */

#define MASTER	0
#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))

#define NUM_ROUNDS	64	/* magic value */
#define NUM_ITERS	5	/* likewise */

static DEFINE_RAW_SPINLOCK(itc_sync_lock);
static unsigned long go[SLAVE + 1];

#define DEBUG_TICK_SYNC	0

static inline long get_delta (long *rt, long *master)
{
	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
	unsigned long tcenter, t0, t1, tm;
	unsigned long i;

	for (i = 0; i < NUM_ITERS; i++) {
		t0 = tick_ops->get_tick();
		go[MASTER] = 1;
		membar_safe("#StoreLoad");
		while (!(tm = go[SLAVE]))
			rmb();
		go[SLAVE] = 0;
		wmb();
		t1 = tick_ops->get_tick();

		if (t1 - t0 < best_t1 - best_t0)
			best_t0 = t0, best_t1 = t1, best_tm = tm;
	}

	*rt = best_t1 - best_t0;
	*master = best_tm - best_t0;

	/* average best_t0 and best_t1 without overflow: */
	tcenter = (best_t0/2 + best_t1/2);
	if (best_t0 % 2 + best_t1 % 2 == 2)
		tcenter++;
	return tcenter - best_tm;
}

void smp_synchronize_tick_client(void)
{
	long i, delta, adj, adjust_latency = 0, done = 0;
	unsigned long flags, rt, master_time_stamp;
#if DEBUG_TICK_SYNC
	struct {
		long rt;	/* roundtrip time */
		long master;	/* master's timestamp */
		long diff;	/* difference between midpoint and master's timestamp */
		long lat;	/* estimate of itc adjustment latency */
	} t[NUM_ROUNDS];
#endif

	go[MASTER] = 1;

	while (go[MASTER])
		rmb();

	local_irq_save(flags);
	{
		for (i = 0; i < NUM_ROUNDS; i++) {
			delta = get_delta(&rt, &master_time_stamp);
			if (delta == 0)
				done = 1;	/* let's lock on to this... */

			if (!done) {
				if (i > 0) {
					adjust_latency += -delta;
					adj = -delta + adjust_latency/4;
				} else
					adj = -delta;

				tick_ops->add_tick(adj);
			}
#if DEBUG_TICK_SYNC
			t[i].rt = rt;
			t[i].master = master_time_stamp;
			t[i].diff = delta;
			t[i].lat = adjust_latency/4;
#endif
		}
	}
	local_irq_restore(flags);

#if DEBUG_TICK_SYNC
	for (i = 0; i < NUM_ROUNDS; i++)
		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
#endif

	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
	       "(last diff %ld cycles, maxerr %lu cycles)\n",
	       smp_processor_id(), delta, rt);
}

static void smp_start_sync_tick_client(int cpu);

static void smp_synchronize_one_tick(int cpu)
{
	unsigned long flags, i;

	go[MASTER] = 0;

	smp_start_sync_tick_client(cpu);

	/* wait for client to be ready */
	while (!go[MASTER])
		rmb();

	/* now let the client proceed into his loop */
	go[MASTER] = 0;
	membar_safe("#StoreLoad");

	raw_spin_lock_irqsave(&itc_sync_lock, flags);
	{
		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
			while (!go[MASTER])
				rmb();
			go[MASTER] = 0;
			wmb();
			go[SLAVE] = tick_ops->get_tick();
			membar_safe("#StoreLoad");
		}
	}
	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
}

#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
				void **descrp)
{
	extern unsigned long sparc64_ttable_tl0;
	extern unsigned long kern_locked_tte_data;
	struct hvtramp_descr *hdesc;
	unsigned long trampoline_ra;
	struct trap_per_cpu *tb;
	u64 tte_vaddr, tte_data;
	unsigned long hv_err;
	int i;

	hdesc = kzalloc(sizeof(*hdesc) +
			(sizeof(struct hvtramp_mapping) *
			 num_kernel_image_mappings - 1),
			GFP_KERNEL);
	if (!hdesc) {
		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
		       "hvtramp_descr.\n");
		return;
	}
	*descrp = hdesc;

	hdesc->cpu = cpu;
	hdesc->num_mappings = num_kernel_image_mappings;

	tb = &trap_block[cpu];

	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);

	hdesc->thread_reg = thread_reg;

	tte_vaddr = (unsigned long) KERNBASE;
	tte_data = kern_locked_tte_data;

	for (i = 0; i < hdesc->num_mappings; i++) {
		hdesc->maps[i].vaddr = tte_vaddr;
		hdesc->maps[i].tte   = tte_data;
		tte_vaddr += 0x400000;
		tte_data  += 0x400000;
	}

	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);

	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
				 kimage_addr_to_ra(&sparc64_ttable_tl0),
				 __pa(hdesc));
	if (hv_err)
		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
		       "gives error %lu\n", hv_err);
}
#endif

extern unsigned long sparc64_cpu_startup;

/* The OBP cpu startup callback truncates the 3rd arg cookie to
 * 32-bits (I think) so to be safe we have it read the pointer
 * contained here so we work on >4GB machines. -DaveM
 */
static struct thread_info *cpu_new_thread = NULL;

static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
{
	unsigned long entry =
		(unsigned long)(&sparc64_cpu_startup);
	unsigned long cookie =
		(unsigned long)(&cpu_new_thread);
	void *descr = NULL;
	int timeout, ret;

	callin_flag = 0;
	cpu_new_thread = task_thread_info(idle);

	if (tlb_type == hypervisor) {
#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
		if (ldom_domaining_enabled)
			ldom_startcpu_cpuid(cpu,
					    (unsigned long) cpu_new_thread,
					    &descr);
		else
#endif
			prom_startcpu_cpuid(cpu, entry, cookie);
	} else {
		struct device_node *dp = of_find_node_by_cpuid(cpu);

		prom_startcpu(dp->phandle, entry, cookie);
	}

	for (timeout = 0; timeout < 50000; timeout++) {
		if (callin_flag)
			break;
		udelay(100);
	}

	if (callin_flag) {
		ret = 0;
	} else {
		printk("Processor %d is stuck.\n", cpu);
		ret = -ENODEV;
	}
	cpu_new_thread = NULL;

	kfree(descr);

	return ret;
}

static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
{
	u64 result, target;
	int stuck, tmp;

	if (this_is_starfire) {
		/* map to real upaid */
		cpu = (((cpu & 0x3c) << 1) |
			((cpu & 0x40) >> 4) |
			(cpu & 0x3));
	}

	target = (cpu << 14) | 0x70;
again:
	/* Ok, this is the real Spitfire Errata #54.
	 * One must read back from a UDB internal register
	 * after writes to the UDB interrupt dispatch, but
	 * before the membar Sync for that write.
	 * So we use the high UDB control register (ASI 0x7f,
	 * ADDR 0x20) for the dummy read. -DaveM
	 */
	tmp = 0x40;
	__asm__ __volatile__(
	"wrpr	%1, %2, %%pstate\n\t"
	"stxa	%4, [%0] %3\n\t"
	"stxa	%5, [%0+%8] %3\n\t"
	"add	%0, %8, %0\n\t"
	"stxa	%6, [%0+%8] %3\n\t"
	"membar	#Sync\n\t"
	"stxa	%%g0, [%7] %3\n\t"
	"membar	#Sync\n\t"
	"mov	0x20, %%g1\n\t"
	"ldxa	[%%g1] 0x7f, %%g0\n\t"
	"membar	#Sync"
	: "=r" (tmp)
	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
	  "r" (0x10), "0" (tmp)
        : "g1");

	/* NOTE: PSTATE_IE is still clear. */
	stuck = 100000;
	do {
		__asm__ __volatile__("ldxa [%%g0] %1, %0"
			: "=r" (result)
			: "i" (ASI_INTR_DISPATCH_STAT));
		if (result == 0) {
			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
					     : : "r" (pstate));
			return;
		}
		stuck -= 1;
		if (stuck == 0)
			break;
	} while (result & 0x1);
	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
			     : : "r" (pstate));
	if (stuck == 0) {
		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
		       smp_processor_id(), result);
	} else {
		udelay(2);
		goto again;
	}
}

static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
{
	u64 *mondo, data0, data1, data2;
	u16 *cpu_list;
	u64 pstate;
	int i;

	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
	cpu_list = __va(tb->cpu_list_pa);
	mondo = __va(tb->cpu_mondo_block_pa);
	data0 = mondo[0];
	data1 = mondo[1];
	data2 = mondo[2];
	for (i = 0; i < cnt; i++)
		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
}

/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 * packet, but we have no use for that.  However we do take advantage of
 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 */
static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
{
	int nack_busy_id, is_jbus, need_more;
	u64 *mondo, pstate, ver, busy_mask;
	u16 *cpu_list;

	cpu_list = __va(tb->cpu_list_pa);
	mondo = __va(tb->cpu_mondo_block_pa);

	/* Unfortunately, someone at Sun had the brilliant idea to make the
	 * busy/nack fields hard-coded by ITID number for this Ultra-III
	 * derivative processor.
	 */
	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
		   (ver >> 32) == __SERRANO_ID);

	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));

retry:
	need_more = 0;
	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
			     : : "r" (pstate), "i" (PSTATE_IE));

	/* Setup the dispatch data registers. */
	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
			     "stxa	%1, [%4] %6\n\t"
			     "stxa	%2, [%5] %6\n\t"
			     "membar	#Sync\n\t"
			     : /* no outputs */
			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
			       "r" (0x40), "r" (0x50), "r" (0x60),
			       "i" (ASI_INTR_W));

	nack_busy_id = 0;
	busy_mask = 0;
	{
		int i;

		for (i = 0; i < cnt; i++) {
			u64 target, nr;

			nr = cpu_list[i];
			if (nr == 0xffff)
				continue;

			target = (nr << 14) | 0x70;
			if (is_jbus) {
				busy_mask |= (0x1UL << (nr * 2));
			} else {
				target |= (nack_busy_id << 24);
				busy_mask |= (0x1UL <<
					      (nack_busy_id * 2));
			}
			__asm__ __volatile__(
				"stxa	%%g0, [%0] %1\n\t"
				"membar	#Sync\n\t"
				: /* no outputs */
				: "r" (target), "i" (ASI_INTR_W));
			nack_busy_id++;
			if (nack_busy_id == 32) {
				need_more = 1;
				break;
			}
		}
	}

	/* Now, poll for completion. */
	{
		u64 dispatch_stat, nack_mask;
		long stuck;

		stuck = 100000 * nack_busy_id;
		nack_mask = busy_mask << 1;
		do {
			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
					     : "=r" (dispatch_stat)
					     : "i" (ASI_INTR_DISPATCH_STAT));
			if (!(dispatch_stat & (busy_mask | nack_mask))) {
				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
						     : : "r" (pstate));
				if (unlikely(need_more)) {
					int i, this_cnt = 0;
					for (i = 0; i < cnt; i++) {
						if (cpu_list[i] == 0xffff)
							continue;
						cpu_list[i] = 0xffff;
						this_cnt++;
						if (this_cnt == 32)
							break;
					}
					goto retry;
				}
				return;
			}
			if (!--stuck)
				break;
		} while (dispatch_stat & busy_mask);

		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
				     : : "r" (pstate));

		if (dispatch_stat & busy_mask) {
			/* Busy bits will not clear, continue instead
			 * of freezing up on this cpu.
			 */
			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
			       smp_processor_id(), dispatch_stat);
		} else {
			int i, this_busy_nack = 0;

			/* Delay some random time with interrupts enabled
			 * to prevent deadlock.
			 */
			udelay(2 * nack_busy_id);

			/* Clear out the mask bits for cpus which did not
			 * NACK us.
			 */
			for (i = 0; i < cnt; i++) {
				u64 check_mask, nr;

				nr = cpu_list[i];
				if (nr == 0xffff)
					continue;

				if (is_jbus)
					check_mask = (0x2UL << (2*nr));
				else
					check_mask = (0x2UL <<
						      this_busy_nack);
				if ((dispatch_stat & check_mask) == 0)
					cpu_list[i] = 0xffff;
				this_busy_nack += 2;
				if (this_busy_nack == 64)
					break;
			}

			goto retry;
		}
	}
}

#define	CPU_MONDO_COUNTER(cpuid)	(cpu_mondo_counter[cpuid])
#define	MONDO_USEC_WAIT_MIN		2
#define	MONDO_USEC_WAIT_MAX		100
#define	MONDO_RETRY_LIMIT		500000

/* Multi-cpu list version.
 *
 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
 * Sometimes not all cpus receive the mondo, requiring us to re-send
 * the mondo until all cpus have received, or cpus are truly stuck
 * unable to receive mondo, and we timeout.
 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
 * perform guest service, such as PCIe error handling. Consider the
 * service time, 1 second overall wait is reasonable for 1 cpu.
 * Here two in-between mondo check wait time are defined: 2 usec for
 * single cpu quick turn around and up to 100usec for large cpu count.
 * Deliver mondo to large number of cpus could take longer, we adjusts
 * the retry count as long as target cpus are making forward progress.
 */
static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
{
	int this_cpu, tot_cpus, prev_sent, i, rem;
	int usec_wait, retries, tot_retries;
	u16 first_cpu = 0xffff;
	unsigned long xc_rcvd = 0;
	unsigned long status;
	int ecpuerror_id = 0;
	int enocpu_id = 0;
	u16 *cpu_list;
	u16 cpu;

	this_cpu = smp_processor_id();
	cpu_list = __va(tb->cpu_list_pa);
	usec_wait = cnt * MONDO_USEC_WAIT_MIN;
	if (usec_wait > MONDO_USEC_WAIT_MAX)
		usec_wait = MONDO_USEC_WAIT_MAX;
	retries = tot_retries = 0;
	tot_cpus = cnt;
	prev_sent = 0;

	do {
		int n_sent, mondo_delivered, target_cpu_busy;

		status = sun4v_cpu_mondo_send(cnt,
					      tb->cpu_list_pa,
					      tb->cpu_mondo_block_pa);

		/* HV_EOK means all cpus received the xcall, we're done.  */
		if (likely(status == HV_EOK))
			goto xcall_done;

		/* If not these non-fatal errors, panic */
		if (unlikely((status != HV_EWOULDBLOCK) &&
			(status != HV_ECPUERROR) &&
			(status != HV_ENOCPU)))
			goto fatal_errors;

		/* First, see if we made any forward progress.
		 *
		 * Go through the cpu_list, count the target cpus that have
		 * received our mondo (n_sent), and those that did not (rem).
		 * Re-pack cpu_list with the cpus remain to be retried in the
		 * front - this simplifies tracking the truly stalled cpus.
		 *
		 * The hypervisor indicates successful sends by setting
		 * cpu list entries to the value 0xffff.
		 *
		 * EWOULDBLOCK means some target cpus did not receive the
		 * mondo and retry usually helps.
		 *
		 * ECPUERROR means at least one target cpu is in error state,
		 * it's usually safe to skip the faulty cpu and retry.
		 *
		 * ENOCPU means one of the target cpu doesn't belong to the
		 * domain, perhaps offlined which is unexpected, but not
		 * fatal and it's okay to skip the offlined cpu.
		 */
		rem = 0;
		n_sent = 0;
		for (i = 0; i < cnt; i++) {
			cpu = cpu_list[i];
			if (likely(cpu == 0xffff)) {
				n_sent++;
			} else if ((status == HV_ECPUERROR) &&
				(sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
				ecpuerror_id = cpu + 1;
			} else if (status == HV_ENOCPU && !cpu_online(cpu)) {
				enocpu_id = cpu + 1;
			} else {
				cpu_list[rem++] = cpu;
			}
		}

		/* No cpu remained, we're done. */
		if (rem == 0)
			break;

		/* Otherwise, update the cpu count for retry. */
		cnt = rem;

		/* Record the overall number of mondos received by the
		 * first of the remaining cpus.
		 */
		if (first_cpu != cpu_list[0]) {
			first_cpu = cpu_list[0];
			xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
		}

		/* Was any mondo delivered successfully? */
		mondo_delivered = (n_sent > prev_sent);
		prev_sent = n_sent;

		/* or, was any target cpu busy processing other mondos? */
		target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
		xc_rcvd = CPU_MONDO_COUNTER(first_cpu);

		/* Retry count is for no progress. If we're making progress,
		 * reset the retry count.
		 */
		if (likely(mondo_delivered || target_cpu_busy)) {
			tot_retries += retries;
			retries = 0;
		} else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
			goto fatal_mondo_timeout;
		}

		/* Delay a little bit to let other cpus catch up on
		 * their cpu mondo queue work.
		 */
		if (!mondo_delivered)
			udelay(usec_wait);

		retries++;
	} while (1);

xcall_done:
	if (unlikely(ecpuerror_id > 0)) {
		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
		       this_cpu, ecpuerror_id - 1);
	} else if (unlikely(enocpu_id > 0)) {
		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
		       this_cpu, enocpu_id - 1);
	}
	return;

fatal_errors:
	/* fatal errors include bad alignment, etc */
	pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
	       this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
	panic("Unexpected SUN4V mondo error %lu\n", status);

fatal_mondo_timeout:
	/* some cpus being non-responsive to the cpu mondo */
	pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
	       this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
	panic("SUN4V mondo timeout panic\n");
}

static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);

static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
{
	struct trap_per_cpu *tb;
	int this_cpu, i, cnt;
	unsigned long flags;
	u16 *cpu_list;
	u64 *mondo;

	/* We have to do this whole thing with interrupts fully disabled.
	 * Otherwise if we send an xcall from interrupt context it will
	 * corrupt both our mondo block and cpu list state.
	 *
	 * One consequence of this is that we cannot use timeout mechanisms
	 * that depend upon interrupts being delivered locally.  So, for
	 * example, we cannot sample jiffies and expect it to advance.
	 *
	 * Fortunately, udelay() uses %stick/%tick so we can use that.
	 */
	local_irq_save(flags);

	this_cpu = smp_processor_id();
	tb = &trap_block[this_cpu];

	mondo = __va(tb->cpu_mondo_block_pa);
	mondo[0] = data0;
	mondo[1] = data1;
	mondo[2] = data2;
	wmb();

	cpu_list = __va(tb->cpu_list_pa);

	/* Setup the initial cpu list.  */
	cnt = 0;
	for_each_cpu(i, mask) {
		if (i == this_cpu || !cpu_online(i))
			continue;
		cpu_list[cnt++] = i;
	}

	if (cnt)
		xcall_deliver_impl(tb, cnt);

	local_irq_restore(flags);
}

/* Send cross call to all processors mentioned in MASK_P
 * except self.  Really, there are only two cases currently,
 * "cpu_online_mask" and "mm_cpumask(mm)".
 */
static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
{
	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));

	xcall_deliver(data0, data1, data2, mask);
}

/* Send cross call to all processors except self. */
static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
{
	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
}

extern unsigned long xcall_sync_tick;

static void smp_start_sync_tick_client(int cpu)
{
	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
		      cpumask_of(cpu));
}

extern unsigned long xcall_call_function;

void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
}

extern unsigned long xcall_call_function_single;

void arch_send_call_function_single_ipi(int cpu)
{
	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
		      cpumask_of(cpu));
}

void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
{
	clear_softint(1 << irq);
	irq_enter();
	generic_smp_call_function_interrupt();
	irq_exit();
}

void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
{
	clear_softint(1 << irq);
	irq_enter();
	generic_smp_call_function_single_interrupt();
	irq_exit();
}

static void tsb_sync(void *info)
{
	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
	struct mm_struct *mm = info;

	/* It is not valid to test "current->active_mm == mm" here.
	 *
	 * The value of "current" is not changed atomically with
	 * switch_mm().  But that's OK, we just need to check the
	 * current cpu's trap block PGD physical address.
	 */
	if (tp->pgd_paddr == __pa(mm->pgd))
		tsb_context_switch(mm);
}

void smp_tsb_sync(struct mm_struct *mm)
{
	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
}

extern unsigned long xcall_flush_tlb_mm;
extern unsigned long xcall_flush_tlb_page;
extern unsigned long xcall_flush_tlb_kernel_range;
extern unsigned long xcall_fetch_glob_regs;
extern unsigned long xcall_fetch_glob_pmu;
extern unsigned long xcall_fetch_glob_pmu_n4;
extern unsigned long xcall_receive_signal;
extern unsigned long xcall_new_mmu_context_version;
#ifdef CONFIG_KGDB
extern unsigned long xcall_kgdb_capture;
#endif

#ifdef DCACHE_ALIASING_POSSIBLE
extern unsigned long xcall_flush_dcache_page_cheetah;
#endif
extern unsigned long xcall_flush_dcache_page_spitfire;

static inline void __local_flush_dcache_page(struct page *page)
{
#ifdef DCACHE_ALIASING_POSSIBLE
	__flush_dcache_page(page_address(page),
			    ((tlb_type == spitfire) &&
			     page_mapping_file(page) != NULL));
#else
	if (page_mapping_file(page) != NULL &&
	    tlb_type == spitfire)
		__flush_icache_page(__pa(page_address(page)));
#endif
}

void smp_flush_dcache_page_impl(struct page *page, int cpu)
{
	int this_cpu;

	if (tlb_type == hypervisor)
		return;

#ifdef CONFIG_DEBUG_DCFLUSH
	atomic_inc(&dcpage_flushes);
#endif

	this_cpu = get_cpu();

	if (cpu == this_cpu) {
		__local_flush_dcache_page(page);
	} else if (cpu_online(cpu)) {
		void *pg_addr = page_address(page);
		u64 data0 = 0;

		if (tlb_type == spitfire) {
			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
			if (page_mapping_file(page) != NULL)
				data0 |= ((u64)1 << 32);
		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
#ifdef DCACHE_ALIASING_POSSIBLE
			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
#endif
		}
		if (data0) {
			xcall_deliver(data0, __pa(pg_addr),
				      (u64) pg_addr, cpumask_of(cpu));
#ifdef CONFIG_DEBUG_DCFLUSH
			atomic_inc(&dcpage_flushes_xcall);
#endif
		}
	}

	put_cpu();
}

void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
{
	void *pg_addr;
	u64 data0;

	if (tlb_type == hypervisor)
		return;

	preempt_disable();

#ifdef CONFIG_DEBUG_DCFLUSH
	atomic_inc(&dcpage_flushes);
#endif
	data0 = 0;
	pg_addr = page_address(page);
	if (tlb_type == spitfire) {
		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
		if (page_mapping_file(page) != NULL)
			data0 |= ((u64)1 << 32);
	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
#ifdef DCACHE_ALIASING_POSSIBLE
		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
#endif
	}
	if (data0) {
		xcall_deliver(data0, __pa(pg_addr),
			      (u64) pg_addr, cpu_online_mask);
#ifdef CONFIG_DEBUG_DCFLUSH
		atomic_inc(&dcpage_flushes_xcall);
#endif
	}
	__local_flush_dcache_page(page);

	preempt_enable();
}

#ifdef CONFIG_KGDB
void kgdb_roundup_cpus(void)
{
	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
}
#endif

void smp_fetch_global_regs(void)
{
	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
}

void smp_fetch_global_pmu(void)
{
	if (tlb_type == hypervisor &&
	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
	else
		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
}

/* We know that the window frames of the user have been flushed
 * to the stack before we get here because all callers of us
 * are flush_tlb_*() routines, and these run after flush_cache_*()
 * which performs the flushw.
 *
 * mm->cpu_vm_mask is a bit mask of which cpus an address
 * space has (potentially) executed on, this is the heuristic
 * we use to limit cross calls.
 */

/* This currently is only used by the hugetlb arch pre-fault
 * hook on UltraSPARC-III+ and later when changing the pagesize
 * bits of the context register for an address space.
 */
void smp_flush_tlb_mm(struct mm_struct *mm)
{
	u32 ctx = CTX_HWBITS(mm->context);

	get_cpu();

	smp_cross_call_masked(&xcall_flush_tlb_mm,
			      ctx, 0, 0,
			      mm_cpumask(mm));

	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);

	put_cpu();
}

struct tlb_pending_info {
	unsigned long ctx;
	unsigned long nr;
	unsigned long *vaddrs;
};

static void tlb_pending_func(void *info)
{
	struct tlb_pending_info *t = info;

	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
}

void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
{
	u32 ctx = CTX_HWBITS(mm->context);
	struct tlb_pending_info info;

	get_cpu();

	info.ctx = ctx;
	info.nr = nr;
	info.vaddrs = vaddrs;

	smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
			       &info, 1);

	__flush_tlb_pending(ctx, nr, vaddrs);

	put_cpu();
}

void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
{
	unsigned long context = CTX_HWBITS(mm->context);

	get_cpu();

	smp_cross_call_masked(&xcall_flush_tlb_page,
			      context, vaddr, 0,
			      mm_cpumask(mm));

	__flush_tlb_page(context, vaddr);

	put_cpu();
}

void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
{
	start &= PAGE_MASK;
	end    = PAGE_ALIGN(end);
	if (start != end) {
		smp_cross_call(&xcall_flush_tlb_kernel_range,
			       0, start, end);

		__flush_tlb_kernel_range(start, end);
	}
}

/* CPU capture. */
/* #define CAPTURE_DEBUG */
extern unsigned long xcall_capture;

static atomic_t smp_capture_depth = ATOMIC_INIT(0);
static atomic_t smp_capture_registry = ATOMIC_INIT(0);
static unsigned long penguins_are_doing_time;

void smp_capture(void)
{
	int result = atomic_add_return(1, &smp_capture_depth);

	if (result == 1) {
		int ncpus = num_online_cpus();

#ifdef CAPTURE_DEBUG
		printk("CPU[%d]: Sending penguins to jail...",
		       smp_processor_id());
#endif
		penguins_are_doing_time = 1;
		atomic_inc(&smp_capture_registry);
		smp_cross_call(&xcall_capture, 0, 0, 0);
		while (atomic_read(&smp_capture_registry) != ncpus)
			rmb();
#ifdef CAPTURE_DEBUG
		printk("done\n");
#endif
	}
}

void smp_release(void)
{
	if (atomic_dec_and_test(&smp_capture_depth)) {
#ifdef CAPTURE_DEBUG
		printk("CPU[%d]: Giving pardon to "
		       "imprisoned penguins\n",
		       smp_processor_id());
#endif
		penguins_are_doing_time = 0;
		membar_safe("#StoreLoad");
		atomic_dec(&smp_capture_registry);
	}
}

/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
 * set, so they can service tlb flush xcalls...
 */
extern void prom_world(int);

void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
{
	clear_softint(1 << irq);

	preempt_disable();

	__asm__ __volatile__("flushw");
	prom_world(1);
	atomic_inc(&smp_capture_registry);
	membar_safe("#StoreLoad");
	while (penguins_are_doing_time)
		rmb();
	atomic_dec(&smp_capture_registry);
	prom_world(0);

	preempt_enable();
}

/* /proc/profile writes can call this, don't __init it please. */
int setup_profiling_timer(unsigned int multiplier)
{
	return -EINVAL;
}

void __init smp_prepare_cpus(unsigned int max_cpus)
{
}

void smp_prepare_boot_cpu(void)
{
}

void __init smp_setup_processor_id(void)
{
	if (tlb_type == spitfire)
		xcall_deliver_impl = spitfire_xcall_deliver;
	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
		xcall_deliver_impl = cheetah_xcall_deliver;
	else
		xcall_deliver_impl = hypervisor_xcall_deliver;
}

void __init smp_fill_in_cpu_possible_map(void)
{
	int possible_cpus = num_possible_cpus();
	int i;

	if (possible_cpus > nr_cpu_ids)
		possible_cpus = nr_cpu_ids;

	for (i = 0; i < possible_cpus; i++)
		set_cpu_possible(i, true);
	for (; i < NR_CPUS; i++)
		set_cpu_possible(i, false);
}

void smp_fill_in_sib_core_maps(void)
{
	unsigned int i;

	for_each_present_cpu(i) {
		unsigned int j;

		cpumask_clear(&cpu_core_map[i]);
		if (cpu_data(i).core_id == 0) {
			cpumask_set_cpu(i, &cpu_core_map[i]);
			continue;
		}

		for_each_present_cpu(j) {
			if (cpu_data(i).core_id ==
			    cpu_data(j).core_id)
				cpumask_set_cpu(j, &cpu_core_map[i]);
		}
	}

	for_each_present_cpu(i)  {
		unsigned int j;

		for_each_present_cpu(j)  {
			if (cpu_data(i).max_cache_id ==
			    cpu_data(j).max_cache_id)
				cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);

			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
		}
	}

	for_each_present_cpu(i) {
		unsigned int j;

		cpumask_clear(&per_cpu(cpu_sibling_map, i));
		if (cpu_data(i).proc_id == -1) {
			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
			continue;
		}

		for_each_present_cpu(j) {
			if (cpu_data(i).proc_id ==
			    cpu_data(j).proc_id)
				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
		}
	}
}

int __cpu_up(unsigned int cpu, struct task_struct *tidle)
{
	int ret = smp_boot_one_cpu(cpu, tidle);

	if (!ret) {
		cpumask_set_cpu(cpu, &smp_commenced_mask);
		while (!cpu_online(cpu))
			mb();
		if (!cpu_online(cpu)) {
			ret = -ENODEV;
		} else {
			/* On SUN4V, writes to %tick and %stick are
			 * not allowed.
			 */
			if (tlb_type != hypervisor)
				smp_synchronize_one_tick(cpu);
		}
	}
	return ret;
}

#ifdef CONFIG_HOTPLUG_CPU
void cpu_play_dead(void)
{
	int cpu = smp_processor_id();
	unsigned long pstate;

	idle_task_exit();

	if (tlb_type == hypervisor) {
		struct trap_per_cpu *tb = &trap_block[cpu];

		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
				tb->cpu_mondo_pa, 0);
		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
				tb->dev_mondo_pa, 0);
		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
				tb->resum_mondo_pa, 0);
		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
				tb->nonresum_mondo_pa, 0);
	}

	cpumask_clear_cpu(cpu, &smp_commenced_mask);
	membar_safe("#Sync");

	local_irq_disable();

	__asm__ __volatile__(
		"rdpr	%%pstate, %0\n\t"
		"wrpr	%0, %1, %%pstate"
		: "=r" (pstate)
		: "i" (PSTATE_IE));

	while (1)
		barrier();
}

int __cpu_disable(void)
{
	int cpu = smp_processor_id();
	cpuinfo_sparc *c;
	int i;

	for_each_cpu(i, &cpu_core_map[cpu])
		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
	cpumask_clear(&cpu_core_map[cpu]);

	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));

	c = &cpu_data(cpu);

	c->core_id = 0;
	c->proc_id = -1;

	smp_wmb();

	/* Make sure no interrupts point to this cpu.  */
	fixup_irqs();

	local_irq_enable();
	mdelay(1);
	local_irq_disable();

	set_cpu_online(cpu, false);

	cpu_map_rebuild();

	return 0;
}

void __cpu_die(unsigned int cpu)
{
	int i;

	for (i = 0; i < 100; i++) {
		smp_rmb();
		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
			break;
		msleep(100);
	}
	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
	} else {
#if defined(CONFIG_SUN_LDOMS)
		unsigned long hv_err;
		int limit = 100;

		do {
			hv_err = sun4v_cpu_stop(cpu);
			if (hv_err == HV_EOK) {
				set_cpu_present(cpu, false);
				break;
			}
		} while (--limit > 0);
		if (limit <= 0) {
			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
			       hv_err);
		}
#endif
	}
}
#endif

void __init smp_cpus_done(unsigned int max_cpus)
{
}

static void send_cpu_ipi(int cpu)
{
	xcall_deliver((u64) &xcall_receive_signal,
			0, 0, cpumask_of(cpu));
}

void scheduler_poke(void)
{
	if (!cpu_poke)
		return;

	if (!__this_cpu_read(poke))
		return;

	__this_cpu_write(poke, false);
	set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
}

static unsigned long send_cpu_poke(int cpu)
{
	unsigned long hv_err;

	per_cpu(poke, cpu) = true;
	hv_err = sun4v_cpu_poke(cpu);
	if (hv_err != HV_EOK) {
		per_cpu(poke, cpu) = false;
		pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
				    __func__, hv_err);
	}

	return hv_err;
}

void smp_send_reschedule(int cpu)
{
	if (cpu == smp_processor_id()) {
		WARN_ON_ONCE(preemptible());
		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
		return;
	}

	/* Use cpu poke to resume idle cpu if supported. */
	if (cpu_poke && idle_cpu(cpu)) {
		unsigned long ret;

		ret = send_cpu_poke(cpu);
		if (ret == HV_EOK)
			return;
	}

	/* Use IPI in following cases:
	 * - cpu poke not supported
	 * - cpu not idle
	 * - send_cpu_poke() returns with error
	 */
	send_cpu_ipi(cpu);
}

void smp_init_cpu_poke(void)
{
	unsigned long major;
	unsigned long minor;
	int ret;

	if (tlb_type != hypervisor)
		return;

	ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
	if (ret) {
		pr_debug("HV_GRP_CORE is not registered\n");
		return;
	}

	if (major == 1 && minor >= 6) {
		/* CPU POKE is registered. */
		cpu_poke = true;
		return;
	}

	pr_debug("CPU_POKE not supported\n");
}

void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
{
	clear_softint(1 << irq);
	scheduler_ipi();
}

static void stop_this_cpu(void *dummy)
{
	set_cpu_online(smp_processor_id(), false);
	prom_stopself();
}

void smp_send_stop(void)
{
	int cpu;

	if (tlb_type == hypervisor) {
		int this_cpu = smp_processor_id();
#ifdef CONFIG_SERIAL_SUNHV
		sunhv_migrate_hvcons_irq(this_cpu);
#endif
		for_each_online_cpu(cpu) {
			if (cpu == this_cpu)
				continue;

			set_cpu_online(cpu, false);
#ifdef CONFIG_SUN_LDOMS
			if (ldom_domaining_enabled) {
				unsigned long hv_err;
				hv_err = sun4v_cpu_stop(cpu);
				if (hv_err)
					printk(KERN_ERR "sun4v_cpu_stop() "
					       "failed err=%lu\n", hv_err);
			} else
#endif
				prom_stopcpu_cpuid(cpu);
		}
	} else
		smp_call_function(stop_this_cpu, NULL, 0);
}

/**
 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
 * @cpu: cpu to allocate for
 * @size: size allocation in bytes
 * @align: alignment
 *
 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
 * does the right thing for NUMA regardless of the current
 * configuration.
 *
 * RETURNS:
 * Pointer to the allocated area on success, NULL on failure.
 */
static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
					size_t align)
{
	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
#ifdef CONFIG_NEED_MULTIPLE_NODES
	int node = cpu_to_node(cpu);
	void *ptr;

	if (!node_online(node) || !NODE_DATA(node)) {
		ptr = memblock_alloc_from(size, align, goal);
		pr_info("cpu %d has no node %d or node-local memory\n",
			cpu, node);
		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
			 cpu, size, __pa(ptr));
	} else {
		ptr = memblock_alloc_try_nid(size, align, goal,
					     MEMBLOCK_ALLOC_ACCESSIBLE, node);
		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
			 "%016lx\n", cpu, size, node, __pa(ptr));
	}
	return ptr;
#else
	return memblock_alloc_from(size, align, goal);
#endif
}

static void __init pcpu_free_bootmem(void *ptr, size_t size)
{
	memblock_free(__pa(ptr), size);
}

static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
{
	if (cpu_to_node(from) == cpu_to_node(to))
		return LOCAL_DISTANCE;
	else
		return REMOTE_DISTANCE;
}

static void __init pcpu_populate_pte(unsigned long addr)
{
	pgd_t *pgd = pgd_offset_k(addr);
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;

	if (pgd_none(*pgd)) {
		pud_t *new;

		new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
		if (!new)
			goto err_alloc;
		pgd_populate(&init_mm, pgd, new);
	}

	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d)) {
		pud_t *new;

		new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
		if (!new)
			goto err_alloc;
		p4d_populate(&init_mm, p4d, new);
	}

	pud = pud_offset(p4d, addr);
	if (pud_none(*pud)) {
		pmd_t *new;

		new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
		if (!new)
			goto err_alloc;
		pud_populate(&init_mm, pud, new);
	}

	pmd = pmd_offset(pud, addr);
	if (!pmd_present(*pmd)) {
		pte_t *new;

		new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
		if (!new)
			goto err_alloc;
		pmd_populate_kernel(&init_mm, pmd, new);
	}

	return;

err_alloc:
	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
}

void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
	int rc = -EINVAL;

	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
					    pcpu_cpu_distance,
					    pcpu_alloc_bootmem,
					    pcpu_free_bootmem);
		if (rc)
			pr_warn("PERCPU: %s allocator failed (%d), "
				"falling back to page size\n",
				pcpu_fc_names[pcpu_chosen_fc], rc);
	}
	if (rc < 0)
		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
					   pcpu_alloc_bootmem,
					   pcpu_free_bootmem,
					   pcpu_populate_pte);
	if (rc < 0)
		panic("cannot initialize percpu area (err=%d)", rc);

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];

	/* Setup %g5 for the boot cpu.  */
	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());

	of_fill_in_cpu_data();
	if (tlb_type == hypervisor)
		mdesc_fill_in_cpu_data(cpu_all_mask);
}