tegra30-devfreq.c 24 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
// SPDX-License-Identifier: GPL-2.0-only
/*
 * A devfreq driver for NVIDIA Tegra SoCs
 *
 * Copyright (c) 2014 NVIDIA CORPORATION. All rights reserved.
 * Copyright (C) 2014 Google, Inc
 */

#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/devfreq.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/reset.h>
#include <linux/workqueue.h>

#include "governor.h"

#define ACTMON_GLB_STATUS					0x0
#define ACTMON_GLB_PERIOD_CTRL					0x4

#define ACTMON_DEV_CTRL						0x0
#define ACTMON_DEV_CTRL_K_VAL_SHIFT				10
#define ACTMON_DEV_CTRL_ENB_PERIODIC				BIT(18)
#define ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN			BIT(20)
#define ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN			BIT(21)
#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT	23
#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT	26
#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN		BIT(29)
#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN		BIT(30)
#define ACTMON_DEV_CTRL_ENB					BIT(31)

#define ACTMON_DEV_CTRL_STOP					0x00000000

#define ACTMON_DEV_UPPER_WMARK					0x4
#define ACTMON_DEV_LOWER_WMARK					0x8
#define ACTMON_DEV_INIT_AVG					0xc
#define ACTMON_DEV_AVG_UPPER_WMARK				0x10
#define ACTMON_DEV_AVG_LOWER_WMARK				0x14
#define ACTMON_DEV_COUNT_WEIGHT					0x18
#define ACTMON_DEV_AVG_COUNT					0x20
#define ACTMON_DEV_INTR_STATUS					0x24

#define ACTMON_INTR_STATUS_CLEAR				0xffffffff

#define ACTMON_DEV_INTR_CONSECUTIVE_UPPER			BIT(31)
#define ACTMON_DEV_INTR_CONSECUTIVE_LOWER			BIT(30)

#define ACTMON_ABOVE_WMARK_WINDOW				1
#define ACTMON_BELOW_WMARK_WINDOW				3
#define ACTMON_BOOST_FREQ_STEP					16000

/*
 * Activity counter is incremented every 256 memory transactions, and each
 * transaction takes 4 EMC clocks for Tegra124; So the COUNT_WEIGHT is
 * 4 * 256 = 1024.
 */
#define ACTMON_COUNT_WEIGHT					0x400

/*
 * ACTMON_AVERAGE_WINDOW_LOG2: default value for @DEV_CTRL_K_VAL, which
 * translates to 2 ^ (K_VAL + 1). ex: 2 ^ (6 + 1) = 128
 */
#define ACTMON_AVERAGE_WINDOW_LOG2			6
#define ACTMON_SAMPLING_PERIOD				12 /* ms */
#define ACTMON_DEFAULT_AVG_BAND				6  /* 1/10 of % */

#define KHZ							1000

#define KHZ_MAX						(ULONG_MAX / KHZ)

/* Assume that the bus is saturated if the utilization is 25% */
#define BUS_SATURATION_RATIO					25

/**
 * struct tegra_devfreq_device_config - configuration specific to an ACTMON
 * device
 *
 * Coefficients and thresholds are percentages unless otherwise noted
 */
struct tegra_devfreq_device_config {
	u32		offset;
	u32		irq_mask;

	/* Factors applied to boost_freq every consecutive watermark breach */
	unsigned int	boost_up_coeff;
	unsigned int	boost_down_coeff;

	/* Define the watermark bounds when applied to the current avg */
	unsigned int	boost_up_threshold;
	unsigned int	boost_down_threshold;

	/*
	 * Threshold of activity (cycles translated to kHz) below which the
	 * CPU frequency isn't to be taken into account. This is to avoid
	 * increasing the EMC frequency when the CPU is very busy but not
	 * accessing the bus often.
	 */
	u32		avg_dependency_threshold;
};

enum tegra_actmon_device {
	MCALL = 0,
	MCCPU,
};

static const struct tegra_devfreq_device_config actmon_device_configs[] = {
	{
		/* MCALL: All memory accesses (including from the CPUs) */
		.offset = 0x1c0,
		.irq_mask = 1 << 26,
		.boost_up_coeff = 200,
		.boost_down_coeff = 50,
		.boost_up_threshold = 60,
		.boost_down_threshold = 40,
	},
	{
		/* MCCPU: memory accesses from the CPUs */
		.offset = 0x200,
		.irq_mask = 1 << 25,
		.boost_up_coeff = 800,
		.boost_down_coeff = 40,
		.boost_up_threshold = 27,
		.boost_down_threshold = 10,
		.avg_dependency_threshold = 16000, /* 16MHz in kHz units */
	},
};

/**
 * struct tegra_devfreq_device - state specific to an ACTMON device
 *
 * Frequencies are in kHz.
 */
struct tegra_devfreq_device {
	const struct tegra_devfreq_device_config *config;
	void __iomem *regs;

	/* Average event count sampled in the last interrupt */
	u32 avg_count;

	/*
	 * Extra frequency to increase the target by due to consecutive
	 * watermark breaches.
	 */
	unsigned long boost_freq;

	/* Optimal frequency calculated from the stats for this device */
	unsigned long target_freq;
};

struct tegra_devfreq {
	struct devfreq		*devfreq;

	struct reset_control	*reset;
	struct clk		*clock;
	void __iomem		*regs;

	struct clk		*emc_clock;
	unsigned long		max_freq;
	unsigned long		cur_freq;
	struct notifier_block	clk_rate_change_nb;

	struct delayed_work	cpufreq_update_work;
	struct notifier_block	cpu_rate_change_nb;

	struct tegra_devfreq_device devices[ARRAY_SIZE(actmon_device_configs)];

	unsigned int		irq;

	bool			started;
};

struct tegra_actmon_emc_ratio {
	unsigned long cpu_freq;
	unsigned long emc_freq;
};

static const struct tegra_actmon_emc_ratio actmon_emc_ratios[] = {
	{ 1400000,    KHZ_MAX },
	{ 1200000,    750000 },
	{ 1100000,    600000 },
	{ 1000000,    500000 },
	{  800000,    375000 },
	{  500000,    200000 },
	{  250000,    100000 },
};

static u32 actmon_readl(struct tegra_devfreq *tegra, u32 offset)
{
	return readl_relaxed(tegra->regs + offset);
}

static void actmon_writel(struct tegra_devfreq *tegra, u32 val, u32 offset)
{
	writel_relaxed(val, tegra->regs + offset);
}

static u32 device_readl(struct tegra_devfreq_device *dev, u32 offset)
{
	return readl_relaxed(dev->regs + offset);
}

static void device_writel(struct tegra_devfreq_device *dev, u32 val,
			  u32 offset)
{
	writel_relaxed(val, dev->regs + offset);
}

static unsigned long do_percent(unsigned long long val, unsigned int pct)
{
	val = val * pct;
	do_div(val, 100);

	/*
	 * High freq + high boosting percent + large polling interval are
	 * resulting in integer overflow when watermarks are calculated.
	 */
	return min_t(u64, val, U32_MAX);
}

static void tegra_devfreq_update_avg_wmark(struct tegra_devfreq *tegra,
					   struct tegra_devfreq_device *dev)
{
	u32 avg_band_freq = tegra->max_freq * ACTMON_DEFAULT_AVG_BAND / KHZ;
	u32 band = avg_band_freq * tegra->devfreq->profile->polling_ms;
	u32 avg;

	avg = min(dev->avg_count, U32_MAX - band);
	device_writel(dev, avg + band, ACTMON_DEV_AVG_UPPER_WMARK);

	avg = max(dev->avg_count, band);
	device_writel(dev, avg - band, ACTMON_DEV_AVG_LOWER_WMARK);
}

static void tegra_devfreq_update_wmark(struct tegra_devfreq *tegra,
				       struct tegra_devfreq_device *dev)
{
	u32 val = tegra->cur_freq * tegra->devfreq->profile->polling_ms;

	device_writel(dev, do_percent(val, dev->config->boost_up_threshold),
		      ACTMON_DEV_UPPER_WMARK);

	device_writel(dev, do_percent(val, dev->config->boost_down_threshold),
		      ACTMON_DEV_LOWER_WMARK);
}

static void actmon_isr_device(struct tegra_devfreq *tegra,
			      struct tegra_devfreq_device *dev)
{
	u32 intr_status, dev_ctrl;

	dev->avg_count = device_readl(dev, ACTMON_DEV_AVG_COUNT);
	tegra_devfreq_update_avg_wmark(tegra, dev);

	intr_status = device_readl(dev, ACTMON_DEV_INTR_STATUS);
	dev_ctrl = device_readl(dev, ACTMON_DEV_CTRL);

	if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_UPPER) {
		/*
		 * new_boost = min(old_boost * up_coef + step, max_freq)
		 */
		dev->boost_freq = do_percent(dev->boost_freq,
					     dev->config->boost_up_coeff);
		dev->boost_freq += ACTMON_BOOST_FREQ_STEP;

		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;

		if (dev->boost_freq >= tegra->max_freq) {
			dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
			dev->boost_freq = tegra->max_freq;
		}
	} else if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_LOWER) {
		/*
		 * new_boost = old_boost * down_coef
		 * or 0 if (old_boost * down_coef < step / 2)
		 */
		dev->boost_freq = do_percent(dev->boost_freq,
					     dev->config->boost_down_coeff);

		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;

		if (dev->boost_freq < (ACTMON_BOOST_FREQ_STEP >> 1)) {
			dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
			dev->boost_freq = 0;
		}
	}

	device_writel(dev, dev_ctrl, ACTMON_DEV_CTRL);

	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
}

static unsigned long actmon_cpu_to_emc_rate(struct tegra_devfreq *tegra,
					    unsigned long cpu_freq)
{
	unsigned int i;
	const struct tegra_actmon_emc_ratio *ratio = actmon_emc_ratios;

	for (i = 0; i < ARRAY_SIZE(actmon_emc_ratios); i++, ratio++) {
		if (cpu_freq >= ratio->cpu_freq) {
			if (ratio->emc_freq >= tegra->max_freq)
				return tegra->max_freq;
			else
				return ratio->emc_freq;
		}
	}

	return 0;
}

static unsigned long actmon_device_target_freq(struct tegra_devfreq *tegra,
					       struct tegra_devfreq_device *dev)
{
	unsigned int avg_sustain_coef;
	unsigned long target_freq;

	target_freq = dev->avg_count / tegra->devfreq->profile->polling_ms;
	avg_sustain_coef = 100 * 100 / dev->config->boost_up_threshold;
	target_freq = do_percent(target_freq, avg_sustain_coef);

	return target_freq;
}

static void actmon_update_target(struct tegra_devfreq *tegra,
				 struct tegra_devfreq_device *dev)
{
	unsigned long cpu_freq = 0;
	unsigned long static_cpu_emc_freq = 0;

	dev->target_freq = actmon_device_target_freq(tegra, dev);

	if (dev->config->avg_dependency_threshold &&
	    dev->config->avg_dependency_threshold <= dev->target_freq) {
		cpu_freq = cpufreq_quick_get(0);
		static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);

		dev->target_freq += dev->boost_freq;
		dev->target_freq = max(dev->target_freq, static_cpu_emc_freq);
	} else {
		dev->target_freq += dev->boost_freq;
	}
}

static irqreturn_t actmon_thread_isr(int irq, void *data)
{
	struct tegra_devfreq *tegra = data;
	bool handled = false;
	unsigned int i;
	u32 val;

	mutex_lock(&tegra->devfreq->lock);

	val = actmon_readl(tegra, ACTMON_GLB_STATUS);
	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
		if (val & tegra->devices[i].config->irq_mask) {
			actmon_isr_device(tegra, tegra->devices + i);
			handled = true;
		}
	}

	if (handled)
		update_devfreq(tegra->devfreq);

	mutex_unlock(&tegra->devfreq->lock);

	return handled ? IRQ_HANDLED : IRQ_NONE;
}

static int tegra_actmon_clk_notify_cb(struct notifier_block *nb,
				      unsigned long action, void *ptr)
{
	struct clk_notifier_data *data = ptr;
	struct tegra_devfreq *tegra;
	struct tegra_devfreq_device *dev;
	unsigned int i;

	if (action != POST_RATE_CHANGE)
		return NOTIFY_OK;

	tegra = container_of(nb, struct tegra_devfreq, clk_rate_change_nb);

	tegra->cur_freq = data->new_rate / KHZ;

	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
		dev = &tegra->devices[i];

		tegra_devfreq_update_wmark(tegra, dev);
	}

	return NOTIFY_OK;
}

static void tegra_actmon_delayed_update(struct work_struct *work)
{
	struct tegra_devfreq *tegra = container_of(work, struct tegra_devfreq,
						   cpufreq_update_work.work);

	mutex_lock(&tegra->devfreq->lock);
	update_devfreq(tegra->devfreq);
	mutex_unlock(&tegra->devfreq->lock);
}

static unsigned long
tegra_actmon_cpufreq_contribution(struct tegra_devfreq *tegra,
				  unsigned int cpu_freq)
{
	struct tegra_devfreq_device *actmon_dev = &tegra->devices[MCCPU];
	unsigned long static_cpu_emc_freq, dev_freq;

	dev_freq = actmon_device_target_freq(tegra, actmon_dev);

	/* check whether CPU's freq is taken into account at all */
	if (dev_freq < actmon_dev->config->avg_dependency_threshold)
		return 0;

	static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);

	if (dev_freq + actmon_dev->boost_freq >= static_cpu_emc_freq)
		return 0;

	return static_cpu_emc_freq;
}

static int tegra_actmon_cpu_notify_cb(struct notifier_block *nb,
				      unsigned long action, void *ptr)
{
	struct cpufreq_freqs *freqs = ptr;
	struct tegra_devfreq *tegra;
	unsigned long old, new, delay;

	if (action != CPUFREQ_POSTCHANGE)
		return NOTIFY_OK;

	tegra = container_of(nb, struct tegra_devfreq, cpu_rate_change_nb);

	/*
	 * Quickly check whether CPU frequency should be taken into account
	 * at all, without blocking CPUFreq's core.
	 */
	if (mutex_trylock(&tegra->devfreq->lock)) {
		old = tegra_actmon_cpufreq_contribution(tegra, freqs->old);
		new = tegra_actmon_cpufreq_contribution(tegra, freqs->new);
		mutex_unlock(&tegra->devfreq->lock);

		/*
		 * If CPU's frequency shouldn't be taken into account at
		 * the moment, then there is no need to update the devfreq's
		 * state because ISR will re-check CPU's frequency on the
		 * next interrupt.
		 */
		if (old == new)
			return NOTIFY_OK;
	}

	/*
	 * CPUFreq driver should support CPUFREQ_ASYNC_NOTIFICATION in order
	 * to allow asynchronous notifications. This means we can't block
	 * here for too long, otherwise CPUFreq's core will complain with a
	 * warning splat.
	 */
	delay = msecs_to_jiffies(ACTMON_SAMPLING_PERIOD);
	schedule_delayed_work(&tegra->cpufreq_update_work, delay);

	return NOTIFY_OK;
}

static void tegra_actmon_configure_device(struct tegra_devfreq *tegra,
					  struct tegra_devfreq_device *dev)
{
	u32 val = 0;

	/* reset boosting on governor's restart */
	dev->boost_freq = 0;

	dev->target_freq = tegra->cur_freq;

	dev->avg_count = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
	device_writel(dev, dev->avg_count, ACTMON_DEV_INIT_AVG);

	tegra_devfreq_update_avg_wmark(tegra, dev);
	tegra_devfreq_update_wmark(tegra, dev);

	device_writel(dev, ACTMON_COUNT_WEIGHT, ACTMON_DEV_COUNT_WEIGHT);
	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);

	val |= ACTMON_DEV_CTRL_ENB_PERIODIC;
	val |= (ACTMON_AVERAGE_WINDOW_LOG2 - 1)
		<< ACTMON_DEV_CTRL_K_VAL_SHIFT;
	val |= (ACTMON_BELOW_WMARK_WINDOW - 1)
		<< ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT;
	val |= (ACTMON_ABOVE_WMARK_WINDOW - 1)
		<< ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT;
	val |= ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN;
	val |= ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN;
	val |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
	val |= ACTMON_DEV_CTRL_ENB;

	device_writel(dev, val, ACTMON_DEV_CTRL);
}

static void tegra_actmon_stop_devices(struct tegra_devfreq *tegra)
{
	struct tegra_devfreq_device *dev = tegra->devices;
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++, dev++) {
		device_writel(dev, ACTMON_DEV_CTRL_STOP, ACTMON_DEV_CTRL);
		device_writel(dev, ACTMON_INTR_STATUS_CLEAR,
			      ACTMON_DEV_INTR_STATUS);
	}
}

static int tegra_actmon_resume(struct tegra_devfreq *tegra)
{
	unsigned int i;
	int err;

	if (!tegra->devfreq->profile->polling_ms || !tegra->started)
		return 0;

	actmon_writel(tegra, tegra->devfreq->profile->polling_ms - 1,
		      ACTMON_GLB_PERIOD_CTRL);

	/*
	 * CLK notifications are needed in order to reconfigure the upper
	 * consecutive watermark in accordance to the actual clock rate
	 * to avoid unnecessary upper interrupts.
	 */
	err = clk_notifier_register(tegra->emc_clock,
				    &tegra->clk_rate_change_nb);
	if (err) {
		dev_err(tegra->devfreq->dev.parent,
			"Failed to register rate change notifier\n");
		return err;
	}

	tegra->cur_freq = clk_get_rate(tegra->emc_clock) / KHZ;

	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++)
		tegra_actmon_configure_device(tegra, &tegra->devices[i]);

	/*
	 * We are estimating CPU's memory bandwidth requirement based on
	 * amount of memory accesses and system's load, judging by CPU's
	 * frequency. We also don't want to receive events about CPU's
	 * frequency transaction when governor is stopped, hence notifier
	 * is registered dynamically.
	 */
	err = cpufreq_register_notifier(&tegra->cpu_rate_change_nb,
					CPUFREQ_TRANSITION_NOTIFIER);
	if (err) {
		dev_err(tegra->devfreq->dev.parent,
			"Failed to register rate change notifier: %d\n", err);
		goto err_stop;
	}

	enable_irq(tegra->irq);

	return 0;

err_stop:
	tegra_actmon_stop_devices(tegra);

	clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);

	return err;
}

static int tegra_actmon_start(struct tegra_devfreq *tegra)
{
	int ret = 0;

	if (!tegra->started) {
		tegra->started = true;

		ret = tegra_actmon_resume(tegra);
		if (ret)
			tegra->started = false;
	}

	return ret;
}

static void tegra_actmon_pause(struct tegra_devfreq *tegra)
{
	if (!tegra->devfreq->profile->polling_ms || !tegra->started)
		return;

	disable_irq(tegra->irq);

	cpufreq_unregister_notifier(&tegra->cpu_rate_change_nb,
				    CPUFREQ_TRANSITION_NOTIFIER);

	cancel_delayed_work_sync(&tegra->cpufreq_update_work);

	tegra_actmon_stop_devices(tegra);

	clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
}

static void tegra_actmon_stop(struct tegra_devfreq *tegra)
{
	tegra_actmon_pause(tegra);
	tegra->started = false;
}

static int tegra_devfreq_target(struct device *dev, unsigned long *freq,
				u32 flags)
{
	struct tegra_devfreq *tegra = dev_get_drvdata(dev);
	struct devfreq *devfreq = tegra->devfreq;
	struct dev_pm_opp *opp;
	unsigned long rate;
	int err;

	opp = devfreq_recommended_opp(dev, freq, flags);
	if (IS_ERR(opp)) {
		dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
		return PTR_ERR(opp);
	}
	rate = dev_pm_opp_get_freq(opp);
	dev_pm_opp_put(opp);

	err = clk_set_min_rate(tegra->emc_clock, rate * KHZ);
	if (err)
		return err;

	err = clk_set_rate(tegra->emc_clock, 0);
	if (err)
		goto restore_min_rate;

	return 0;

restore_min_rate:
	clk_set_min_rate(tegra->emc_clock, devfreq->previous_freq);

	return err;
}

static int tegra_devfreq_get_dev_status(struct device *dev,
					struct devfreq_dev_status *stat)
{
	struct tegra_devfreq *tegra = dev_get_drvdata(dev);
	struct tegra_devfreq_device *actmon_dev;
	unsigned long cur_freq;

	cur_freq = READ_ONCE(tegra->cur_freq);

	/* To be used by the tegra governor */
	stat->private_data = tegra;

	/* The below are to be used by the other governors */
	stat->current_frequency = cur_freq;

	actmon_dev = &tegra->devices[MCALL];

	/* Number of cycles spent on memory access */
	stat->busy_time = device_readl(actmon_dev, ACTMON_DEV_AVG_COUNT);

	/* The bus can be considered to be saturated way before 100% */
	stat->busy_time *= 100 / BUS_SATURATION_RATIO;

	/* Number of cycles in a sampling period */
	stat->total_time = tegra->devfreq->profile->polling_ms * cur_freq;

	stat->busy_time = min(stat->busy_time, stat->total_time);

	return 0;
}

static struct devfreq_dev_profile tegra_devfreq_profile = {
	.polling_ms	= ACTMON_SAMPLING_PERIOD,
	.target		= tegra_devfreq_target,
	.get_dev_status	= tegra_devfreq_get_dev_status,
};

static int tegra_governor_get_target(struct devfreq *devfreq,
				     unsigned long *freq)
{
	struct devfreq_dev_status *stat;
	struct tegra_devfreq *tegra;
	struct tegra_devfreq_device *dev;
	unsigned long target_freq = 0;
	unsigned int i;
	int err;

	err = devfreq_update_stats(devfreq);
	if (err)
		return err;

	stat = &devfreq->last_status;

	tegra = stat->private_data;

	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
		dev = &tegra->devices[i];

		actmon_update_target(tegra, dev);

		target_freq = max(target_freq, dev->target_freq);
	}

	*freq = target_freq;

	return 0;
}

static int tegra_governor_event_handler(struct devfreq *devfreq,
					unsigned int event, void *data)
{
	struct tegra_devfreq *tegra = dev_get_drvdata(devfreq->dev.parent);
	unsigned int *new_delay = data;
	int ret = 0;

	/*
	 * Couple devfreq-device with the governor early because it is
	 * needed at the moment of governor's start (used by ISR).
	 */
	tegra->devfreq = devfreq;

	switch (event) {
	case DEVFREQ_GOV_START:
		devfreq_monitor_start(devfreq);
		ret = tegra_actmon_start(tegra);
		break;

	case DEVFREQ_GOV_STOP:
		tegra_actmon_stop(tegra);
		devfreq_monitor_stop(devfreq);
		break;

	case DEVFREQ_GOV_UPDATE_INTERVAL:
		/*
		 * ACTMON hardware supports up to 256 milliseconds for the
		 * sampling period.
		 */
		if (*new_delay > 256) {
			ret = -EINVAL;
			break;
		}

		tegra_actmon_pause(tegra);
		devfreq_update_interval(devfreq, new_delay);
		ret = tegra_actmon_resume(tegra);
		break;

	case DEVFREQ_GOV_SUSPEND:
		tegra_actmon_stop(tegra);
		devfreq_monitor_suspend(devfreq);
		break;

	case DEVFREQ_GOV_RESUME:
		devfreq_monitor_resume(devfreq);
		ret = tegra_actmon_start(tegra);
		break;
	}

	return ret;
}

static struct devfreq_governor tegra_devfreq_governor = {
	.name = "tegra_actmon",
	.get_target_freq = tegra_governor_get_target,
	.event_handler = tegra_governor_event_handler,
	.immutable = true,
	.interrupt_driven = true,
};

static int tegra_devfreq_probe(struct platform_device *pdev)
{
	struct tegra_devfreq_device *dev;
	struct tegra_devfreq *tegra;
	struct devfreq *devfreq;
	unsigned int i;
	long rate;
	int err;

	tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
	if (!tegra)
		return -ENOMEM;

	tegra->regs = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(tegra->regs))
		return PTR_ERR(tegra->regs);

	tegra->reset = devm_reset_control_get(&pdev->dev, "actmon");
	if (IS_ERR(tegra->reset)) {
		dev_err(&pdev->dev, "Failed to get reset\n");
		return PTR_ERR(tegra->reset);
	}

	tegra->clock = devm_clk_get(&pdev->dev, "actmon");
	if (IS_ERR(tegra->clock)) {
		dev_err(&pdev->dev, "Failed to get actmon clock\n");
		return PTR_ERR(tegra->clock);
	}

	tegra->emc_clock = devm_clk_get(&pdev->dev, "emc");
	if (IS_ERR(tegra->emc_clock)) {
		dev_err(&pdev->dev, "Failed to get emc clock\n");
		return PTR_ERR(tegra->emc_clock);
	}

	err = platform_get_irq(pdev, 0);
	if (err < 0)
		return err;

	tegra->irq = err;

	irq_set_status_flags(tegra->irq, IRQ_NOAUTOEN);

	err = devm_request_threaded_irq(&pdev->dev, tegra->irq, NULL,
					actmon_thread_isr, IRQF_ONESHOT,
					"tegra-devfreq", tegra);
	if (err) {
		dev_err(&pdev->dev, "Interrupt request failed: %d\n", err);
		return err;
	}

	err = clk_prepare_enable(tegra->clock);
	if (err) {
		dev_err(&pdev->dev,
			"Failed to prepare and enable ACTMON clock\n");
		return err;
	}

	err = reset_control_reset(tegra->reset);
	if (err) {
		dev_err(&pdev->dev, "Failed to reset hardware: %d\n", err);
		goto disable_clk;
	}

	rate = clk_round_rate(tegra->emc_clock, ULONG_MAX);
	if (rate < 0) {
		dev_err(&pdev->dev, "Failed to round clock rate: %ld\n", rate);
		err = rate;
		goto disable_clk;
	}

	tegra->max_freq = rate / KHZ;

	for (i = 0; i < ARRAY_SIZE(actmon_device_configs); i++) {
		dev = tegra->devices + i;
		dev->config = actmon_device_configs + i;
		dev->regs = tegra->regs + dev->config->offset;
	}

	for (rate = 0; rate <= tegra->max_freq * KHZ; rate++) {
		rate = clk_round_rate(tegra->emc_clock, rate);

		if (rate < 0) {
			dev_err(&pdev->dev,
				"Failed to round clock rate: %ld\n", rate);
			err = rate;
			goto remove_opps;
		}

		err = dev_pm_opp_add(&pdev->dev, rate / KHZ, 0);
		if (err) {
			dev_err(&pdev->dev, "Failed to add OPP: %d\n", err);
			goto remove_opps;
		}
	}

	platform_set_drvdata(pdev, tegra);

	tegra->clk_rate_change_nb.notifier_call = tegra_actmon_clk_notify_cb;
	tegra->cpu_rate_change_nb.notifier_call = tegra_actmon_cpu_notify_cb;

	INIT_DELAYED_WORK(&tegra->cpufreq_update_work,
			  tegra_actmon_delayed_update);

	err = devfreq_add_governor(&tegra_devfreq_governor);
	if (err) {
		dev_err(&pdev->dev, "Failed to add governor: %d\n", err);
		goto remove_opps;
	}

	tegra_devfreq_profile.initial_freq = clk_get_rate(tegra->emc_clock);
	tegra_devfreq_profile.initial_freq /= KHZ;

	devfreq = devfreq_add_device(&pdev->dev, &tegra_devfreq_profile,
				     "tegra_actmon", NULL);
	if (IS_ERR(devfreq)) {
		err = PTR_ERR(devfreq);
		goto remove_governor;
	}

	return 0;

remove_governor:
	devfreq_remove_governor(&tegra_devfreq_governor);

remove_opps:
	dev_pm_opp_remove_all_dynamic(&pdev->dev);

	reset_control_reset(tegra->reset);
disable_clk:
	clk_disable_unprepare(tegra->clock);

	return err;
}

static int tegra_devfreq_remove(struct platform_device *pdev)
{
	struct tegra_devfreq *tegra = platform_get_drvdata(pdev);

	devfreq_remove_device(tegra->devfreq);
	devfreq_remove_governor(&tegra_devfreq_governor);

	dev_pm_opp_remove_all_dynamic(&pdev->dev);

	reset_control_reset(tegra->reset);
	clk_disable_unprepare(tegra->clock);

	return 0;
}

static const struct of_device_id tegra_devfreq_of_match[] = {
	{ .compatible = "nvidia,tegra30-actmon" },
	{ .compatible = "nvidia,tegra124-actmon" },
	{ },
};

MODULE_DEVICE_TABLE(of, tegra_devfreq_of_match);

static struct platform_driver tegra_devfreq_driver = {
	.probe	= tegra_devfreq_probe,
	.remove	= tegra_devfreq_remove,
	.driver = {
		.name = "tegra-devfreq",
		.of_match_table = tegra_devfreq_of_match,
	},
};
module_platform_driver(tegra_devfreq_driver);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Tegra devfreq driver");
MODULE_AUTHOR("Tomeu Vizoso <tomeu.vizoso@collabora.com>");