i2c-stm32f4.c 24 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
// SPDX-License-Identifier: GPL-2.0
/*
 * Driver for STMicroelectronics STM32 I2C controller
 *
 * This I2C controller is described in the STM32F429/439 Soc reference manual.
 * Please see below a link to the documentation:
 * http://www.st.com/resource/en/reference_manual/DM00031020.pdf
 *
 * Copyright (C) M'boumba Cedric Madianga 2016
 * Copyright (C) STMicroelectronics 2017
 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
 *
 * This driver is based on i2c-st.c
 *
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset.h>

#include "i2c-stm32.h"

/* STM32F4 I2C offset registers */
#define STM32F4_I2C_CR1			0x00
#define STM32F4_I2C_CR2			0x04
#define STM32F4_I2C_DR			0x10
#define STM32F4_I2C_SR1			0x14
#define STM32F4_I2C_SR2			0x18
#define STM32F4_I2C_CCR			0x1C
#define STM32F4_I2C_TRISE		0x20
#define STM32F4_I2C_FLTR		0x24

/* STM32F4 I2C control 1*/
#define STM32F4_I2C_CR1_POS		BIT(11)
#define STM32F4_I2C_CR1_ACK		BIT(10)
#define STM32F4_I2C_CR1_STOP		BIT(9)
#define STM32F4_I2C_CR1_START		BIT(8)
#define STM32F4_I2C_CR1_PE		BIT(0)

/* STM32F4 I2C control 2 */
#define STM32F4_I2C_CR2_FREQ_MASK	GENMASK(5, 0)
#define STM32F4_I2C_CR2_FREQ(n)		((n) & STM32F4_I2C_CR2_FREQ_MASK)
#define STM32F4_I2C_CR2_ITBUFEN		BIT(10)
#define STM32F4_I2C_CR2_ITEVTEN		BIT(9)
#define STM32F4_I2C_CR2_ITERREN		BIT(8)
#define STM32F4_I2C_CR2_IRQ_MASK	(STM32F4_I2C_CR2_ITBUFEN | \
					 STM32F4_I2C_CR2_ITEVTEN | \
					 STM32F4_I2C_CR2_ITERREN)

/* STM32F4 I2C Status 1 */
#define STM32F4_I2C_SR1_AF		BIT(10)
#define STM32F4_I2C_SR1_ARLO		BIT(9)
#define STM32F4_I2C_SR1_BERR		BIT(8)
#define STM32F4_I2C_SR1_TXE		BIT(7)
#define STM32F4_I2C_SR1_RXNE		BIT(6)
#define STM32F4_I2C_SR1_BTF		BIT(2)
#define STM32F4_I2C_SR1_ADDR		BIT(1)
#define STM32F4_I2C_SR1_SB		BIT(0)
#define STM32F4_I2C_SR1_ITEVTEN_MASK	(STM32F4_I2C_SR1_BTF | \
					 STM32F4_I2C_SR1_ADDR | \
					 STM32F4_I2C_SR1_SB)
#define STM32F4_I2C_SR1_ITBUFEN_MASK	(STM32F4_I2C_SR1_TXE | \
					 STM32F4_I2C_SR1_RXNE)
#define STM32F4_I2C_SR1_ITERREN_MASK	(STM32F4_I2C_SR1_AF | \
					 STM32F4_I2C_SR1_ARLO | \
					 STM32F4_I2C_SR1_BERR)

/* STM32F4 I2C Status 2 */
#define STM32F4_I2C_SR2_BUSY		BIT(1)

/* STM32F4 I2C Control Clock */
#define STM32F4_I2C_CCR_CCR_MASK	GENMASK(11, 0)
#define STM32F4_I2C_CCR_CCR(n)		((n) & STM32F4_I2C_CCR_CCR_MASK)
#define STM32F4_I2C_CCR_FS		BIT(15)
#define STM32F4_I2C_CCR_DUTY		BIT(14)

/* STM32F4 I2C Trise */
#define STM32F4_I2C_TRISE_VALUE_MASK	GENMASK(5, 0)
#define STM32F4_I2C_TRISE_VALUE(n)	((n) & STM32F4_I2C_TRISE_VALUE_MASK)

#define STM32F4_I2C_MIN_STANDARD_FREQ	2U
#define STM32F4_I2C_MIN_FAST_FREQ	6U
#define STM32F4_I2C_MAX_FREQ		46U
#define HZ_TO_MHZ			1000000

/**
 * struct stm32f4_i2c_msg - client specific data
 * @addr: 8-bit slave addr, including r/w bit
 * @count: number of bytes to be transferred
 * @buf: data buffer
 * @result: result of the transfer
 * @stop: last I2C msg to be sent, i.e. STOP to be generated
 */
struct stm32f4_i2c_msg {
	u8 addr;
	u32 count;
	u8 *buf;
	int result;
	bool stop;
};

/**
 * struct stm32f4_i2c_dev - private data of the controller
 * @adap: I2C adapter for this controller
 * @dev: device for this controller
 * @base: virtual memory area
 * @complete: completion of I2C message
 * @clk: hw i2c clock
 * @speed: I2C clock frequency of the controller. Standard or Fast are supported
 * @parent_rate: I2C clock parent rate in MHz
 * @msg: I2C transfer information
 */
struct stm32f4_i2c_dev {
	struct i2c_adapter adap;
	struct device *dev;
	void __iomem *base;
	struct completion complete;
	struct clk *clk;
	int speed;
	int parent_rate;
	struct stm32f4_i2c_msg msg;
};

static inline void stm32f4_i2c_set_bits(void __iomem *reg, u32 mask)
{
	writel_relaxed(readl_relaxed(reg) | mask, reg);
}

static inline void stm32f4_i2c_clr_bits(void __iomem *reg, u32 mask)
{
	writel_relaxed(readl_relaxed(reg) & ~mask, reg);
}

static void stm32f4_i2c_disable_irq(struct stm32f4_i2c_dev *i2c_dev)
{
	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;

	stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_IRQ_MASK);
}

static int stm32f4_i2c_set_periph_clk_freq(struct stm32f4_i2c_dev *i2c_dev)
{
	u32 freq;
	u32 cr2 = 0;

	i2c_dev->parent_rate = clk_get_rate(i2c_dev->clk);
	freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);

	if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) {
		/*
		 * To reach 100 kHz, the parent clk frequency should be between
		 * a minimum value of 2 MHz and a maximum value of 46 MHz due
		 * to hardware limitation
		 */
		if (freq < STM32F4_I2C_MIN_STANDARD_FREQ ||
		    freq > STM32F4_I2C_MAX_FREQ) {
			dev_err(i2c_dev->dev,
				"bad parent clk freq for standard mode\n");
			return -EINVAL;
		}
	} else {
		/*
		 * To be as close as possible to 400 kHz, the parent clk
		 * frequency should be between a minimum value of 6 MHz and a
		 * maximum value of 46 MHz due to hardware limitation
		 */
		if (freq < STM32F4_I2C_MIN_FAST_FREQ ||
		    freq > STM32F4_I2C_MAX_FREQ) {
			dev_err(i2c_dev->dev,
				"bad parent clk freq for fast mode\n");
			return -EINVAL;
		}
	}

	cr2 |= STM32F4_I2C_CR2_FREQ(freq);
	writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);

	return 0;
}

static void stm32f4_i2c_set_rise_time(struct stm32f4_i2c_dev *i2c_dev)
{
	u32 freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
	u32 trise;

	/*
	 * These bits must be programmed with the maximum SCL rise time given in
	 * the I2C bus specification, incremented by 1.
	 *
	 * In standard mode, the maximum allowed SCL rise time is 1000 ns.
	 * If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
	 * 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
	 * programmed with 0x9. (1000 ns / 125 ns + 1)
	 * So, for I2C standard mode TRISE = FREQ[5:0] + 1
	 *
	 * In fast mode, the maximum allowed SCL rise time is 300 ns.
	 * If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
	 * 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
	 * programmed with 0x3. (300 ns / 125 ns + 1)
	 * So, for I2C fast mode TRISE = FREQ[5:0] * 300 / 1000 + 1
	 *
	 * Function stm32f4_i2c_set_periph_clk_freq made sure that parent rate
	 * is not higher than 46 MHz . As a result trise is at most 4 bits wide
	 * and so fits into the TRISE bits [5:0].
	 */
	if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD)
		trise = freq + 1;
	else
		trise = freq * 3 / 10 + 1;

	writel_relaxed(STM32F4_I2C_TRISE_VALUE(trise),
		       i2c_dev->base + STM32F4_I2C_TRISE);
}

static void stm32f4_i2c_set_speed_mode(struct stm32f4_i2c_dev *i2c_dev)
{
	u32 val;
	u32 ccr = 0;

	if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) {
		/*
		 * In standard mode:
		 * t_scl_high = t_scl_low = CCR * I2C parent clk period
		 * So to reach 100 kHz, we have:
		 * CCR = I2C parent rate / (100 kHz * 2)
		 *
		 * For example with parent rate = 2 MHz:
		 * CCR = 2000000 / (100000 * 2) = 10
		 * t_scl_high = t_scl_low = 10 * (1 / 2000000) = 5000 ns
		 * t_scl_high + t_scl_low = 10000 ns so 100 kHz is reached
		 *
		 * Function stm32f4_i2c_set_periph_clk_freq made sure that
		 * parent rate is not higher than 46 MHz . As a result val
		 * is at most 8 bits wide and so fits into the CCR bits [11:0].
		 */
		val = i2c_dev->parent_rate / (I2C_MAX_STANDARD_MODE_FREQ * 2);
	} else {
		/*
		 * In fast mode, we compute CCR with duty = 0 as with low
		 * frequencies we are not able to reach 400 kHz.
		 * In that case:
		 * t_scl_high = CCR * I2C parent clk period
		 * t_scl_low = 2 * CCR * I2C parent clk period
		 * So, CCR = I2C parent rate / (400 kHz * 3)
		 *
		 * For example with parent rate = 6 MHz:
		 * CCR = 6000000 / (400000 * 3) = 5
		 * t_scl_high = 5 * (1 / 6000000) = 833 ns > 600 ns
		 * t_scl_low = 2 * 5 * (1 / 6000000) = 1667 ns > 1300 ns
		 * t_scl_high + t_scl_low = 2500 ns so 400 kHz is reached
		 *
		 * Function stm32f4_i2c_set_periph_clk_freq made sure that
		 * parent rate is not higher than 46 MHz . As a result val
		 * is at most 6 bits wide and so fits into the CCR bits [11:0].
		 */
		val = DIV_ROUND_UP(i2c_dev->parent_rate, I2C_MAX_FAST_MODE_FREQ * 3);

		/* Select Fast mode */
		ccr |= STM32F4_I2C_CCR_FS;
	}

	ccr |= STM32F4_I2C_CCR_CCR(val);
	writel_relaxed(ccr, i2c_dev->base + STM32F4_I2C_CCR);
}

/**
 * stm32f4_i2c_hw_config() - Prepare I2C block
 * @i2c_dev: Controller's private data
 */
static int stm32f4_i2c_hw_config(struct stm32f4_i2c_dev *i2c_dev)
{
	int ret;

	ret = stm32f4_i2c_set_periph_clk_freq(i2c_dev);
	if (ret)
		return ret;

	stm32f4_i2c_set_rise_time(i2c_dev);

	stm32f4_i2c_set_speed_mode(i2c_dev);

	/* Enable I2C */
	writel_relaxed(STM32F4_I2C_CR1_PE, i2c_dev->base + STM32F4_I2C_CR1);

	return 0;
}

static int stm32f4_i2c_wait_free_bus(struct stm32f4_i2c_dev *i2c_dev)
{
	u32 status;
	int ret;

	ret = readl_relaxed_poll_timeout(i2c_dev->base + STM32F4_I2C_SR2,
					 status,
					 !(status & STM32F4_I2C_SR2_BUSY),
					 10, 1000);
	if (ret) {
		dev_dbg(i2c_dev->dev, "bus not free\n");
		ret = -EBUSY;
	}

	return ret;
}

/**
 * stm32f4_i2c_write_ byte() - Write a byte in the data register
 * @i2c_dev: Controller's private data
 * @byte: Data to write in the register
 */
static void stm32f4_i2c_write_byte(struct stm32f4_i2c_dev *i2c_dev, u8 byte)
{
	writel_relaxed(byte, i2c_dev->base + STM32F4_I2C_DR);
}

/**
 * stm32f4_i2c_write_msg() - Fill the data register in write mode
 * @i2c_dev: Controller's private data
 *
 * This function fills the data register with I2C transfer buffer
 */
static void stm32f4_i2c_write_msg(struct stm32f4_i2c_dev *i2c_dev)
{
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;

	stm32f4_i2c_write_byte(i2c_dev, *msg->buf++);
	msg->count--;
}

static void stm32f4_i2c_read_msg(struct stm32f4_i2c_dev *i2c_dev)
{
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	u32 rbuf;

	rbuf = readl_relaxed(i2c_dev->base + STM32F4_I2C_DR);
	*msg->buf++ = rbuf;
	msg->count--;
}

static void stm32f4_i2c_terminate_xfer(struct stm32f4_i2c_dev *i2c_dev)
{
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	void __iomem *reg;

	stm32f4_i2c_disable_irq(i2c_dev);

	reg = i2c_dev->base + STM32F4_I2C_CR1;
	if (msg->stop)
		stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
	else
		stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);

	complete(&i2c_dev->complete);
}

/**
 * stm32f4_i2c_handle_write() - Handle FIFO empty interrupt in case of write
 * @i2c_dev: Controller's private data
 */
static void stm32f4_i2c_handle_write(struct stm32f4_i2c_dev *i2c_dev)
{
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;

	if (msg->count) {
		stm32f4_i2c_write_msg(i2c_dev);
		if (!msg->count) {
			/*
			 * Disable buffer interrupts for RX not empty and TX
			 * empty events
			 */
			stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
		}
	} else {
		stm32f4_i2c_terminate_xfer(i2c_dev);
	}
}

/**
 * stm32f4_i2c_handle_read() - Handle FIFO empty interrupt in case of read
 * @i2c_dev: Controller's private data
 *
 * This function is called when a new data is received in data register
 */
static void stm32f4_i2c_handle_read(struct stm32f4_i2c_dev *i2c_dev)
{
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;

	switch (msg->count) {
	case 1:
		stm32f4_i2c_disable_irq(i2c_dev);
		stm32f4_i2c_read_msg(i2c_dev);
		complete(&i2c_dev->complete);
		break;
	/*
	 * For 2-byte reception, 3-byte reception and for Data N-2, N-1 and N
	 * for N-byte reception with N > 3, we do not have to read the data
	 * register when RX not empty event occurs as we have to wait for byte
	 * transferred finished event before reading data.
	 * So, here we just disable buffer interrupt in order to avoid another
	 * system preemption due to RX not empty event.
	 */
	case 2:
	case 3:
		stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
		break;
	/*
	 * For N byte reception with N > 3 we directly read data register
	 * until N-2 data.
	 */
	default:
		stm32f4_i2c_read_msg(i2c_dev);
	}
}

/**
 * stm32f4_i2c_handle_rx_done() - Handle byte transfer finished interrupt
 * in case of read
 * @i2c_dev: Controller's private data
 *
 * This function is called when a new data is received in the shift register
 * but data register has not been read yet.
 */
static void stm32f4_i2c_handle_rx_done(struct stm32f4_i2c_dev *i2c_dev)
{
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	void __iomem *reg;
	u32 mask;
	int i;

	switch (msg->count) {
	case 2:
		/*
		 * In order to correctly send the Stop or Repeated Start
		 * condition on the I2C bus, the STOP/START bit has to be set
		 * before reading the last two bytes (data N-1 and N).
		 * After that, we could read the last two bytes, disable
		 * remaining interrupts and notify the end of xfer to the
		 * client
		 */
		reg = i2c_dev->base + STM32F4_I2C_CR1;
		if (msg->stop)
			stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
		else
			stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);

		for (i = 2; i > 0; i--)
			stm32f4_i2c_read_msg(i2c_dev);

		reg = i2c_dev->base + STM32F4_I2C_CR2;
		mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
		stm32f4_i2c_clr_bits(reg, mask);

		complete(&i2c_dev->complete);
		break;
	case 3:
		/*
		 * In order to correctly generate the NACK pulse after the last
		 * received data byte, we have to enable NACK before reading N-2
		 * data
		 */
		reg = i2c_dev->base + STM32F4_I2C_CR1;
		stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR1_ACK);
		stm32f4_i2c_read_msg(i2c_dev);
		break;
	default:
		stm32f4_i2c_read_msg(i2c_dev);
	}
}

/**
 * stm32f4_i2c_handle_rx_addr() - Handle address matched interrupt in case of
 * master receiver
 * @i2c_dev: Controller's private data
 */
static void stm32f4_i2c_handle_rx_addr(struct stm32f4_i2c_dev *i2c_dev)
{
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	u32 cr1;

	switch (msg->count) {
	case 0:
		stm32f4_i2c_terminate_xfer(i2c_dev);

		/* Clear ADDR flag */
		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
		break;
	case 1:
		/*
		 * Single byte reception:
		 * Enable NACK and reset POS (Acknowledge position).
		 * Then, clear ADDR flag and set STOP or RepSTART.
		 * In that way, the NACK and STOP or RepStart pulses will be
		 * sent as soon as the byte will be received in shift register
		 */
		cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
		cr1 &= ~(STM32F4_I2C_CR1_ACK | STM32F4_I2C_CR1_POS);
		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);

		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);

		if (msg->stop)
			cr1 |= STM32F4_I2C_CR1_STOP;
		else
			cr1 |= STM32F4_I2C_CR1_START;
		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
		break;
	case 2:
		/*
		 * 2-byte reception:
		 * Enable NACK, set POS (NACK position) and clear ADDR flag.
		 * In that way, NACK will be sent for the next byte which will
		 * be received in the shift register instead of the current
		 * one.
		 */
		cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
		cr1 &= ~STM32F4_I2C_CR1_ACK;
		cr1 |= STM32F4_I2C_CR1_POS;
		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);

		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
		break;

	default:
		/*
		 * N-byte reception:
		 * Enable ACK, reset POS (ACK postion) and clear ADDR flag.
		 * In that way, ACK will be sent as soon as the current byte
		 * will be received in the shift register
		 */
		cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
		cr1 |= STM32F4_I2C_CR1_ACK;
		cr1 &= ~STM32F4_I2C_CR1_POS;
		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);

		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
		break;
	}
}

/**
 * stm32f4_i2c_isr_event() - Interrupt routine for I2C bus event
 * @irq: interrupt number
 * @data: Controller's private data
 */
static irqreturn_t stm32f4_i2c_isr_event(int irq, void *data)
{
	struct stm32f4_i2c_dev *i2c_dev = data;
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	u32 possible_status = STM32F4_I2C_SR1_ITEVTEN_MASK;
	u32 status, ien, event, cr2;

	cr2 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR2);
	ien = cr2 & STM32F4_I2C_CR2_IRQ_MASK;

	/* Update possible_status if buffer interrupt is enabled */
	if (ien & STM32F4_I2C_CR2_ITBUFEN)
		possible_status |= STM32F4_I2C_SR1_ITBUFEN_MASK;

	status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
	event = status & possible_status;
	if (!event) {
		dev_dbg(i2c_dev->dev,
			"spurious evt irq (status=0x%08x, ien=0x%08x)\n",
			status, ien);
		return IRQ_NONE;
	}

	/* Start condition generated */
	if (event & STM32F4_I2C_SR1_SB)
		stm32f4_i2c_write_byte(i2c_dev, msg->addr);

	/* I2C Address sent */
	if (event & STM32F4_I2C_SR1_ADDR) {
		if (msg->addr & I2C_M_RD)
			stm32f4_i2c_handle_rx_addr(i2c_dev);
		else
			readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);

		/*
		 * Enable buffer interrupts for RX not empty and TX empty
		 * events
		 */
		cr2 |= STM32F4_I2C_CR2_ITBUFEN;
		writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
	}

	/* TX empty */
	if ((event & STM32F4_I2C_SR1_TXE) && !(msg->addr & I2C_M_RD))
		stm32f4_i2c_handle_write(i2c_dev);

	/* RX not empty */
	if ((event & STM32F4_I2C_SR1_RXNE) && (msg->addr & I2C_M_RD))
		stm32f4_i2c_handle_read(i2c_dev);

	/*
	 * The BTF (Byte Transfer finished) event occurs when:
	 * - in reception : a new byte is received in the shift register
	 * but the previous byte has not been read yet from data register
	 * - in transmission: a new byte should be sent but the data register
	 * has not been written yet
	 */
	if (event & STM32F4_I2C_SR1_BTF) {
		if (msg->addr & I2C_M_RD)
			stm32f4_i2c_handle_rx_done(i2c_dev);
		else
			stm32f4_i2c_handle_write(i2c_dev);
	}

	return IRQ_HANDLED;
}

/**
 * stm32f4_i2c_isr_error() - Interrupt routine for I2C bus error
 * @irq: interrupt number
 * @data: Controller's private data
 */
static irqreturn_t stm32f4_i2c_isr_error(int irq, void *data)
{
	struct stm32f4_i2c_dev *i2c_dev = data;
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	void __iomem *reg;
	u32 status;

	status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);

	/* Arbitration lost */
	if (status & STM32F4_I2C_SR1_ARLO) {
		status &= ~STM32F4_I2C_SR1_ARLO;
		writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
		msg->result = -EAGAIN;
	}

	/*
	 * Acknowledge failure:
	 * In master transmitter mode a Stop must be generated by software
	 */
	if (status & STM32F4_I2C_SR1_AF) {
		if (!(msg->addr & I2C_M_RD)) {
			reg = i2c_dev->base + STM32F4_I2C_CR1;
			stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
		}
		status &= ~STM32F4_I2C_SR1_AF;
		writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
		msg->result = -EIO;
	}

	/* Bus error */
	if (status & STM32F4_I2C_SR1_BERR) {
		status &= ~STM32F4_I2C_SR1_BERR;
		writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
		msg->result = -EIO;
	}

	stm32f4_i2c_disable_irq(i2c_dev);
	complete(&i2c_dev->complete);

	return IRQ_HANDLED;
}

/**
 * stm32f4_i2c_xfer_msg() - Transfer a single I2C message
 * @i2c_dev: Controller's private data
 * @msg: I2C message to transfer
 * @is_first: first message of the sequence
 * @is_last: last message of the sequence
 */
static int stm32f4_i2c_xfer_msg(struct stm32f4_i2c_dev *i2c_dev,
				struct i2c_msg *msg, bool is_first,
				bool is_last)
{
	struct stm32f4_i2c_msg *f4_msg = &i2c_dev->msg;
	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR1;
	unsigned long timeout;
	u32 mask;
	int ret;

	f4_msg->addr = i2c_8bit_addr_from_msg(msg);
	f4_msg->buf = msg->buf;
	f4_msg->count = msg->len;
	f4_msg->result = 0;
	f4_msg->stop = is_last;

	reinit_completion(&i2c_dev->complete);

	/* Enable events and errors interrupts */
	mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
	stm32f4_i2c_set_bits(i2c_dev->base + STM32F4_I2C_CR2, mask);

	if (is_first) {
		ret = stm32f4_i2c_wait_free_bus(i2c_dev);
		if (ret)
			return ret;

		/* START generation */
		stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
	}

	timeout = wait_for_completion_timeout(&i2c_dev->complete,
					      i2c_dev->adap.timeout);
	ret = f4_msg->result;

	if (!timeout)
		ret = -ETIMEDOUT;

	return ret;
}

/**
 * stm32f4_i2c_xfer() - Transfer combined I2C message
 * @i2c_adap: Adapter pointer to the controller
 * @msgs: Pointer to data to be written.
 * @num: Number of messages to be executed
 */
static int stm32f4_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[],
			    int num)
{
	struct stm32f4_i2c_dev *i2c_dev = i2c_get_adapdata(i2c_adap);
	int ret, i;

	ret = clk_enable(i2c_dev->clk);
	if (ret) {
		dev_err(i2c_dev->dev, "Failed to enable clock\n");
		return ret;
	}

	for (i = 0; i < num && !ret; i++)
		ret = stm32f4_i2c_xfer_msg(i2c_dev, &msgs[i], i == 0,
					   i == num - 1);

	clk_disable(i2c_dev->clk);

	return (ret < 0) ? ret : num;
}

static u32 stm32f4_i2c_func(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}

static const struct i2c_algorithm stm32f4_i2c_algo = {
	.master_xfer = stm32f4_i2c_xfer,
	.functionality = stm32f4_i2c_func,
};

static int stm32f4_i2c_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct stm32f4_i2c_dev *i2c_dev;
	struct resource *res;
	u32 irq_event, irq_error, clk_rate;
	struct i2c_adapter *adap;
	struct reset_control *rst;
	int ret;

	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
	if (!i2c_dev)
		return -ENOMEM;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	i2c_dev->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(i2c_dev->base))
		return PTR_ERR(i2c_dev->base);

	irq_event = irq_of_parse_and_map(np, 0);
	if (!irq_event) {
		dev_err(&pdev->dev, "IRQ event missing or invalid\n");
		return -EINVAL;
	}

	irq_error = irq_of_parse_and_map(np, 1);
	if (!irq_error) {
		dev_err(&pdev->dev, "IRQ error missing or invalid\n");
		return -EINVAL;
	}

	i2c_dev->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(i2c_dev->clk)) {
		dev_err(&pdev->dev, "Error: Missing controller clock\n");
		return PTR_ERR(i2c_dev->clk);
	}
	ret = clk_prepare_enable(i2c_dev->clk);
	if (ret) {
		dev_err(i2c_dev->dev, "Failed to prepare_enable clock\n");
		return ret;
	}

	rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
	if (IS_ERR(rst)) {
		ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
				    "Error: Missing reset ctrl\n");
		goto clk_free;
	}
	reset_control_assert(rst);
	udelay(2);
	reset_control_deassert(rst);

	i2c_dev->speed = STM32_I2C_SPEED_STANDARD;
	ret = of_property_read_u32(np, "clock-frequency", &clk_rate);
	if (!ret && clk_rate >= I2C_MAX_FAST_MODE_FREQ)
		i2c_dev->speed = STM32_I2C_SPEED_FAST;

	i2c_dev->dev = &pdev->dev;

	ret = devm_request_irq(&pdev->dev, irq_event, stm32f4_i2c_isr_event, 0,
			       pdev->name, i2c_dev);
	if (ret) {
		dev_err(&pdev->dev, "Failed to request irq event %i\n",
			irq_event);
		goto clk_free;
	}

	ret = devm_request_irq(&pdev->dev, irq_error, stm32f4_i2c_isr_error, 0,
			       pdev->name, i2c_dev);
	if (ret) {
		dev_err(&pdev->dev, "Failed to request irq error %i\n",
			irq_error);
		goto clk_free;
	}

	ret = stm32f4_i2c_hw_config(i2c_dev);
	if (ret)
		goto clk_free;

	adap = &i2c_dev->adap;
	i2c_set_adapdata(adap, i2c_dev);
	snprintf(adap->name, sizeof(adap->name), "STM32 I2C(%pa)", &res->start);
	adap->owner = THIS_MODULE;
	adap->timeout = 2 * HZ;
	adap->retries = 0;
	adap->algo = &stm32f4_i2c_algo;
	adap->dev.parent = &pdev->dev;
	adap->dev.of_node = pdev->dev.of_node;

	init_completion(&i2c_dev->complete);

	ret = i2c_add_adapter(adap);
	if (ret)
		goto clk_free;

	platform_set_drvdata(pdev, i2c_dev);

	clk_disable(i2c_dev->clk);

	dev_info(i2c_dev->dev, "STM32F4 I2C driver registered\n");

	return 0;

clk_free:
	clk_disable_unprepare(i2c_dev->clk);
	return ret;
}

static int stm32f4_i2c_remove(struct platform_device *pdev)
{
	struct stm32f4_i2c_dev *i2c_dev = platform_get_drvdata(pdev);

	i2c_del_adapter(&i2c_dev->adap);

	clk_unprepare(i2c_dev->clk);

	return 0;
}

static const struct of_device_id stm32f4_i2c_match[] = {
	{ .compatible = "st,stm32f4-i2c", },
	{},
};
MODULE_DEVICE_TABLE(of, stm32f4_i2c_match);

static struct platform_driver stm32f4_i2c_driver = {
	.driver = {
		.name = "stm32f4-i2c",
		.of_match_table = stm32f4_i2c_match,
	},
	.probe = stm32f4_i2c_probe,
	.remove = stm32f4_i2c_remove,
};

module_platform_driver(stm32f4_i2c_driver);

MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32F4 I2C driver");
MODULE_LICENSE("GPL v2");