axi-fan-control.c 12 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
// SPDX-License-Identifier: GPL-2.0
/*
 * Fan Control HDL CORE driver
 *
 * Copyright 2019 Analog Devices Inc.
 */
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/fpga/adi-axi-common.h>
#include <linux/hwmon.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>

/* register map */
#define ADI_REG_RSTN		0x0080
#define ADI_REG_PWM_WIDTH	0x0084
#define ADI_REG_TACH_PERIOD	0x0088
#define ADI_REG_TACH_TOLERANCE	0x008c
#define ADI_REG_PWM_PERIOD	0x00c0
#define ADI_REG_TACH_MEASUR	0x00c4
#define ADI_REG_TEMPERATURE	0x00c8

#define ADI_REG_IRQ_MASK	0x0040
#define ADI_REG_IRQ_PENDING	0x0044
#define ADI_REG_IRQ_SRC		0x0048

/* IRQ sources */
#define ADI_IRQ_SRC_PWM_CHANGED		BIT(0)
#define ADI_IRQ_SRC_TACH_ERR		BIT(1)
#define ADI_IRQ_SRC_TEMP_INCREASE	BIT(2)
#define ADI_IRQ_SRC_NEW_MEASUR		BIT(3)
#define ADI_IRQ_SRC_MASK		GENMASK(3, 0)
#define ADI_IRQ_MASK_OUT_ALL		0xFFFFFFFFU

#define SYSFS_PWM_MAX			255

struct axi_fan_control_data {
	void __iomem *base;
	struct device *hdev;
	unsigned long clk_rate;
	int irq;
	/* pulses per revolution */
	u32 ppr;
	bool hw_pwm_req;
	bool update_tacho_params;
	u8 fan_fault;
};

static inline void axi_iowrite(const u32 val, const u32 reg,
			       const struct axi_fan_control_data *ctl)
{
	iowrite32(val, ctl->base + reg);
}

static inline u32 axi_ioread(const u32 reg,
			     const struct axi_fan_control_data *ctl)
{
	return ioread32(ctl->base + reg);
}

static long axi_fan_control_get_pwm_duty(const struct axi_fan_control_data *ctl)
{
	u32 pwm_width = axi_ioread(ADI_REG_PWM_WIDTH, ctl);
	u32 pwm_period = axi_ioread(ADI_REG_PWM_PERIOD, ctl);
	/*
	 * PWM_PERIOD is a RO register set by the core. It should never be 0.
	 * For now we are trusting the HW...
	 */
	return DIV_ROUND_CLOSEST(pwm_width * SYSFS_PWM_MAX, pwm_period);
}

static int axi_fan_control_set_pwm_duty(const long val,
					struct axi_fan_control_data *ctl)
{
	u32 pwm_period = axi_ioread(ADI_REG_PWM_PERIOD, ctl);
	u32 new_width;
	long __val = clamp_val(val, 0, SYSFS_PWM_MAX);

	new_width = DIV_ROUND_CLOSEST(__val * pwm_period, SYSFS_PWM_MAX);

	axi_iowrite(new_width, ADI_REG_PWM_WIDTH, ctl);

	return 0;
}

static long axi_fan_control_get_fan_rpm(const struct axi_fan_control_data *ctl)
{
	const u32 tach = axi_ioread(ADI_REG_TACH_MEASUR, ctl);

	if (tach == 0)
		/* should we return error, EAGAIN maybe? */
		return 0;
	/*
	 * The tacho period should be:
	 *      TACH = 60/(ppr * rpm), where rpm is revolutions per second
	 *      and ppr is pulses per revolution.
	 * Given the tacho period, we can multiply it by the input clock
	 * so that we know how many clocks we need to have this period.
	 * From this, we can derive the RPM value.
	 */
	return DIV_ROUND_CLOSEST(60 * ctl->clk_rate, ctl->ppr * tach);
}

static int axi_fan_control_read_temp(struct device *dev, u32 attr, long *val)
{
	struct axi_fan_control_data *ctl = dev_get_drvdata(dev);
	long raw_temp;

	switch (attr) {
	case hwmon_temp_input:
		raw_temp = axi_ioread(ADI_REG_TEMPERATURE, ctl);
		/*
		 * The formula for the temperature is:
		 *      T = (ADC * 501.3743 / 2^bits) - 273.6777
		 * It's multiplied by 1000 to have millidegrees as
		 * specified by the hwmon sysfs interface.
		 */
		*val = ((raw_temp * 501374) >> 16) - 273677;
		return 0;
	default:
		return -ENOTSUPP;
	}
}

static int axi_fan_control_read_fan(struct device *dev, u32 attr, long *val)
{
	struct axi_fan_control_data *ctl = dev_get_drvdata(dev);

	switch (attr) {
	case hwmon_fan_fault:
		*val = ctl->fan_fault;
		/* clear it now */
		ctl->fan_fault = 0;
		return 0;
	case hwmon_fan_input:
		*val = axi_fan_control_get_fan_rpm(ctl);
		return 0;
	default:
		return -ENOTSUPP;
	}
}

static int axi_fan_control_read_pwm(struct device *dev, u32 attr, long *val)
{
	struct axi_fan_control_data *ctl = dev_get_drvdata(dev);

	switch (attr) {
	case hwmon_pwm_input:
		*val = axi_fan_control_get_pwm_duty(ctl);
		return 0;
	default:
		return -ENOTSUPP;
	}
}

static int axi_fan_control_write_pwm(struct device *dev, u32 attr, long val)
{
	struct axi_fan_control_data *ctl = dev_get_drvdata(dev);

	switch (attr) {
	case hwmon_pwm_input:
		return axi_fan_control_set_pwm_duty(val, ctl);
	default:
		return -ENOTSUPP;
	}
}

static int axi_fan_control_read_labels(struct device *dev,
				       enum hwmon_sensor_types type,
				       u32 attr, int channel, const char **str)
{
	switch (type) {
	case hwmon_fan:
		*str = "FAN";
		return 0;
	case hwmon_temp:
		*str = "SYSMON4";
		return 0;
	default:
		return -ENOTSUPP;
	}
}

static int axi_fan_control_read(struct device *dev,
				enum hwmon_sensor_types type,
				u32 attr, int channel, long *val)
{
	switch (type) {
	case hwmon_fan:
		return axi_fan_control_read_fan(dev, attr, val);
	case hwmon_pwm:
		return axi_fan_control_read_pwm(dev, attr, val);
	case hwmon_temp:
		return axi_fan_control_read_temp(dev, attr, val);
	default:
		return -ENOTSUPP;
	}
}

static int axi_fan_control_write(struct device *dev,
				 enum hwmon_sensor_types type,
				 u32 attr, int channel, long val)
{
	switch (type) {
	case hwmon_pwm:
		return axi_fan_control_write_pwm(dev, attr, val);
	default:
		return -ENOTSUPP;
	}
}

static umode_t axi_fan_control_fan_is_visible(const u32 attr)
{
	switch (attr) {
	case hwmon_fan_input:
	case hwmon_fan_fault:
	case hwmon_fan_label:
		return 0444;
	default:
		return 0;
	}
}

static umode_t axi_fan_control_pwm_is_visible(const u32 attr)
{
	switch (attr) {
	case hwmon_pwm_input:
		return 0644;
	default:
		return 0;
	}
}

static umode_t axi_fan_control_temp_is_visible(const u32 attr)
{
	switch (attr) {
	case hwmon_temp_input:
	case hwmon_temp_label:
		return 0444;
	default:
		return 0;
	}
}

static umode_t axi_fan_control_is_visible(const void *data,
					  enum hwmon_sensor_types type,
					  u32 attr, int channel)
{
	switch (type) {
	case hwmon_fan:
		return axi_fan_control_fan_is_visible(attr);
	case hwmon_pwm:
		return axi_fan_control_pwm_is_visible(attr);
	case hwmon_temp:
		return axi_fan_control_temp_is_visible(attr);
	default:
		return 0;
	}
}

/*
 * This core has two main ways of changing the PWM duty cycle. It is done,
 * either by a request from userspace (writing on pwm1_input) or by the
 * core itself. When the change is done by the core, it will use predefined
 * parameters to evaluate the tach signal and, on that case we cannot set them.
 * On the other hand, when the request is done by the user, with some arbitrary
 * value that the core does not now about, we have to provide the tach
 * parameters so that, the core can evaluate the signal. On the IRQ handler we
 * distinguish this by using the ADI_IRQ_SRC_TEMP_INCREASE interrupt. This tell
 * us that the CORE requested a new duty cycle. After this, there is 5s delay
 * on which the core waits for the fan rotation speed to stabilize. After this
 * we get ADI_IRQ_SRC_PWM_CHANGED irq where we will decide if we need to set
 * the tach parameters or not on the next tach measurement cycle (corresponding
 * already to the ney duty cycle) based on the %ctl->hw_pwm_req flag.
 */
static irqreturn_t axi_fan_control_irq_handler(int irq, void *data)
{
	struct axi_fan_control_data *ctl = (struct axi_fan_control_data *)data;
	u32 irq_pending = axi_ioread(ADI_REG_IRQ_PENDING, ctl);
	u32 clear_mask;

	if (irq_pending & ADI_IRQ_SRC_NEW_MEASUR) {
		if (ctl->update_tacho_params) {
			u32 new_tach = axi_ioread(ADI_REG_TACH_MEASUR, ctl);

			/* get 25% tolerance */
			u32 tach_tol = DIV_ROUND_CLOSEST(new_tach * 25, 100);
			/* set new tacho parameters */
			axi_iowrite(new_tach, ADI_REG_TACH_PERIOD, ctl);
			axi_iowrite(tach_tol, ADI_REG_TACH_TOLERANCE, ctl);
			ctl->update_tacho_params = false;
		}
	}

	if (irq_pending & ADI_IRQ_SRC_PWM_CHANGED) {
		/*
		 * if the pwm changes on behalf of software,
		 * we need to provide new tacho parameters to the core.
		 * Wait for the next measurement for that...
		 */
		if (!ctl->hw_pwm_req) {
			ctl->update_tacho_params = true;
		} else {
			ctl->hw_pwm_req = false;
			sysfs_notify(&ctl->hdev->kobj, NULL, "pwm1");
		}
	}

	if (irq_pending & ADI_IRQ_SRC_TEMP_INCREASE)
		/* hardware requested a new pwm */
		ctl->hw_pwm_req = true;

	if (irq_pending & ADI_IRQ_SRC_TACH_ERR)
		ctl->fan_fault = 1;

	/* clear all interrupts */
	clear_mask = irq_pending & ADI_IRQ_SRC_MASK;
	axi_iowrite(clear_mask, ADI_REG_IRQ_PENDING, ctl);

	return IRQ_HANDLED;
}

static int axi_fan_control_init(struct axi_fan_control_data *ctl,
				const struct device_node *np)
{
	int ret;

	/* get fan pulses per revolution */
	ret = of_property_read_u32(np, "pulses-per-revolution", &ctl->ppr);
	if (ret)
		return ret;

	/* 1, 2 and 4 are the typical and accepted values */
	if (ctl->ppr != 1 && ctl->ppr != 2 && ctl->ppr != 4)
		return -EINVAL;
	/*
	 * Enable all IRQs
	 */
	axi_iowrite(ADI_IRQ_MASK_OUT_ALL &
		    ~(ADI_IRQ_SRC_NEW_MEASUR | ADI_IRQ_SRC_TACH_ERR |
		      ADI_IRQ_SRC_PWM_CHANGED | ADI_IRQ_SRC_TEMP_INCREASE),
		    ADI_REG_IRQ_MASK, ctl);

	/* bring the device out of reset */
	axi_iowrite(0x01, ADI_REG_RSTN, ctl);

	return ret;
}

static const struct hwmon_channel_info *axi_fan_control_info[] = {
	HWMON_CHANNEL_INFO(pwm, HWMON_PWM_INPUT),
	HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT | HWMON_F_FAULT | HWMON_F_LABEL),
	HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_LABEL),
	NULL
};

static const struct hwmon_ops axi_fan_control_hwmon_ops = {
	.is_visible = axi_fan_control_is_visible,
	.read = axi_fan_control_read,
	.write = axi_fan_control_write,
	.read_string = axi_fan_control_read_labels,
};

static const struct hwmon_chip_info axi_chip_info = {
	.ops = &axi_fan_control_hwmon_ops,
	.info = axi_fan_control_info,
};

static const u32 version_1_0_0 = ADI_AXI_PCORE_VER(1, 0, 'a');

static const struct of_device_id axi_fan_control_of_match[] = {
	{ .compatible = "adi,axi-fan-control-1.00.a",
		.data = (void *)&version_1_0_0},
	{},
};
MODULE_DEVICE_TABLE(of, axi_fan_control_of_match);

static int axi_fan_control_probe(struct platform_device *pdev)
{
	struct axi_fan_control_data *ctl;
	struct clk *clk;
	const struct of_device_id *id;
	const char *name = "axi_fan_control";
	u32 version;
	int ret;

	id = of_match_node(axi_fan_control_of_match, pdev->dev.of_node);
	if (!id)
		return -EINVAL;

	ctl = devm_kzalloc(&pdev->dev, sizeof(*ctl), GFP_KERNEL);
	if (!ctl)
		return -ENOMEM;

	ctl->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(ctl->base))
		return PTR_ERR(ctl->base);

	clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(clk)) {
		dev_err(&pdev->dev, "clk_get failed with %ld\n", PTR_ERR(clk));
		return PTR_ERR(clk);
	}

	ctl->clk_rate = clk_get_rate(clk);
	if (!ctl->clk_rate)
		return -EINVAL;

	version = axi_ioread(ADI_AXI_REG_VERSION, ctl);
	if (ADI_AXI_PCORE_VER_MAJOR(version) !=
	    ADI_AXI_PCORE_VER_MAJOR((*(u32 *)id->data))) {
		dev_err(&pdev->dev, "Major version mismatch. Expected %d.%.2d.%c, Reported %d.%.2d.%c\n",
			ADI_AXI_PCORE_VER_MAJOR((*(u32 *)id->data)),
			ADI_AXI_PCORE_VER_MINOR((*(u32 *)id->data)),
			ADI_AXI_PCORE_VER_PATCH((*(u32 *)id->data)),
			ADI_AXI_PCORE_VER_MAJOR(version),
			ADI_AXI_PCORE_VER_MINOR(version),
			ADI_AXI_PCORE_VER_PATCH(version));
		return -ENODEV;
	}

	ctl->irq = platform_get_irq(pdev, 0);
	if (ctl->irq < 0)
		return ctl->irq;

	ret = devm_request_threaded_irq(&pdev->dev, ctl->irq, NULL,
					axi_fan_control_irq_handler,
					IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
					pdev->driver_override, ctl);
	if (ret) {
		dev_err(&pdev->dev, "failed to request an irq, %d", ret);
		return ret;
	}

	ret = axi_fan_control_init(ctl, pdev->dev.of_node);
	if (ret) {
		dev_err(&pdev->dev, "Failed to initialize device\n");
		return ret;
	}

	ctl->hdev = devm_hwmon_device_register_with_info(&pdev->dev,
							 name,
							 ctl,
							 &axi_chip_info,
							 NULL);

	return PTR_ERR_OR_ZERO(ctl->hdev);
}

static struct platform_driver axi_fan_control_driver = {
	.driver = {
		.name = "axi_fan_control_driver",
		.of_match_table = axi_fan_control_of_match,
	},
	.probe = axi_fan_control_probe,
};
module_platform_driver(axi_fan_control_driver);

MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
MODULE_DESCRIPTION("Analog Devices Fan Control HDL CORE driver");
MODULE_LICENSE("GPL");