aesni-intel_glue.c 32.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Support for Intel AES-NI instructions. This file contains glue
 * code, the real AES implementation is in intel-aes_asm.S.
 *
 * Copyright (C) 2008, Intel Corp.
 *    Author: Huang Ying <ying.huang@intel.com>
 *
 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
 * interface for 64-bit kernels.
 *    Authors: Adrian Hoban <adrian.hoban@intel.com>
 *             Gabriele Paoloni <gabriele.paoloni@intel.com>
 *             Tadeusz Struk (tadeusz.struk@intel.com)
 *             Aidan O'Mahony (aidan.o.mahony@intel.com)
 *    Copyright (c) 2010, Intel Corporation.
 */

#include <linux/hardirq.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/err.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/ctr.h>
#include <crypto/b128ops.h>
#include <crypto/gcm.h>
#include <crypto/xts.h>
#include <asm/cpu_device_id.h>
#include <asm/simd.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <linux/workqueue.h>
#include <linux/spinlock.h>
#ifdef CONFIG_X86_64
#include <asm/crypto/glue_helper.h>
#endif


#define AESNI_ALIGN	16
#define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
#define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE - 1))
#define RFC4106_HASH_SUBKEY_SIZE 16
#define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
#define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
#define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)

/* This data is stored at the end of the crypto_tfm struct.
 * It's a type of per "session" data storage location.
 * This needs to be 16 byte aligned.
 */
struct aesni_rfc4106_gcm_ctx {
	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
	u8 nonce[4];
};

struct generic_gcmaes_ctx {
	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
};

struct aesni_xts_ctx {
	u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
	u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
};

#define GCM_BLOCK_LEN 16

struct gcm_context_data {
	/* init, update and finalize context data */
	u8 aad_hash[GCM_BLOCK_LEN];
	u64 aad_length;
	u64 in_length;
	u8 partial_block_enc_key[GCM_BLOCK_LEN];
	u8 orig_IV[GCM_BLOCK_LEN];
	u8 current_counter[GCM_BLOCK_LEN];
	u64 partial_block_len;
	u64 unused;
	u8 hash_keys[GCM_BLOCK_LEN * 16];
};

asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
			     unsigned int key_len);
asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in);
asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in);
asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len);
asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len);
asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);

#define AVX_GEN2_OPTSIZE 640
#define AVX_GEN4_OPTSIZE 4096

#ifdef CONFIG_X86_64

static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);

asmlinkage void aesni_xts_crypt8(const struct crypto_aes_ctx *ctx, u8 *out,
				 const u8 *in, bool enc, le128 *iv);

/* asmlinkage void aesni_gcm_enc()
 * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
 * struct gcm_context_data.  May be uninitialized.
 * u8 *out, Ciphertext output. Encrypt in-place is allowed.
 * const u8 *in, Plaintext input
 * unsigned long plaintext_len, Length of data in bytes for encryption.
 * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
 *         16-byte aligned pointer.
 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
 * const u8 *aad, Additional Authentication Data (AAD)
 * unsigned long aad_len, Length of AAD in bytes.
 * u8 *auth_tag, Authenticated Tag output.
 * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
 *          Valid values are 16 (most likely), 12 or 8.
 */
asmlinkage void aesni_gcm_enc(void *ctx,
			struct gcm_context_data *gdata, u8 *out,
			const u8 *in, unsigned long plaintext_len, u8 *iv,
			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

/* asmlinkage void aesni_gcm_dec()
 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
 * struct gcm_context_data.  May be uninitialized.
 * u8 *out, Plaintext output. Decrypt in-place is allowed.
 * const u8 *in, Ciphertext input
 * unsigned long ciphertext_len, Length of data in bytes for decryption.
 * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
 *         16-byte aligned pointer.
 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
 * const u8 *aad, Additional Authentication Data (AAD)
 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
 * to be 8 or 12 bytes
 * u8 *auth_tag, Authenticated Tag output.
 * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
 * Valid values are 16 (most likely), 12 or 8.
 */
asmlinkage void aesni_gcm_dec(void *ctx,
			struct gcm_context_data *gdata, u8 *out,
			const u8 *in, unsigned long ciphertext_len, u8 *iv,
			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

/* Scatter / Gather routines, with args similar to above */
asmlinkage void aesni_gcm_init(void *ctx,
			       struct gcm_context_data *gdata,
			       u8 *iv,
			       u8 *hash_subkey, const u8 *aad,
			       unsigned long aad_len);
asmlinkage void aesni_gcm_enc_update(void *ctx,
				     struct gcm_context_data *gdata, u8 *out,
				     const u8 *in, unsigned long plaintext_len);
asmlinkage void aesni_gcm_dec_update(void *ctx,
				     struct gcm_context_data *gdata, u8 *out,
				     const u8 *in,
				     unsigned long ciphertext_len);
asmlinkage void aesni_gcm_finalize(void *ctx,
				   struct gcm_context_data *gdata,
				   u8 *auth_tag, unsigned long auth_tag_len);

static const struct aesni_gcm_tfm_s {
	void (*init)(void *ctx, struct gcm_context_data *gdata, u8 *iv,
		     u8 *hash_subkey, const u8 *aad, unsigned long aad_len);
	void (*enc_update)(void *ctx, struct gcm_context_data *gdata, u8 *out,
			   const u8 *in, unsigned long plaintext_len);
	void (*dec_update)(void *ctx, struct gcm_context_data *gdata, u8 *out,
			   const u8 *in, unsigned long ciphertext_len);
	void (*finalize)(void *ctx, struct gcm_context_data *gdata,
			 u8 *auth_tag, unsigned long auth_tag_len);
} *aesni_gcm_tfm;

static const struct aesni_gcm_tfm_s aesni_gcm_tfm_sse = {
	.init = &aesni_gcm_init,
	.enc_update = &aesni_gcm_enc_update,
	.dec_update = &aesni_gcm_dec_update,
	.finalize = &aesni_gcm_finalize,
};

asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
		void *keys, u8 *out, unsigned int num_bytes);
asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
		void *keys, u8 *out, unsigned int num_bytes);
asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
		void *keys, u8 *out, unsigned int num_bytes);
/*
 * asmlinkage void aesni_gcm_init_avx_gen2()
 * gcm_data *my_ctx_data, context data
 * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
 */
asmlinkage void aesni_gcm_init_avx_gen2(void *my_ctx_data,
					struct gcm_context_data *gdata,
					u8 *iv,
					u8 *hash_subkey,
					const u8 *aad,
					unsigned long aad_len);

asmlinkage void aesni_gcm_enc_update_avx_gen2(void *ctx,
				     struct gcm_context_data *gdata, u8 *out,
				     const u8 *in, unsigned long plaintext_len);
asmlinkage void aesni_gcm_dec_update_avx_gen2(void *ctx,
				     struct gcm_context_data *gdata, u8 *out,
				     const u8 *in,
				     unsigned long ciphertext_len);
asmlinkage void aesni_gcm_finalize_avx_gen2(void *ctx,
				   struct gcm_context_data *gdata,
				   u8 *auth_tag, unsigned long auth_tag_len);

asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx,
				struct gcm_context_data *gdata, u8 *out,
			const u8 *in, unsigned long plaintext_len, u8 *iv,
			const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx,
				struct gcm_context_data *gdata, u8 *out,
			const u8 *in, unsigned long ciphertext_len, u8 *iv,
			const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen2 = {
	.init = &aesni_gcm_init_avx_gen2,
	.enc_update = &aesni_gcm_enc_update_avx_gen2,
	.dec_update = &aesni_gcm_dec_update_avx_gen2,
	.finalize = &aesni_gcm_finalize_avx_gen2,
};

/*
 * asmlinkage void aesni_gcm_init_avx_gen4()
 * gcm_data *my_ctx_data, context data
 * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
 */
asmlinkage void aesni_gcm_init_avx_gen4(void *my_ctx_data,
					struct gcm_context_data *gdata,
					u8 *iv,
					u8 *hash_subkey,
					const u8 *aad,
					unsigned long aad_len);

asmlinkage void aesni_gcm_enc_update_avx_gen4(void *ctx,
				     struct gcm_context_data *gdata, u8 *out,
				     const u8 *in, unsigned long plaintext_len);
asmlinkage void aesni_gcm_dec_update_avx_gen4(void *ctx,
				     struct gcm_context_data *gdata, u8 *out,
				     const u8 *in,
				     unsigned long ciphertext_len);
asmlinkage void aesni_gcm_finalize_avx_gen4(void *ctx,
				   struct gcm_context_data *gdata,
				   u8 *auth_tag, unsigned long auth_tag_len);

asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx,
				struct gcm_context_data *gdata, u8 *out,
			const u8 *in, unsigned long plaintext_len, u8 *iv,
			const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx,
				struct gcm_context_data *gdata, u8 *out,
			const u8 *in, unsigned long ciphertext_len, u8 *iv,
			const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen4 = {
	.init = &aesni_gcm_init_avx_gen4,
	.enc_update = &aesni_gcm_enc_update_avx_gen4,
	.dec_update = &aesni_gcm_dec_update_avx_gen4,
	.finalize = &aesni_gcm_finalize_avx_gen4,
};

static inline struct
aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
{
	unsigned long align = AESNI_ALIGN;

	if (align <= crypto_tfm_ctx_alignment())
		align = 1;
	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
}

static inline struct
generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm)
{
	unsigned long align = AESNI_ALIGN;

	if (align <= crypto_tfm_ctx_alignment())
		align = 1;
	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
}
#endif

static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
{
	unsigned long addr = (unsigned long)raw_ctx;
	unsigned long align = AESNI_ALIGN;

	if (align <= crypto_tfm_ctx_alignment())
		align = 1;
	return (struct crypto_aes_ctx *)ALIGN(addr, align);
}

static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
			      const u8 *in_key, unsigned int key_len)
{
	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
	int err;

	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
	    key_len != AES_KEYSIZE_256)
		return -EINVAL;

	if (!crypto_simd_usable())
		err = aes_expandkey(ctx, in_key, key_len);
	else {
		kernel_fpu_begin();
		err = aesni_set_key(ctx, in_key, key_len);
		kernel_fpu_end();
	}

	return err;
}

static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
		       unsigned int key_len)
{
	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
}

static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

	if (!crypto_simd_usable()) {
		aes_encrypt(ctx, dst, src);
	} else {
		kernel_fpu_begin();
		aesni_enc(ctx, dst, src);
		kernel_fpu_end();
	}
}

static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

	if (!crypto_simd_usable()) {
		aes_decrypt(ctx, dst, src);
	} else {
		kernel_fpu_begin();
		aesni_dec(ctx, dst, src);
		kernel_fpu_end();
	}
}

static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
			         unsigned int len)
{
	return aes_set_key_common(crypto_skcipher_tfm(tfm),
				  crypto_skcipher_ctx(tfm), key, len);
}

static int ecb_encrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
	struct skcipher_walk walk;
	unsigned int nbytes;
	int err;

	err = skcipher_walk_virt(&walk, req, true);

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes)) {
		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = skcipher_walk_done(&walk, nbytes);
	}
	kernel_fpu_end();

	return err;
}

static int ecb_decrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
	struct skcipher_walk walk;
	unsigned int nbytes;
	int err;

	err = skcipher_walk_virt(&walk, req, true);

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes)) {
		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = skcipher_walk_done(&walk, nbytes);
	}
	kernel_fpu_end();

	return err;
}

static int cbc_encrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
	struct skcipher_walk walk;
	unsigned int nbytes;
	int err;

	err = skcipher_walk_virt(&walk, req, true);

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes)) {
		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK, walk.iv);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = skcipher_walk_done(&walk, nbytes);
	}
	kernel_fpu_end();

	return err;
}

static int cbc_decrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
	struct skcipher_walk walk;
	unsigned int nbytes;
	int err;

	err = skcipher_walk_virt(&walk, req, true);

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes)) {
		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK, walk.iv);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = skcipher_walk_done(&walk, nbytes);
	}
	kernel_fpu_end();

	return err;
}

#ifdef CONFIG_X86_64
static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
			    struct skcipher_walk *walk)
{
	u8 *ctrblk = walk->iv;
	u8 keystream[AES_BLOCK_SIZE];
	u8 *src = walk->src.virt.addr;
	u8 *dst = walk->dst.virt.addr;
	unsigned int nbytes = walk->nbytes;

	aesni_enc(ctx, keystream, ctrblk);
	crypto_xor_cpy(dst, keystream, src, nbytes);

	crypto_inc(ctrblk, AES_BLOCK_SIZE);
}

static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv)
{
	/*
	 * based on key length, override with the by8 version
	 * of ctr mode encryption/decryption for improved performance
	 * aes_set_key_common() ensures that key length is one of
	 * {128,192,256}
	 */
	if (ctx->key_length == AES_KEYSIZE_128)
		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
	else if (ctx->key_length == AES_KEYSIZE_192)
		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
	else
		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
}

static int ctr_crypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
	struct skcipher_walk walk;
	unsigned int nbytes;
	int err;

	err = skcipher_walk_virt(&walk, req, true);

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
		aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			              nbytes & AES_BLOCK_MASK, walk.iv);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = skcipher_walk_done(&walk, nbytes);
	}
	if (walk.nbytes) {
		ctr_crypt_final(ctx, &walk);
		err = skcipher_walk_done(&walk, 0);
	}
	kernel_fpu_end();

	return err;
}

static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
			    unsigned int keylen)
{
	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
	int err;

	err = xts_verify_key(tfm, key, keylen);
	if (err)
		return err;

	keylen /= 2;

	/* first half of xts-key is for crypt */
	err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx,
				 key, keylen);
	if (err)
		return err;

	/* second half of xts-key is for tweak */
	return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx,
				  key + keylen, keylen);
}


static void aesni_xts_enc(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
{
	glue_xts_crypt_128bit_one(ctx, dst, src, iv, aesni_enc);
}

static void aesni_xts_dec(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
{
	glue_xts_crypt_128bit_one(ctx, dst, src, iv, aesni_dec);
}

static void aesni_xts_enc8(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
{
	aesni_xts_crypt8(ctx, dst, src, true, iv);
}

static void aesni_xts_dec8(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
{
	aesni_xts_crypt8(ctx, dst, src, false, iv);
}

static const struct common_glue_ctx aesni_enc_xts = {
	.num_funcs = 2,
	.fpu_blocks_limit = 1,

	.funcs = { {
		.num_blocks = 8,
		.fn_u = { .xts = aesni_xts_enc8 }
	}, {
		.num_blocks = 1,
		.fn_u = { .xts = aesni_xts_enc }
	} }
};

static const struct common_glue_ctx aesni_dec_xts = {
	.num_funcs = 2,
	.fpu_blocks_limit = 1,

	.funcs = { {
		.num_blocks = 8,
		.fn_u = { .xts = aesni_xts_dec8 }
	}, {
		.num_blocks = 1,
		.fn_u = { .xts = aesni_xts_dec }
	} }
};

static int xts_encrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);

	return glue_xts_req_128bit(&aesni_enc_xts, req, aesni_enc,
				   aes_ctx(ctx->raw_tweak_ctx),
				   aes_ctx(ctx->raw_crypt_ctx),
				   false);
}

static int xts_decrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);

	return glue_xts_req_128bit(&aesni_dec_xts, req, aesni_enc,
				   aes_ctx(ctx->raw_tweak_ctx),
				   aes_ctx(ctx->raw_crypt_ctx),
				   true);
}

static int
rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
{
	struct crypto_aes_ctx ctx;
	int ret;

	ret = aes_expandkey(&ctx, key, key_len);
	if (ret)
		return ret;

	/* Clear the data in the hash sub key container to zero.*/
	/* We want to cipher all zeros to create the hash sub key. */
	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);

	aes_encrypt(&ctx, hash_subkey, hash_subkey);

	memzero_explicit(&ctx, sizeof(ctx));
	return 0;
}

static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
				  unsigned int key_len)
{
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);

	if (key_len < 4)
		return -EINVAL;

	/*Account for 4 byte nonce at the end.*/
	key_len -= 4;

	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));

	return aes_set_key_common(crypto_aead_tfm(aead),
				  &ctx->aes_key_expanded, key, key_len) ?:
	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
}

/* This is the Integrity Check Value (aka the authentication tag) length and can
 * be 8, 12 or 16 bytes long. */
static int common_rfc4106_set_authsize(struct crypto_aead *aead,
				       unsigned int authsize)
{
	switch (authsize) {
	case 8:
	case 12:
	case 16:
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
				       unsigned int authsize)
{
	switch (authsize) {
	case 4:
	case 8:
	case 12:
	case 13:
	case 14:
	case 15:
	case 16:
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
			      unsigned int assoclen, u8 *hash_subkey,
			      u8 *iv, void *aes_ctx)
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
	const struct aesni_gcm_tfm_s *gcm_tfm = aesni_gcm_tfm;
	struct gcm_context_data data AESNI_ALIGN_ATTR;
	struct scatter_walk dst_sg_walk = {};
	unsigned long left = req->cryptlen;
	unsigned long len, srclen, dstlen;
	struct scatter_walk assoc_sg_walk;
	struct scatter_walk src_sg_walk;
	struct scatterlist src_start[2];
	struct scatterlist dst_start[2];
	struct scatterlist *src_sg;
	struct scatterlist *dst_sg;
	u8 *src, *dst, *assoc;
	u8 *assocmem = NULL;
	u8 authTag[16];

	if (!enc)
		left -= auth_tag_len;

	if (left < AVX_GEN4_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen4)
		gcm_tfm = &aesni_gcm_tfm_avx_gen2;
	if (left < AVX_GEN2_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen2)
		gcm_tfm = &aesni_gcm_tfm_sse;

	/* Linearize assoc, if not already linear */
	if (req->src->length >= assoclen && req->src->length &&
		(!PageHighMem(sg_page(req->src)) ||
			req->src->offset + req->src->length <= PAGE_SIZE)) {
		scatterwalk_start(&assoc_sg_walk, req->src);
		assoc = scatterwalk_map(&assoc_sg_walk);
	} else {
		/* assoc can be any length, so must be on heap */
		assocmem = kmalloc(assoclen, GFP_ATOMIC);
		if (unlikely(!assocmem))
			return -ENOMEM;
		assoc = assocmem;

		scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0);
	}

	if (left) {
		src_sg = scatterwalk_ffwd(src_start, req->src, req->assoclen);
		scatterwalk_start(&src_sg_walk, src_sg);
		if (req->src != req->dst) {
			dst_sg = scatterwalk_ffwd(dst_start, req->dst,
						  req->assoclen);
			scatterwalk_start(&dst_sg_walk, dst_sg);
		}
	}

	kernel_fpu_begin();
	gcm_tfm->init(aes_ctx, &data, iv,
		hash_subkey, assoc, assoclen);
	if (req->src != req->dst) {
		while (left) {
			src = scatterwalk_map(&src_sg_walk);
			dst = scatterwalk_map(&dst_sg_walk);
			srclen = scatterwalk_clamp(&src_sg_walk, left);
			dstlen = scatterwalk_clamp(&dst_sg_walk, left);
			len = min(srclen, dstlen);
			if (len) {
				if (enc)
					gcm_tfm->enc_update(aes_ctx, &data,
							     dst, src, len);
				else
					gcm_tfm->dec_update(aes_ctx, &data,
							     dst, src, len);
			}
			left -= len;

			scatterwalk_unmap(src);
			scatterwalk_unmap(dst);
			scatterwalk_advance(&src_sg_walk, len);
			scatterwalk_advance(&dst_sg_walk, len);
			scatterwalk_done(&src_sg_walk, 0, left);
			scatterwalk_done(&dst_sg_walk, 1, left);
		}
	} else {
		while (left) {
			dst = src = scatterwalk_map(&src_sg_walk);
			len = scatterwalk_clamp(&src_sg_walk, left);
			if (len) {
				if (enc)
					gcm_tfm->enc_update(aes_ctx, &data,
							     src, src, len);
				else
					gcm_tfm->dec_update(aes_ctx, &data,
							     src, src, len);
			}
			left -= len;
			scatterwalk_unmap(src);
			scatterwalk_advance(&src_sg_walk, len);
			scatterwalk_done(&src_sg_walk, 1, left);
		}
	}
	gcm_tfm->finalize(aes_ctx, &data, authTag, auth_tag_len);
	kernel_fpu_end();

	if (!assocmem)
		scatterwalk_unmap(assoc);
	else
		kfree(assocmem);

	if (!enc) {
		u8 authTagMsg[16];

		/* Copy out original authTag */
		scatterwalk_map_and_copy(authTagMsg, req->src,
					 req->assoclen + req->cryptlen -
					 auth_tag_len,
					 auth_tag_len, 0);

		/* Compare generated tag with passed in tag. */
		return crypto_memneq(authTagMsg, authTag, auth_tag_len) ?
			-EBADMSG : 0;
	}

	/* Copy in the authTag */
	scatterwalk_map_and_copy(authTag, req->dst,
				 req->assoclen + req->cryptlen,
				 auth_tag_len, 1);

	return 0;
}

static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen,
			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
{
	return gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv,
				aes_ctx);
}

static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen,
			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
{
	return gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv,
				aes_ctx);
}

static int helper_rfc4106_encrypt(struct aead_request *req)
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
	void *aes_ctx = &(ctx->aes_key_expanded);
	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
	unsigned int i;
	__be32 counter = cpu_to_be32(1);

	/* Assuming we are supporting rfc4106 64-bit extended */
	/* sequence numbers We need to have the AAD length equal */
	/* to 16 or 20 bytes */
	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
		return -EINVAL;

	/* IV below built */
	for (i = 0; i < 4; i++)
		*(iv+i) = ctx->nonce[i];
	for (i = 0; i < 8; i++)
		*(iv+4+i) = req->iv[i];
	*((__be32 *)(iv+12)) = counter;

	return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
			      aes_ctx);
}

static int helper_rfc4106_decrypt(struct aead_request *req)
{
	__be32 counter = cpu_to_be32(1);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
	void *aes_ctx = &(ctx->aes_key_expanded);
	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
	unsigned int i;

	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
		return -EINVAL;

	/* Assuming we are supporting rfc4106 64-bit extended */
	/* sequence numbers We need to have the AAD length */
	/* equal to 16 or 20 bytes */

	/* IV below built */
	for (i = 0; i < 4; i++)
		*(iv+i) = ctx->nonce[i];
	for (i = 0; i < 8; i++)
		*(iv+4+i) = req->iv[i];
	*((__be32 *)(iv+12)) = counter;

	return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
			      aes_ctx);
}
#endif

static struct crypto_alg aesni_cipher_alg = {
	.cra_name		= "aes",
	.cra_driver_name	= "aes-aesni",
	.cra_priority		= 300,
	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
	.cra_module		= THIS_MODULE,
	.cra_u	= {
		.cipher	= {
			.cia_min_keysize	= AES_MIN_KEY_SIZE,
			.cia_max_keysize	= AES_MAX_KEY_SIZE,
			.cia_setkey		= aes_set_key,
			.cia_encrypt		= aesni_encrypt,
			.cia_decrypt		= aesni_decrypt
		}
	}
};

static struct skcipher_alg aesni_skciphers[] = {
	{
		.base = {
			.cra_name		= "__ecb(aes)",
			.cra_driver_name	= "__ecb-aes-aesni",
			.cra_priority		= 400,
			.cra_flags		= CRYPTO_ALG_INTERNAL,
			.cra_blocksize		= AES_BLOCK_SIZE,
			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
			.cra_module		= THIS_MODULE,
		},
		.min_keysize	= AES_MIN_KEY_SIZE,
		.max_keysize	= AES_MAX_KEY_SIZE,
		.setkey		= aesni_skcipher_setkey,
		.encrypt	= ecb_encrypt,
		.decrypt	= ecb_decrypt,
	}, {
		.base = {
			.cra_name		= "__cbc(aes)",
			.cra_driver_name	= "__cbc-aes-aesni",
			.cra_priority		= 400,
			.cra_flags		= CRYPTO_ALG_INTERNAL,
			.cra_blocksize		= AES_BLOCK_SIZE,
			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
			.cra_module		= THIS_MODULE,
		},
		.min_keysize	= AES_MIN_KEY_SIZE,
		.max_keysize	= AES_MAX_KEY_SIZE,
		.ivsize		= AES_BLOCK_SIZE,
		.setkey		= aesni_skcipher_setkey,
		.encrypt	= cbc_encrypt,
		.decrypt	= cbc_decrypt,
#ifdef CONFIG_X86_64
	}, {
		.base = {
			.cra_name		= "__ctr(aes)",
			.cra_driver_name	= "__ctr-aes-aesni",
			.cra_priority		= 400,
			.cra_flags		= CRYPTO_ALG_INTERNAL,
			.cra_blocksize		= 1,
			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
			.cra_module		= THIS_MODULE,
		},
		.min_keysize	= AES_MIN_KEY_SIZE,
		.max_keysize	= AES_MAX_KEY_SIZE,
		.ivsize		= AES_BLOCK_SIZE,
		.chunksize	= AES_BLOCK_SIZE,
		.setkey		= aesni_skcipher_setkey,
		.encrypt	= ctr_crypt,
		.decrypt	= ctr_crypt,
	}, {
		.base = {
			.cra_name		= "__xts(aes)",
			.cra_driver_name	= "__xts-aes-aesni",
			.cra_priority		= 401,
			.cra_flags		= CRYPTO_ALG_INTERNAL,
			.cra_blocksize		= AES_BLOCK_SIZE,
			.cra_ctxsize		= XTS_AES_CTX_SIZE,
			.cra_module		= THIS_MODULE,
		},
		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
		.ivsize		= AES_BLOCK_SIZE,
		.setkey		= xts_aesni_setkey,
		.encrypt	= xts_encrypt,
		.decrypt	= xts_decrypt,
#endif
	}
};

static
struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];

#ifdef CONFIG_X86_64
static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key,
				  unsigned int key_len)
{
	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead);

	return aes_set_key_common(crypto_aead_tfm(aead),
				  &ctx->aes_key_expanded, key, key_len) ?:
	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
}

static int generic_gcmaes_encrypt(struct aead_request *req)
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
	void *aes_ctx = &(ctx->aes_key_expanded);
	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
	__be32 counter = cpu_to_be32(1);

	memcpy(iv, req->iv, 12);
	*((__be32 *)(iv+12)) = counter;

	return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv,
			      aes_ctx);
}

static int generic_gcmaes_decrypt(struct aead_request *req)
{
	__be32 counter = cpu_to_be32(1);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
	void *aes_ctx = &(ctx->aes_key_expanded);
	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));

	memcpy(iv, req->iv, 12);
	*((__be32 *)(iv+12)) = counter;

	return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv,
			      aes_ctx);
}

static struct aead_alg aesni_aeads[] = { {
	.setkey			= common_rfc4106_set_key,
	.setauthsize		= common_rfc4106_set_authsize,
	.encrypt		= helper_rfc4106_encrypt,
	.decrypt		= helper_rfc4106_decrypt,
	.ivsize			= GCM_RFC4106_IV_SIZE,
	.maxauthsize		= 16,
	.base = {
		.cra_name		= "__rfc4106(gcm(aes))",
		.cra_driver_name	= "__rfc4106-gcm-aesni",
		.cra_priority		= 400,
		.cra_flags		= CRYPTO_ALG_INTERNAL,
		.cra_blocksize		= 1,
		.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx),
		.cra_alignmask		= AESNI_ALIGN - 1,
		.cra_module		= THIS_MODULE,
	},
}, {
	.setkey			= generic_gcmaes_set_key,
	.setauthsize		= generic_gcmaes_set_authsize,
	.encrypt		= generic_gcmaes_encrypt,
	.decrypt		= generic_gcmaes_decrypt,
	.ivsize			= GCM_AES_IV_SIZE,
	.maxauthsize		= 16,
	.base = {
		.cra_name		= "__gcm(aes)",
		.cra_driver_name	= "__generic-gcm-aesni",
		.cra_priority		= 400,
		.cra_flags		= CRYPTO_ALG_INTERNAL,
		.cra_blocksize		= 1,
		.cra_ctxsize		= sizeof(struct generic_gcmaes_ctx),
		.cra_alignmask		= AESNI_ALIGN - 1,
		.cra_module		= THIS_MODULE,
	},
} };
#else
static struct aead_alg aesni_aeads[0];
#endif

static struct simd_aead_alg *aesni_simd_aeads[ARRAY_SIZE(aesni_aeads)];

static const struct x86_cpu_id aesni_cpu_id[] = {
	X86_MATCH_FEATURE(X86_FEATURE_AES, NULL),
	{}
};
MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);

static int __init aesni_init(void)
{
	int err;

	if (!x86_match_cpu(aesni_cpu_id))
		return -ENODEV;
#ifdef CONFIG_X86_64
	if (boot_cpu_has(X86_FEATURE_AVX2)) {
		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
		aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen4;
	} else
	if (boot_cpu_has(X86_FEATURE_AVX)) {
		pr_info("AVX version of gcm_enc/dec engaged.\n");
		aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen2;
	} else {
		pr_info("SSE version of gcm_enc/dec engaged.\n");
		aesni_gcm_tfm = &aesni_gcm_tfm_sse;
	}
	aesni_ctr_enc_tfm = aesni_ctr_enc;
	if (boot_cpu_has(X86_FEATURE_AVX)) {
		/* optimize performance of ctr mode encryption transform */
		aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
		pr_info("AES CTR mode by8 optimization enabled\n");
	}
#endif

	err = crypto_register_alg(&aesni_cipher_alg);
	if (err)
		return err;

	err = simd_register_skciphers_compat(aesni_skciphers,
					     ARRAY_SIZE(aesni_skciphers),
					     aesni_simd_skciphers);
	if (err)
		goto unregister_cipher;

	err = simd_register_aeads_compat(aesni_aeads, ARRAY_SIZE(aesni_aeads),
					 aesni_simd_aeads);
	if (err)
		goto unregister_skciphers;

	return 0;

unregister_skciphers:
	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
				  aesni_simd_skciphers);
unregister_cipher:
	crypto_unregister_alg(&aesni_cipher_alg);
	return err;
}

static void __exit aesni_exit(void)
{
	simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads),
			      aesni_simd_aeads);
	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
				  aesni_simd_skciphers);
	crypto_unregister_alg(&aesni_cipher_alg);
}

late_initcall(aesni_init);
module_exit(aesni_exit);

MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("aes");