ghes_edac.c 16.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
// SPDX-License-Identifier: GPL-2.0-only
/*
 * GHES/EDAC Linux driver
 *
 * Copyright (c) 2013 by Mauro Carvalho Chehab
 *
 * Red Hat Inc. https://www.redhat.com
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <acpi/ghes.h>
#include <linux/edac.h>
#include <linux/dmi.h>
#include "edac_module.h"
#include <ras/ras_event.h>

struct ghes_pvt {
	struct mem_ctl_info *mci;

	/* Buffers for the error handling routine */
	char other_detail[400];
	char msg[80];
};

static refcount_t ghes_refcount = REFCOUNT_INIT(0);

/*
 * Access to ghes_pvt must be protected by ghes_lock. The spinlock
 * also provides the necessary (implicit) memory barrier for the SMP
 * case to make the pointer visible on another CPU.
 */
static struct ghes_pvt *ghes_pvt;

/*
 * This driver's representation of the system hardware, as collected
 * from DMI.
 */
struct ghes_hw_desc {
	int num_dimms;
	struct dimm_info *dimms;
} ghes_hw;

/* GHES registration mutex */
static DEFINE_MUTEX(ghes_reg_mutex);

/*
 * Sync with other, potentially concurrent callers of
 * ghes_edac_report_mem_error(). We don't know what the
 * "inventive" firmware would do.
 */
static DEFINE_SPINLOCK(ghes_lock);

/* "ghes_edac.force_load=1" skips the platform check */
static bool __read_mostly force_load;
module_param(force_load, bool, 0);

static bool system_scanned;

/* Memory Device - Type 17 of SMBIOS spec */
struct memdev_dmi_entry {
	u8 type;
	u8 length;
	u16 handle;
	u16 phys_mem_array_handle;
	u16 mem_err_info_handle;
	u16 total_width;
	u16 data_width;
	u16 size;
	u8 form_factor;
	u8 device_set;
	u8 device_locator;
	u8 bank_locator;
	u8 memory_type;
	u16 type_detail;
	u16 speed;
	u8 manufacturer;
	u8 serial_number;
	u8 asset_tag;
	u8 part_number;
	u8 attributes;
	u32 extended_size;
	u16 conf_mem_clk_speed;
} __attribute__((__packed__));

static struct dimm_info *find_dimm_by_handle(struct mem_ctl_info *mci, u16 handle)
{
	struct dimm_info *dimm;

	mci_for_each_dimm(mci, dimm) {
		if (dimm->smbios_handle == handle)
			return dimm;
	}

	return NULL;
}

static void dimm_setup_label(struct dimm_info *dimm, u16 handle)
{
	const char *bank = NULL, *device = NULL;

	dmi_memdev_name(handle, &bank, &device);

	/* both strings must be non-zero */
	if (bank && *bank && device && *device)
		snprintf(dimm->label, sizeof(dimm->label), "%s %s", bank, device);
}

static void assign_dmi_dimm_info(struct dimm_info *dimm, struct memdev_dmi_entry *entry)
{
	u16 rdr_mask = BIT(7) | BIT(13);

	if (entry->size == 0xffff) {
		pr_info("Can't get DIMM%i size\n", dimm->idx);
		dimm->nr_pages = MiB_TO_PAGES(32);/* Unknown */
	} else if (entry->size == 0x7fff) {
		dimm->nr_pages = MiB_TO_PAGES(entry->extended_size);
	} else {
		if (entry->size & BIT(15))
			dimm->nr_pages = MiB_TO_PAGES((entry->size & 0x7fff) << 10);
		else
			dimm->nr_pages = MiB_TO_PAGES(entry->size);
	}

	switch (entry->memory_type) {
	case 0x12:
		if (entry->type_detail & BIT(13))
			dimm->mtype = MEM_RDDR;
		else
			dimm->mtype = MEM_DDR;
		break;
	case 0x13:
		if (entry->type_detail & BIT(13))
			dimm->mtype = MEM_RDDR2;
		else
			dimm->mtype = MEM_DDR2;
		break;
	case 0x14:
		dimm->mtype = MEM_FB_DDR2;
		break;
	case 0x18:
		if (entry->type_detail & BIT(12))
			dimm->mtype = MEM_NVDIMM;
		else if (entry->type_detail & BIT(13))
			dimm->mtype = MEM_RDDR3;
		else
			dimm->mtype = MEM_DDR3;
		break;
	case 0x1a:
		if (entry->type_detail & BIT(12))
			dimm->mtype = MEM_NVDIMM;
		else if (entry->type_detail & BIT(13))
			dimm->mtype = MEM_RDDR4;
		else
			dimm->mtype = MEM_DDR4;
		break;
	default:
		if (entry->type_detail & BIT(6))
			dimm->mtype = MEM_RMBS;
		else if ((entry->type_detail & rdr_mask) == rdr_mask)
			dimm->mtype = MEM_RDR;
		else if (entry->type_detail & BIT(7))
			dimm->mtype = MEM_SDR;
		else if (entry->type_detail & BIT(9))
			dimm->mtype = MEM_EDO;
		else
			dimm->mtype = MEM_UNKNOWN;
	}

	/*
	 * Actually, we can only detect if the memory has bits for
	 * checksum or not
	 */
	if (entry->total_width == entry->data_width)
		dimm->edac_mode = EDAC_NONE;
	else
		dimm->edac_mode = EDAC_SECDED;

	dimm->dtype = DEV_UNKNOWN;
	dimm->grain = 128;		/* Likely, worse case */

	dimm_setup_label(dimm, entry->handle);

	if (dimm->nr_pages) {
		edac_dbg(1, "DIMM%i: %s size = %d MB%s\n",
			dimm->idx, edac_mem_types[dimm->mtype],
			PAGES_TO_MiB(dimm->nr_pages),
			(dimm->edac_mode != EDAC_NONE) ? "(ECC)" : "");
		edac_dbg(2, "\ttype %d, detail 0x%02x, width %d(total %d)\n",
			entry->memory_type, entry->type_detail,
			entry->total_width, entry->data_width);
	}

	dimm->smbios_handle = entry->handle;
}

static void enumerate_dimms(const struct dmi_header *dh, void *arg)
{
	struct memdev_dmi_entry *entry = (struct memdev_dmi_entry *)dh;
	struct ghes_hw_desc *hw = (struct ghes_hw_desc *)arg;
	struct dimm_info *d;

	if (dh->type != DMI_ENTRY_MEM_DEVICE)
		return;

	/* Enlarge the array with additional 16 */
	if (!hw->num_dimms || !(hw->num_dimms % 16)) {
		struct dimm_info *new;

		new = krealloc(hw->dimms, (hw->num_dimms + 16) * sizeof(struct dimm_info),
			        GFP_KERNEL);
		if (!new) {
			WARN_ON_ONCE(1);
			return;
		}

		hw->dimms = new;
	}

	d = &hw->dimms[hw->num_dimms];
	d->idx = hw->num_dimms;

	assign_dmi_dimm_info(d, entry);

	hw->num_dimms++;
}

static void ghes_scan_system(void)
{
	if (system_scanned)
		return;

	dmi_walk(enumerate_dimms, &ghes_hw);

	system_scanned = true;
}

void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err)
{
	struct edac_raw_error_desc *e;
	struct mem_ctl_info *mci;
	struct ghes_pvt *pvt;
	unsigned long flags;
	char *p;

	/*
	 * We can do the locking below because GHES defers error processing
	 * from NMI to IRQ context. Whenever that changes, we'd at least
	 * know.
	 */
	if (WARN_ON_ONCE(in_nmi()))
		return;

	spin_lock_irqsave(&ghes_lock, flags);

	pvt = ghes_pvt;
	if (!pvt)
		goto unlock;

	mci = pvt->mci;
	e = &mci->error_desc;

	/* Cleans the error report buffer */
	memset(e, 0, sizeof (*e));
	e->error_count = 1;
	e->grain = 1;
	e->msg = pvt->msg;
	e->other_detail = pvt->other_detail;
	e->top_layer = -1;
	e->mid_layer = -1;
	e->low_layer = -1;
	*pvt->other_detail = '\0';
	*pvt->msg = '\0';

	switch (sev) {
	case GHES_SEV_CORRECTED:
		e->type = HW_EVENT_ERR_CORRECTED;
		break;
	case GHES_SEV_RECOVERABLE:
		e->type = HW_EVENT_ERR_UNCORRECTED;
		break;
	case GHES_SEV_PANIC:
		e->type = HW_EVENT_ERR_FATAL;
		break;
	default:
	case GHES_SEV_NO:
		e->type = HW_EVENT_ERR_INFO;
	}

	edac_dbg(1, "error validation_bits: 0x%08llx\n",
		 (long long)mem_err->validation_bits);

	/* Error type, mapped on e->msg */
	if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_TYPE) {
		p = pvt->msg;
		switch (mem_err->error_type) {
		case 0:
			p += sprintf(p, "Unknown");
			break;
		case 1:
			p += sprintf(p, "No error");
			break;
		case 2:
			p += sprintf(p, "Single-bit ECC");
			break;
		case 3:
			p += sprintf(p, "Multi-bit ECC");
			break;
		case 4:
			p += sprintf(p, "Single-symbol ChipKill ECC");
			break;
		case 5:
			p += sprintf(p, "Multi-symbol ChipKill ECC");
			break;
		case 6:
			p += sprintf(p, "Master abort");
			break;
		case 7:
			p += sprintf(p, "Target abort");
			break;
		case 8:
			p += sprintf(p, "Parity Error");
			break;
		case 9:
			p += sprintf(p, "Watchdog timeout");
			break;
		case 10:
			p += sprintf(p, "Invalid address");
			break;
		case 11:
			p += sprintf(p, "Mirror Broken");
			break;
		case 12:
			p += sprintf(p, "Memory Sparing");
			break;
		case 13:
			p += sprintf(p, "Scrub corrected error");
			break;
		case 14:
			p += sprintf(p, "Scrub uncorrected error");
			break;
		case 15:
			p += sprintf(p, "Physical Memory Map-out event");
			break;
		default:
			p += sprintf(p, "reserved error (%d)",
				     mem_err->error_type);
		}
	} else {
		strcpy(pvt->msg, "unknown error");
	}

	/* Error address */
	if (mem_err->validation_bits & CPER_MEM_VALID_PA) {
		e->page_frame_number = PHYS_PFN(mem_err->physical_addr);
		e->offset_in_page = offset_in_page(mem_err->physical_addr);
	}

	/* Error grain */
	if (mem_err->validation_bits & CPER_MEM_VALID_PA_MASK)
		e->grain = ~mem_err->physical_addr_mask + 1;

	/* Memory error location, mapped on e->location */
	p = e->location;
	if (mem_err->validation_bits & CPER_MEM_VALID_NODE)
		p += sprintf(p, "node:%d ", mem_err->node);
	if (mem_err->validation_bits & CPER_MEM_VALID_CARD)
		p += sprintf(p, "card:%d ", mem_err->card);
	if (mem_err->validation_bits & CPER_MEM_VALID_MODULE)
		p += sprintf(p, "module:%d ", mem_err->module);
	if (mem_err->validation_bits & CPER_MEM_VALID_RANK_NUMBER)
		p += sprintf(p, "rank:%d ", mem_err->rank);
	if (mem_err->validation_bits & CPER_MEM_VALID_BANK)
		p += sprintf(p, "bank:%d ", mem_err->bank);
	if (mem_err->validation_bits & CPER_MEM_VALID_BANK_GROUP)
		p += sprintf(p, "bank_group:%d ",
			     mem_err->bank >> CPER_MEM_BANK_GROUP_SHIFT);
	if (mem_err->validation_bits & CPER_MEM_VALID_BANK_ADDRESS)
		p += sprintf(p, "bank_address:%d ",
			     mem_err->bank & CPER_MEM_BANK_ADDRESS_MASK);
	if (mem_err->validation_bits & (CPER_MEM_VALID_ROW | CPER_MEM_VALID_ROW_EXT)) {
		u32 row = mem_err->row;

		row |= cper_get_mem_extension(mem_err->validation_bits, mem_err->extended);
		p += sprintf(p, "row:%d ", row);
	}
	if (mem_err->validation_bits & CPER_MEM_VALID_COLUMN)
		p += sprintf(p, "col:%d ", mem_err->column);
	if (mem_err->validation_bits & CPER_MEM_VALID_BIT_POSITION)
		p += sprintf(p, "bit_pos:%d ", mem_err->bit_pos);
	if (mem_err->validation_bits & CPER_MEM_VALID_MODULE_HANDLE) {
		const char *bank = NULL, *device = NULL;
		struct dimm_info *dimm;

		dmi_memdev_name(mem_err->mem_dev_handle, &bank, &device);
		if (bank != NULL && device != NULL)
			p += sprintf(p, "DIMM location:%s %s ", bank, device);
		else
			p += sprintf(p, "DIMM DMI handle: 0x%.4x ",
				     mem_err->mem_dev_handle);

		dimm = find_dimm_by_handle(mci, mem_err->mem_dev_handle);
		if (dimm) {
			e->top_layer = dimm->idx;
			strcpy(e->label, dimm->label);
		}
	}
	if (mem_err->validation_bits & CPER_MEM_VALID_CHIP_ID)
		p += sprintf(p, "chipID: %d ",
			     mem_err->extended >> CPER_MEM_CHIP_ID_SHIFT);
	if (p > e->location)
		*(p - 1) = '\0';

	if (!*e->label)
		strcpy(e->label, "unknown memory");

	/* All other fields are mapped on e->other_detail */
	p = pvt->other_detail;
	p += snprintf(p, sizeof(pvt->other_detail),
		"APEI location: %s ", e->location);
	if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_STATUS) {
		u64 status = mem_err->error_status;

		p += sprintf(p, "status(0x%016llx): ", (long long)status);
		switch ((status >> 8) & 0xff) {
		case 1:
			p += sprintf(p, "Error detected internal to the component ");
			break;
		case 16:
			p += sprintf(p, "Error detected in the bus ");
			break;
		case 4:
			p += sprintf(p, "Storage error in DRAM memory ");
			break;
		case 5:
			p += sprintf(p, "Storage error in TLB ");
			break;
		case 6:
			p += sprintf(p, "Storage error in cache ");
			break;
		case 7:
			p += sprintf(p, "Error in one or more functional units ");
			break;
		case 8:
			p += sprintf(p, "component failed self test ");
			break;
		case 9:
			p += sprintf(p, "Overflow or undervalue of internal queue ");
			break;
		case 17:
			p += sprintf(p, "Virtual address not found on IO-TLB or IO-PDIR ");
			break;
		case 18:
			p += sprintf(p, "Improper access error ");
			break;
		case 19:
			p += sprintf(p, "Access to a memory address which is not mapped to any component ");
			break;
		case 20:
			p += sprintf(p, "Loss of Lockstep ");
			break;
		case 21:
			p += sprintf(p, "Response not associated with a request ");
			break;
		case 22:
			p += sprintf(p, "Bus parity error - must also set the A, C, or D Bits ");
			break;
		case 23:
			p += sprintf(p, "Detection of a PATH_ERROR ");
			break;
		case 25:
			p += sprintf(p, "Bus operation timeout ");
			break;
		case 26:
			p += sprintf(p, "A read was issued to data that has been poisoned ");
			break;
		default:
			p += sprintf(p, "reserved ");
			break;
		}
	}
	if (mem_err->validation_bits & CPER_MEM_VALID_REQUESTOR_ID)
		p += sprintf(p, "requestorID: 0x%016llx ",
			     (long long)mem_err->requestor_id);
	if (mem_err->validation_bits & CPER_MEM_VALID_RESPONDER_ID)
		p += sprintf(p, "responderID: 0x%016llx ",
			     (long long)mem_err->responder_id);
	if (mem_err->validation_bits & CPER_MEM_VALID_TARGET_ID)
		p += sprintf(p, "targetID: 0x%016llx ",
			     (long long)mem_err->responder_id);
	if (p > pvt->other_detail)
		*(p - 1) = '\0';

	edac_raw_mc_handle_error(e);

unlock:
	spin_unlock_irqrestore(&ghes_lock, flags);
}

/*
 * Known systems that are safe to enable this module.
 */
static struct acpi_platform_list plat_list[] = {
	{"HPE   ", "Server  ", 0, ACPI_SIG_FADT, all_versions},
	{ } /* End */
};

int ghes_edac_register(struct ghes *ghes, struct device *dev)
{
	bool fake = false;
	struct mem_ctl_info *mci;
	struct ghes_pvt *pvt;
	struct edac_mc_layer layers[1];
	unsigned long flags;
	int idx = -1;
	int rc = 0;

	if (IS_ENABLED(CONFIG_X86)) {
		/* Check if safe to enable on this system */
		idx = acpi_match_platform_list(plat_list);
		if (!force_load && idx < 0)
			return -ENODEV;
	} else {
		force_load = true;
		idx = 0;
	}

	/* finish another registration/unregistration instance first */
	mutex_lock(&ghes_reg_mutex);

	/*
	 * We have only one logical memory controller to which all DIMMs belong.
	 */
	if (refcount_inc_not_zero(&ghes_refcount))
		goto unlock;

	ghes_scan_system();

	/* Check if we've got a bogus BIOS */
	if (!ghes_hw.num_dimms) {
		fake = true;
		ghes_hw.num_dimms = 1;
	}

	layers[0].type = EDAC_MC_LAYER_ALL_MEM;
	layers[0].size = ghes_hw.num_dimms;
	layers[0].is_virt_csrow = true;

	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(struct ghes_pvt));
	if (!mci) {
		pr_info("Can't allocate memory for EDAC data\n");
		rc = -ENOMEM;
		goto unlock;
	}

	pvt		= mci->pvt_info;
	pvt->mci	= mci;

	mci->pdev = dev;
	mci->mtype_cap = MEM_FLAG_EMPTY;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "ghes_edac.c";
	mci->ctl_name = "ghes_edac";
	mci->dev_name = "ghes";

	if (fake) {
		pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n");
		pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n");
		pr_info("work on such system. Use this driver with caution\n");
	} else if (idx < 0) {
		pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n");
		pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n");
		pr_info("So, the end result of using this driver varies from vendor to vendor.\n");
		pr_info("If you find incorrect reports, please contact your hardware vendor\n");
		pr_info("to correct its BIOS.\n");
		pr_info("This system has %d DIMM sockets.\n", ghes_hw.num_dimms);
	}

	if (!fake) {
		struct dimm_info *src, *dst;
		int i = 0;

		mci_for_each_dimm(mci, dst) {
			src = &ghes_hw.dimms[i];

			dst->idx	   = src->idx;
			dst->smbios_handle = src->smbios_handle;
			dst->nr_pages	   = src->nr_pages;
			dst->mtype	   = src->mtype;
			dst->edac_mode	   = src->edac_mode;
			dst->dtype	   = src->dtype;
			dst->grain	   = src->grain;

			/*
			 * If no src->label, preserve default label assigned
			 * from EDAC core.
			 */
			if (strlen(src->label))
				memcpy(dst->label, src->label, sizeof(src->label));

			i++;
		}

	} else {
		struct dimm_info *dimm = edac_get_dimm(mci, 0, 0, 0);

		dimm->nr_pages = 1;
		dimm->grain = 128;
		dimm->mtype = MEM_UNKNOWN;
		dimm->dtype = DEV_UNKNOWN;
		dimm->edac_mode = EDAC_SECDED;
	}

	rc = edac_mc_add_mc(mci);
	if (rc < 0) {
		pr_info("Can't register with the EDAC core\n");
		edac_mc_free(mci);
		rc = -ENODEV;
		goto unlock;
	}

	spin_lock_irqsave(&ghes_lock, flags);
	ghes_pvt = pvt;
	spin_unlock_irqrestore(&ghes_lock, flags);

	/* only set on success */
	refcount_set(&ghes_refcount, 1);

unlock:

	/* Not needed anymore */
	kfree(ghes_hw.dimms);
	ghes_hw.dimms = NULL;

	mutex_unlock(&ghes_reg_mutex);

	return rc;
}

void ghes_edac_unregister(struct ghes *ghes)
{
	struct mem_ctl_info *mci;
	unsigned long flags;

	if (!force_load)
		return;

	mutex_lock(&ghes_reg_mutex);

	system_scanned = false;
	memset(&ghes_hw, 0, sizeof(struct ghes_hw_desc));

	if (!refcount_dec_and_test(&ghes_refcount))
		goto unlock;

	/*
	 * Wait for the irq handler being finished.
	 */
	spin_lock_irqsave(&ghes_lock, flags);
	mci = ghes_pvt ? ghes_pvt->mci : NULL;
	ghes_pvt = NULL;
	spin_unlock_irqrestore(&ghes_lock, flags);

	if (!mci)
		goto unlock;

	mci = edac_mc_del_mc(mci->pdev);
	if (mci)
		edac_mc_free(mci);

unlock:
	mutex_unlock(&ghes_reg_mutex);
}