clk-kona-setup.c 21.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
/*
 * Copyright (C) 2013 Broadcom Corporation
 * Copyright 2013 Linaro Limited
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/io.h>
#include <linux/of_address.h>

#include "clk-kona.h"

/* These are used when a selector or trigger is found to be unneeded */
#define selector_clear_exists(sel)	((sel)->width = 0)
#define trigger_clear_exists(trig)	FLAG_CLEAR(trig, TRIG, EXISTS)

/* Validity checking */

static bool ccu_data_offsets_valid(struct ccu_data *ccu)
{
	struct ccu_policy *ccu_policy = &ccu->policy;
	u32 limit;

	limit = ccu->range - sizeof(u32);
	limit = round_down(limit, sizeof(u32));
	if (ccu_policy_exists(ccu_policy)) {
		if (ccu_policy->enable.offset > limit) {
			pr_err("%s: bad policy enable offset for %s "
					"(%u > %u)\n", __func__,
				ccu->name, ccu_policy->enable.offset, limit);
			return false;
		}
		if (ccu_policy->control.offset > limit) {
			pr_err("%s: bad policy control offset for %s "
					"(%u > %u)\n", __func__,
				ccu->name, ccu_policy->control.offset, limit);
			return false;
		}
	}

	return true;
}

static bool clk_requires_trigger(struct kona_clk *bcm_clk)
{
	struct peri_clk_data *peri = bcm_clk->u.peri;
	struct bcm_clk_sel *sel;
	struct bcm_clk_div *div;

	if (bcm_clk->type != bcm_clk_peri)
		return false;

	sel = &peri->sel;
	if (sel->parent_count && selector_exists(sel))
		return true;

	div = &peri->div;
	if (!divider_exists(div))
		return false;

	/* Fixed dividers don't need triggers */
	if (!divider_is_fixed(div))
		return true;

	div = &peri->pre_div;

	return divider_exists(div) && !divider_is_fixed(div);
}

static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk)
{
	struct peri_clk_data *peri;
	struct bcm_clk_policy *policy;
	struct bcm_clk_gate *gate;
	struct bcm_clk_hyst *hyst;
	struct bcm_clk_div *div;
	struct bcm_clk_sel *sel;
	struct bcm_clk_trig *trig;
	const char *name;
	u32 range;
	u32 limit;

	BUG_ON(bcm_clk->type != bcm_clk_peri);
	peri = bcm_clk->u.peri;
	name = bcm_clk->init_data.name;
	range = bcm_clk->ccu->range;

	limit = range - sizeof(u32);
	limit = round_down(limit, sizeof(u32));

	policy = &peri->policy;
	if (policy_exists(policy)) {
		if (policy->offset > limit) {
			pr_err("%s: bad policy offset for %s (%u > %u)\n",
				__func__, name, policy->offset, limit);
			return false;
		}
	}

	gate = &peri->gate;
	hyst = &peri->hyst;
	if (gate_exists(gate)) {
		if (gate->offset > limit) {
			pr_err("%s: bad gate offset for %s (%u > %u)\n",
				__func__, name, gate->offset, limit);
			return false;
		}

		if (hyst_exists(hyst)) {
			if (hyst->offset > limit) {
				pr_err("%s: bad hysteresis offset for %s "
					"(%u > %u)\n", __func__,
					name, hyst->offset, limit);
				return false;
			}
		}
	} else if (hyst_exists(hyst)) {
		pr_err("%s: hysteresis but no gate for %s\n", __func__, name);
		return false;
	}

	div = &peri->div;
	if (divider_exists(div)) {
		if (div->u.s.offset > limit) {
			pr_err("%s: bad divider offset for %s (%u > %u)\n",
				__func__, name, div->u.s.offset, limit);
			return false;
		}
	}

	div = &peri->pre_div;
	if (divider_exists(div)) {
		if (div->u.s.offset > limit) {
			pr_err("%s: bad pre-divider offset for %s "
					"(%u > %u)\n",
				__func__, name, div->u.s.offset, limit);
			return false;
		}
	}

	sel = &peri->sel;
	if (selector_exists(sel)) {
		if (sel->offset > limit) {
			pr_err("%s: bad selector offset for %s (%u > %u)\n",
				__func__, name, sel->offset, limit);
			return false;
		}
	}

	trig = &peri->trig;
	if (trigger_exists(trig)) {
		if (trig->offset > limit) {
			pr_err("%s: bad trigger offset for %s (%u > %u)\n",
				__func__, name, trig->offset, limit);
			return false;
		}
	}

	trig = &peri->pre_trig;
	if (trigger_exists(trig)) {
		if (trig->offset > limit) {
			pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n",
				__func__, name, trig->offset, limit);
			return false;
		}
	}

	return true;
}

/* A bit position must be less than the number of bits in a 32-bit register. */
static bool bit_posn_valid(u32 bit_posn, const char *field_name,
			const char *clock_name)
{
	u32 limit = BITS_PER_BYTE * sizeof(u32) - 1;

	if (bit_posn > limit) {
		pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__,
			field_name, clock_name, bit_posn, limit);
		return false;
	}
	return true;
}

/*
 * A bitfield must be at least 1 bit wide.  Both the low-order and
 * high-order bits must lie within a 32-bit register.  We require
 * fields to be less than 32 bits wide, mainly because we use
 * shifting to produce field masks, and shifting a full word width
 * is not well-defined by the C standard.
 */
static bool bitfield_valid(u32 shift, u32 width, const char *field_name,
			const char *clock_name)
{
	u32 limit = BITS_PER_BYTE * sizeof(u32);

	if (!width) {
		pr_err("%s: bad %s field width 0 for %s\n", __func__,
			field_name, clock_name);
		return false;
	}
	if (shift + width > limit) {
		pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__,
			field_name, clock_name, shift, width, limit);
		return false;
	}
	return true;
}

static bool
ccu_policy_valid(struct ccu_policy *ccu_policy, const char *ccu_name)
{
	struct bcm_lvm_en *enable = &ccu_policy->enable;
	struct bcm_policy_ctl *control;

	if (!bit_posn_valid(enable->bit, "policy enable", ccu_name))
		return false;

	control = &ccu_policy->control;
	if (!bit_posn_valid(control->go_bit, "policy control GO", ccu_name))
		return false;

	if (!bit_posn_valid(control->atl_bit, "policy control ATL", ccu_name))
		return false;

	if (!bit_posn_valid(control->ac_bit, "policy control AC", ccu_name))
		return false;

	return true;
}

static bool policy_valid(struct bcm_clk_policy *policy, const char *clock_name)
{
	if (!bit_posn_valid(policy->bit, "policy", clock_name))
		return false;

	return true;
}

/*
 * All gates, if defined, have a status bit, and for hardware-only
 * gates, that's it.  Gates that can be software controlled also
 * have an enable bit.  And a gate that can be hardware or software
 * controlled will have a hardware/software select bit.
 */
static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name,
			const char *clock_name)
{
	if (!bit_posn_valid(gate->status_bit, "gate status", clock_name))
		return false;

	if (gate_is_sw_controllable(gate)) {
		if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name))
			return false;

		if (gate_is_hw_controllable(gate)) {
			if (!bit_posn_valid(gate->hw_sw_sel_bit,
						"gate hw/sw select",
						clock_name))
				return false;
		}
	} else {
		BUG_ON(!gate_is_hw_controllable(gate));
	}

	return true;
}

static bool hyst_valid(struct bcm_clk_hyst *hyst, const char *clock_name)
{
	if (!bit_posn_valid(hyst->en_bit, "hysteresis enable", clock_name))
		return false;

	if (!bit_posn_valid(hyst->val_bit, "hysteresis value", clock_name))
		return false;

	return true;
}

/*
 * A selector bitfield must be valid.  Its parent_sel array must
 * also be reasonable for the field.
 */
static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name,
			const char *clock_name)
{
	if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name))
		return false;

	if (sel->parent_count) {
		u32 max_sel;
		u32 limit;

		/*
		 * Make sure the selector field can hold all the
		 * selector values we expect to be able to use.  A
		 * clock only needs to have a selector defined if it
		 * has more than one parent.  And in that case the
		 * highest selector value will be in the last entry
		 * in the array.
		 */
		max_sel = sel->parent_sel[sel->parent_count - 1];
		limit = (1 << sel->width) - 1;
		if (max_sel > limit) {
			pr_err("%s: bad selector for %s "
					"(%u needs > %u bits)\n",
				__func__, clock_name, max_sel,
				sel->width);
			return false;
		}
	} else {
		pr_warn("%s: ignoring selector for %s (no parents)\n",
			__func__, clock_name);
		selector_clear_exists(sel);
		kfree(sel->parent_sel);
		sel->parent_sel = NULL;
	}

	return true;
}

/*
 * A fixed divider just needs to be non-zero.  A variable divider
 * has to have a valid divider bitfield, and if it has a fraction,
 * the width of the fraction must not be no more than the width of
 * the divider as a whole.
 */
static bool div_valid(struct bcm_clk_div *div, const char *field_name,
			const char *clock_name)
{
	if (divider_is_fixed(div)) {
		/* Any fixed divider value but 0 is OK */
		if (div->u.fixed == 0) {
			pr_err("%s: bad %s fixed value 0 for %s\n", __func__,
				field_name, clock_name);
			return false;
		}
		return true;
	}
	if (!bitfield_valid(div->u.s.shift, div->u.s.width,
				field_name, clock_name))
		return false;

	if (divider_has_fraction(div))
		if (div->u.s.frac_width > div->u.s.width) {
			pr_warn("%s: bad %s fraction width for %s (%u > %u)\n",
				__func__, field_name, clock_name,
				div->u.s.frac_width, div->u.s.width);
			return false;
		}

	return true;
}

/*
 * If a clock has two dividers, the combined number of fractional
 * bits must be representable in a 32-bit unsigned value.  This
 * is because we scale up a dividend using both dividers before
 * dividing to improve accuracy, and we need to avoid overflow.
 */
static bool kona_dividers_valid(struct kona_clk *bcm_clk)
{
	struct peri_clk_data *peri = bcm_clk->u.peri;
	struct bcm_clk_div *div;
	struct bcm_clk_div *pre_div;
	u32 limit;

	BUG_ON(bcm_clk->type != bcm_clk_peri);

	if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div))
		return true;

	div = &peri->div;
	pre_div = &peri->pre_div;
	if (divider_is_fixed(div) || divider_is_fixed(pre_div))
		return true;

	limit = BITS_PER_BYTE * sizeof(u32);

	return div->u.s.frac_width + pre_div->u.s.frac_width <= limit;
}


/* A trigger just needs to represent a valid bit position */
static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name,
			const char *clock_name)
{
	return bit_posn_valid(trig->bit, field_name, clock_name);
}

/* Determine whether the set of peripheral clock registers are valid. */
static bool
peri_clk_data_valid(struct kona_clk *bcm_clk)
{
	struct peri_clk_data *peri;
	struct bcm_clk_policy *policy;
	struct bcm_clk_gate *gate;
	struct bcm_clk_hyst *hyst;
	struct bcm_clk_sel *sel;
	struct bcm_clk_div *div;
	struct bcm_clk_div *pre_div;
	struct bcm_clk_trig *trig;
	const char *name;

	BUG_ON(bcm_clk->type != bcm_clk_peri);

	/*
	 * First validate register offsets.  This is the only place
	 * where we need something from the ccu, so we do these
	 * together.
	 */
	if (!peri_clk_data_offsets_valid(bcm_clk))
		return false;

	peri = bcm_clk->u.peri;
	name = bcm_clk->init_data.name;

	policy = &peri->policy;
	if (policy_exists(policy) && !policy_valid(policy, name))
		return false;

	gate = &peri->gate;
	if (gate_exists(gate) && !gate_valid(gate, "gate", name))
		return false;

	hyst = &peri->hyst;
	if (hyst_exists(hyst) && !hyst_valid(hyst, name))
		return false;

	sel = &peri->sel;
	if (selector_exists(sel)) {
		if (!sel_valid(sel, "selector", name))
			return false;

	} else if (sel->parent_count > 1) {
		pr_err("%s: multiple parents but no selector for %s\n",
			__func__, name);

		return false;
	}

	div = &peri->div;
	pre_div = &peri->pre_div;
	if (divider_exists(div)) {
		if (!div_valid(div, "divider", name))
			return false;

		if (divider_exists(pre_div))
			if (!div_valid(pre_div, "pre-divider", name))
				return false;
	} else if (divider_exists(pre_div)) {
		pr_err("%s: pre-divider but no divider for %s\n", __func__,
			name);
		return false;
	}

	trig = &peri->trig;
	if (trigger_exists(trig)) {
		if (!trig_valid(trig, "trigger", name))
			return false;

		if (trigger_exists(&peri->pre_trig)) {
			if (!trig_valid(trig, "pre-trigger", name)) {
				return false;
			}
		}
		if (!clk_requires_trigger(bcm_clk)) {
			pr_warn("%s: ignoring trigger for %s (not needed)\n",
				__func__, name);
			trigger_clear_exists(trig);
		}
	} else if (trigger_exists(&peri->pre_trig)) {
		pr_err("%s: pre-trigger but no trigger for %s\n", __func__,
			name);
		return false;
	} else if (clk_requires_trigger(bcm_clk)) {
		pr_err("%s: required trigger missing for %s\n", __func__,
			name);
		return false;
	}

	return kona_dividers_valid(bcm_clk);
}

static bool kona_clk_valid(struct kona_clk *bcm_clk)
{
	switch (bcm_clk->type) {
	case bcm_clk_peri:
		if (!peri_clk_data_valid(bcm_clk))
			return false;
		break;
	default:
		pr_err("%s: unrecognized clock type (%d)\n", __func__,
			(int)bcm_clk->type);
		return false;
	}
	return true;
}

/*
 * Scan an array of parent clock names to determine whether there
 * are any entries containing BAD_CLK_NAME.  Such entries are
 * placeholders for non-supported clocks.  Keep track of the
 * position of each clock name in the original array.
 *
 * Allocates an array of pointers to to hold the names of all
 * non-null entries in the original array, and returns a pointer to
 * that array in *names.  This will be used for registering the
 * clock with the common clock code.  On successful return,
 * *count indicates how many entries are in that names array.
 *
 * If there is more than one entry in the resulting names array,
 * another array is allocated to record the parent selector value
 * for each (defined) parent clock.  This is the value that
 * represents this parent clock in the clock's source selector
 * register.  The position of the clock in the original parent array
 * defines that selector value.  The number of entries in this array
 * is the same as the number of entries in the parent names array.
 *
 * The array of selector values is returned.  If the clock has no
 * parents, no selector is required and a null pointer is returned.
 *
 * Returns a null pointer if the clock names array supplied was
 * null.  (This is not an error.)
 *
 * Returns a pointer-coded error if an error occurs.
 */
static u32 *parent_process(const char *clocks[],
			u32 *count, const char ***names)
{
	static const char **parent_names;
	static u32 *parent_sel;
	const char **clock;
	u32 parent_count;
	u32 bad_count = 0;
	u32 orig_count;
	u32 i;
	u32 j;

	*count = 0;	/* In case of early return */
	*names = NULL;
	if (!clocks)
		return NULL;

	/*
	 * Count the number of names in the null-terminated array,
	 * and find out how many of those are actually clock names.
	 */
	for (clock = clocks; *clock; clock++)
		if (*clock == BAD_CLK_NAME)
			bad_count++;
	orig_count = (u32)(clock - clocks);
	parent_count = orig_count - bad_count;

	/* If all clocks are unsupported, we treat it as no clock */
	if (!parent_count)
		return NULL;

	/* Avoid exceeding our parent clock limit */
	if (parent_count > PARENT_COUNT_MAX) {
		pr_err("%s: too many parents (%u > %u)\n", __func__,
			parent_count, PARENT_COUNT_MAX);
		return ERR_PTR(-EINVAL);
	}

	/*
	 * There is one parent name for each defined parent clock.
	 * We also maintain an array containing the selector value
	 * for each defined clock.  If there's only one clock, the
	 * selector is not required, but we allocate space for the
	 * array anyway to keep things simple.
	 */
	parent_names = kmalloc_array(parent_count, sizeof(*parent_names),
			       GFP_KERNEL);
	if (!parent_names)
		return ERR_PTR(-ENOMEM);

	/* There is at least one parent, so allocate a selector array */
	parent_sel = kmalloc_array(parent_count, sizeof(*parent_sel),
				   GFP_KERNEL);
	if (!parent_sel) {
		kfree(parent_names);

		return ERR_PTR(-ENOMEM);
	}

	/* Now fill in the parent names and selector arrays */
	for (i = 0, j = 0; i < orig_count; i++) {
		if (clocks[i] != BAD_CLK_NAME) {
			parent_names[j] = clocks[i];
			parent_sel[j] = i;
			j++;
		}
	}
	*names = parent_names;
	*count = parent_count;

	return parent_sel;
}

static int
clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel,
		struct clk_init_data *init_data)
{
	const char **parent_names = NULL;
	u32 parent_count = 0;
	u32 *parent_sel;

	/*
	 * If a peripheral clock has multiple parents, the value
	 * used by the hardware to select that parent is represented
	 * by the parent clock's position in the "clocks" list.  Some
	 * values don't have defined or supported clocks; these will
	 * have BAD_CLK_NAME entries in the parents[] array.  The
	 * list is terminated by a NULL entry.
	 *
	 * We need to supply (only) the names of defined parent
	 * clocks when registering a clock though, so we use an
	 * array of parent selector values to map between the
	 * indexes the common clock code uses and the selector
	 * values we need.
	 */
	parent_sel = parent_process(clocks, &parent_count, &parent_names);
	if (IS_ERR(parent_sel)) {
		int ret = PTR_ERR(parent_sel);

		pr_err("%s: error processing parent clocks for %s (%d)\n",
			__func__, init_data->name, ret);

		return ret;
	}

	init_data->parent_names = parent_names;
	init_data->num_parents = parent_count;

	sel->parent_count = parent_count;
	sel->parent_sel = parent_sel;

	return 0;
}

static void clk_sel_teardown(struct bcm_clk_sel *sel,
		struct clk_init_data *init_data)
{
	kfree(sel->parent_sel);
	sel->parent_sel = NULL;
	sel->parent_count = 0;

	init_data->num_parents = 0;
	kfree(init_data->parent_names);
	init_data->parent_names = NULL;
}

static void peri_clk_teardown(struct peri_clk_data *data,
				struct clk_init_data *init_data)
{
	clk_sel_teardown(&data->sel, init_data);
}

/*
 * Caller is responsible for freeing the parent_names[] and
 * parent_sel[] arrays in the peripheral clock's "data" structure
 * that can be assigned if the clock has one or more parent clocks
 * associated with it.
 */
static int
peri_clk_setup(struct peri_clk_data *data, struct clk_init_data *init_data)
{
	init_data->flags = CLK_IGNORE_UNUSED;

	return clk_sel_setup(data->clocks, &data->sel, init_data);
}

static void bcm_clk_teardown(struct kona_clk *bcm_clk)
{
	switch (bcm_clk->type) {
	case bcm_clk_peri:
		peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data);
		break;
	default:
		break;
	}
	bcm_clk->u.data = NULL;
	bcm_clk->type = bcm_clk_none;
}

static void kona_clk_teardown(struct clk_hw *hw)
{
	struct kona_clk *bcm_clk;

	if (!hw)
		return;

	clk_hw_unregister(hw);

	bcm_clk = to_kona_clk(hw);
	bcm_clk_teardown(bcm_clk);
}

static int kona_clk_setup(struct kona_clk *bcm_clk)
{
	int ret;
	struct clk_init_data *init_data = &bcm_clk->init_data;

	switch (bcm_clk->type) {
	case bcm_clk_peri:
		ret = peri_clk_setup(bcm_clk->u.data, init_data);
		if (ret)
			return ret;
		break;
	default:
		pr_err("%s: clock type %d invalid for %s\n", __func__,
			(int)bcm_clk->type, init_data->name);
		return -EINVAL;
	}

	/* Make sure everything makes sense before we set it up */
	if (!kona_clk_valid(bcm_clk)) {
		pr_err("%s: clock data invalid for %s\n", __func__,
			init_data->name);
		ret = -EINVAL;
		goto out_teardown;
	}

	bcm_clk->hw.init = init_data;
	ret = clk_hw_register(NULL, &bcm_clk->hw);
	if (ret) {
		pr_err("%s: error registering clock %s (%d)\n", __func__,
			init_data->name, ret);
		goto out_teardown;
	}

	return 0;
out_teardown:
	bcm_clk_teardown(bcm_clk);

	return ret;
}

static void ccu_clks_teardown(struct ccu_data *ccu)
{
	u32 i;

	for (i = 0; i < ccu->clk_num; i++)
		kona_clk_teardown(&ccu->kona_clks[i].hw);
}

static void kona_ccu_teardown(struct ccu_data *ccu)
{
	if (!ccu->base)
		return;

	of_clk_del_provider(ccu->node);	/* safe if never added */
	ccu_clks_teardown(ccu);
	of_node_put(ccu->node);
	ccu->node = NULL;
	iounmap(ccu->base);
	ccu->base = NULL;
}

static bool ccu_data_valid(struct ccu_data *ccu)
{
	struct ccu_policy *ccu_policy;

	if (!ccu_data_offsets_valid(ccu))
		return false;

	ccu_policy = &ccu->policy;
	if (ccu_policy_exists(ccu_policy))
		if (!ccu_policy_valid(ccu_policy, ccu->name))
			return false;

	return true;
}

static struct clk_hw *
of_clk_kona_onecell_get(struct of_phandle_args *clkspec, void *data)
{
	struct ccu_data *ccu = data;
	unsigned int idx = clkspec->args[0];

	if (idx >= ccu->clk_num) {
		pr_err("%s: invalid index %u\n", __func__, idx);
		return ERR_PTR(-EINVAL);
	}

	return &ccu->kona_clks[idx].hw;
}

/*
 * Set up a CCU.  Call the provided ccu_clks_setup callback to
 * initialize the array of clocks provided by the CCU.
 */
void __init kona_dt_ccu_setup(struct ccu_data *ccu,
			struct device_node *node)
{
	struct resource res = { 0 };
	resource_size_t range;
	unsigned int i;
	int ret;

	ret = of_address_to_resource(node, 0, &res);
	if (ret) {
		pr_err("%s: no valid CCU registers found for %pOFn\n", __func__,
			node);
		goto out_err;
	}

	range = resource_size(&res);
	if (range > (resource_size_t)U32_MAX) {
		pr_err("%s: address range too large for %pOFn\n", __func__,
			node);
		goto out_err;
	}

	ccu->range = (u32)range;

	if (!ccu_data_valid(ccu)) {
		pr_err("%s: ccu data not valid for %pOFn\n", __func__, node);
		goto out_err;
	}

	ccu->base = ioremap(res.start, ccu->range);
	if (!ccu->base) {
		pr_err("%s: unable to map CCU registers for %pOFn\n", __func__,
			node);
		goto out_err;
	}
	ccu->node = of_node_get(node);

	/*
	 * Set up each defined kona clock and save the result in
	 * the clock framework clock array (in ccu->data).  Then
	 * register as a provider for these clocks.
	 */
	for (i = 0; i < ccu->clk_num; i++) {
		if (!ccu->kona_clks[i].ccu)
			continue;
		kona_clk_setup(&ccu->kona_clks[i]);
	}

	ret = of_clk_add_hw_provider(node, of_clk_kona_onecell_get, ccu);
	if (ret) {
		pr_err("%s: error adding ccu %pOFn as provider (%d)\n", __func__,
				node, ret);
		goto out_err;
	}

	if (!kona_ccu_init(ccu))
		pr_err("Broadcom %pOFn initialization had errors\n", node);

	return;
out_err:
	kona_ccu_teardown(ccu);
	pr_err("Broadcom %pOFn setup aborted\n", node);
}