gsi.c 58.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
// SPDX-License-Identifier: GPL-2.0

/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
 * Copyright (C) 2018-2020 Linaro Ltd.
 */

#include <linux/types.h>
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/mutex.h>
#include <linux/completion.h>
#include <linux/io.h>
#include <linux/bug.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/netdevice.h>

#include "gsi.h"
#include "gsi_reg.h"
#include "gsi_private.h"
#include "gsi_trans.h"
#include "ipa_gsi.h"
#include "ipa_data.h"

/**
 * DOC: The IPA Generic Software Interface
 *
 * The generic software interface (GSI) is an integral component of the IPA,
 * providing a well-defined communication layer between the AP subsystem
 * and the IPA core.  The modem uses the GSI layer as well.
 *
 *	--------	     ---------
 *	|      |	     |	     |
 *	|  AP  +<---.	.----+ Modem |
 *	|      +--. |	| .->+	     |
 *	|      |  | |	| |  |	     |
 *	--------  | |	| |  ---------
 *		  v |	v |
 *		--+-+---+-+--
 *		|    GSI    |
 *		|-----------|
 *		|	    |
 *		|    IPA    |
 *		|	    |
 *		-------------
 *
 * In the above diagram, the AP and Modem represent "execution environments"
 * (EEs), which are independent operating environments that use the IPA for
 * data transfer.
 *
 * Each EE uses a set of unidirectional GSI "channels," which allow transfer
 * of data to or from the IPA.  A channel is implemented as a ring buffer,
 * with a DRAM-resident array of "transfer elements" (TREs) available to
 * describe transfers to or from other EEs through the IPA.  A transfer
 * element can also contain an immediate command, requesting the IPA perform
 * actions other than data transfer.
 *
 * Each TRE refers to a block of data--also located DRAM.  After writing one
 * or more TREs to a channel, the writer (either the IPA or an EE) writes a
 * doorbell register to inform the receiving side how many elements have
 * been written.
 *
 * Each channel has a GSI "event ring" associated with it.  An event ring
 * is implemented very much like a channel ring, but is always directed from
 * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
 * events by adding an entry to the event ring associated with the channel.
 * The GSI then writes its doorbell for the event ring, causing the target
 * EE to be interrupted.  Each entry in an event ring contains a pointer
 * to the channel TRE whose completion the event represents.
 *
 * Each TRE in a channel ring has a set of flags.  One flag indicates whether
 * the completion of the transfer operation generates an entry (and possibly
 * an interrupt) in the channel's event ring.  Other flags allow transfer
 * elements to be chained together, forming a single logical transaction.
 * TRE flags are used to control whether and when interrupts are generated
 * to signal completion of channel transfers.
 *
 * Elements in channel and event rings are completed (or consumed) strictly
 * in order.  Completion of one entry implies the completion of all preceding
 * entries.  A single completion interrupt can therefore communicate the
 * completion of many transfers.
 *
 * Note that all GSI registers are little-endian, which is the assumed
 * endianness of I/O space accesses.  The accessor functions perform byte
 * swapping if needed (i.e., for a big endian CPU).
 */

/* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
#define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */

#define GSI_CMD_TIMEOUT			5	/* seconds */

#define GSI_CHANNEL_STOP_RX_RETRIES	10

#define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */
#define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */

#define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */

/* An entry in an event ring */
struct gsi_event {
	__le64 xfer_ptr;
	__le16 len;
	u8 reserved1;
	u8 code;
	__le16 reserved2;
	u8 type;
	u8 chid;
};

/* Hardware values from the error log register error code field */
enum gsi_err_code {
	GSI_INVALID_TRE_ERR			= 0x1,
	GSI_OUT_OF_BUFFERS_ERR			= 0x2,
	GSI_OUT_OF_RESOURCES_ERR		= 0x3,
	GSI_UNSUPPORTED_INTER_EE_OP_ERR		= 0x4,
	GSI_EVT_RING_EMPTY_ERR			= 0x5,
	GSI_NON_ALLOCATED_EVT_ACCESS_ERR	= 0x6,
	GSI_HWO_1_ERR				= 0x8,
};

/* Hardware values from the error log register error type field */
enum gsi_err_type {
	GSI_ERR_TYPE_GLOB	= 0x1,
	GSI_ERR_TYPE_CHAN	= 0x2,
	GSI_ERR_TYPE_EVT	= 0x3,
};

/* Hardware values used when programming an event ring */
enum gsi_evt_chtype {
	GSI_EVT_CHTYPE_MHI_EV	= 0x0,
	GSI_EVT_CHTYPE_XHCI_EV	= 0x1,
	GSI_EVT_CHTYPE_GPI_EV	= 0x2,
	GSI_EVT_CHTYPE_XDCI_EV	= 0x3,
};

/* Hardware values used when programming a channel */
enum gsi_channel_protocol {
	GSI_CHANNEL_PROTOCOL_MHI	= 0x0,
	GSI_CHANNEL_PROTOCOL_XHCI	= 0x1,
	GSI_CHANNEL_PROTOCOL_GPI	= 0x2,
	GSI_CHANNEL_PROTOCOL_XDCI	= 0x3,
};

/* Hardware values representing an event ring immediate command opcode */
enum gsi_evt_cmd_opcode {
	GSI_EVT_ALLOCATE	= 0x0,
	GSI_EVT_RESET		= 0x9,
	GSI_EVT_DE_ALLOC	= 0xa,
};

/* Hardware values representing a generic immediate command opcode */
enum gsi_generic_cmd_opcode {
	GSI_GENERIC_HALT_CHANNEL	= 0x1,
	GSI_GENERIC_ALLOCATE_CHANNEL	= 0x2,
};

/* Hardware values representing a channel immediate command opcode */
enum gsi_ch_cmd_opcode {
	GSI_CH_ALLOCATE	= 0x0,
	GSI_CH_START	= 0x1,
	GSI_CH_STOP	= 0x2,
	GSI_CH_RESET	= 0x9,
	GSI_CH_DE_ALLOC	= 0xa,
};

/** gsi_channel_scratch_gpi - GPI protocol scratch register
 * @max_outstanding_tre:
 *	Defines the maximum number of TREs allowed in a single transaction
 *	on a channel (in bytes).  This determines the amount of prefetch
 *	performed by the hardware.  We configure this to equal the size of
 *	the TLV FIFO for the channel.
 * @outstanding_threshold:
 *	Defines the threshold (in bytes) determining when the sequencer
 *	should update the channel doorbell.  We configure this to equal
 *	the size of two TREs.
 */
struct gsi_channel_scratch_gpi {
	u64 reserved1;
	u16 reserved2;
	u16 max_outstanding_tre;
	u16 reserved3;
	u16 outstanding_threshold;
};

/** gsi_channel_scratch - channel scratch configuration area
 *
 * The exact interpretation of this register is protocol-specific.
 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
 */
union gsi_channel_scratch {
	struct gsi_channel_scratch_gpi gpi;
	struct {
		u32 word1;
		u32 word2;
		u32 word3;
		u32 word4;
	} data;
};

/* Check things that can be validated at build time. */
static void gsi_validate_build(void)
{
	/* This is used as a divisor */
	BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);

	/* Code assumes the size of channel and event ring element are
	 * the same (and fixed).  Make sure the size of an event ring
	 * element is what's expected.
	 */
	BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);

	/* Hardware requires a 2^n ring size.  We ensure the number of
	 * elements in an event ring is a power of 2 elsewhere; this
	 * ensure the elements themselves meet the requirement.
	 */
	BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));

	/* The channel element size must fit in this field */
	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));

	/* The event ring element size must fit in this field */
	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
}

/* Return the channel id associated with a given channel */
static u32 gsi_channel_id(struct gsi_channel *channel)
{
	return channel - &channel->gsi->channel[0];
}

static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id)
{
	u32 val;

	gsi->event_enable_bitmap |= BIT(evt_ring_id);
	val = gsi->event_enable_bitmap;
	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
}

static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id)
{
	u32 val;

	gsi->event_enable_bitmap &= ~BIT(evt_ring_id);
	val = gsi->event_enable_bitmap;
	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
}

/* Enable all GSI_interrupt types */
static void gsi_irq_enable(struct gsi *gsi)
{
	u32 val;

	/* We don't use inter-EE channel or event interrupts */
	val = GSI_CNTXT_TYPE_IRQ_MSK_ALL;
	val &= ~INTER_EE_CH_CTRL_FMASK;
	val &= ~INTER_EE_EV_CTRL_FMASK;
	iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);

	val = GENMASK(gsi->channel_count - 1, 0);
	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);

	val = GENMASK(gsi->evt_ring_count - 1, 0);
	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);

	/* Each IEOB interrupt is enabled (later) as needed by channels */
	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);

	val = GSI_CNTXT_GLOB_IRQ_ALL;
	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);

	/* Never enable GSI_BREAK_POINT */
	val = GSI_CNTXT_GSI_IRQ_ALL & ~BREAK_POINT_FMASK;
	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
}

/* Disable all GSI_interrupt types */
static void gsi_irq_disable(struct gsi *gsi)
{
	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
	iowrite32(0, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
}

/* Return the virtual address associated with a ring index */
void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
{
	/* Note: index *must* be used modulo the ring count here */
	return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
}

/* Return the 32-bit DMA address associated with a ring index */
static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
{
	return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE;
}

/* Return the ring index of a 32-bit ring offset */
static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
{
	return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
}

/* Issue a GSI command by writing a value to a register, then wait for
 * completion to be signaled.  Returns true if the command completes
 * or false if it times out.
 */
static bool
gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
{
	reinit_completion(completion);

	iowrite32(val, gsi->virt + reg);

	return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ);
}

/* Return the hardware's notion of the current state of an event ring */
static enum gsi_evt_ring_state
gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
{
	u32 val;

	val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));

	return u32_get_bits(val, EV_CHSTATE_FMASK);
}

/* Issue an event ring command and wait for it to complete */
static int evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
			    enum gsi_evt_cmd_opcode opcode)
{
	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
	struct completion *completion = &evt_ring->completion;
	struct device *dev = gsi->dev;
	u32 val;

	val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
	val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);

	if (gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion))
		return 0;	/* Success! */

	dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
		opcode, evt_ring_id, evt_ring->state);

	return -ETIMEDOUT;
}

/* Allocate an event ring in NOT_ALLOCATED state */
static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
{
	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
	int ret;

	/* Get initial event ring state */
	evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
	if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
		dev_err(gsi->dev, "bad event ring state %u before alloc\n",
			evt_ring->state);
		return -EINVAL;
	}

	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
		dev_err(gsi->dev, "bad event ring state %u after alloc\n",
			evt_ring->state);
		ret = -EIO;
	}

	return ret;
}

/* Reset a GSI event ring in ALLOCATED or ERROR state. */
static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
{
	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
	enum gsi_evt_ring_state state = evt_ring->state;
	int ret;

	if (state != GSI_EVT_RING_STATE_ALLOCATED &&
	    state != GSI_EVT_RING_STATE_ERROR) {
		dev_err(gsi->dev, "bad event ring state %u before reset\n",
			evt_ring->state);
		return;
	}

	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED)
		dev_err(gsi->dev, "bad event ring state %u after reset\n",
			evt_ring->state);
}

/* Issue a hardware de-allocation request for an allocated event ring */
static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
{
	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
	int ret;

	if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
		dev_err(gsi->dev, "bad event ring state %u before dealloc\n",
			evt_ring->state);
		return;
	}

	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED)
		dev_err(gsi->dev, "bad event ring state %u after dealloc\n",
			evt_ring->state);
}

/* Fetch the current state of a channel from hardware */
static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
{
	u32 channel_id = gsi_channel_id(channel);
	void *virt = channel->gsi->virt;
	u32 val;

	val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));

	return u32_get_bits(val, CHSTATE_FMASK);
}

/* Issue a channel command and wait for it to complete */
static int
gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
{
	struct completion *completion = &channel->completion;
	u32 channel_id = gsi_channel_id(channel);
	struct gsi *gsi = channel->gsi;
	struct device *dev = gsi->dev;
	u32 val;

	val = u32_encode_bits(channel_id, CH_CHID_FMASK);
	val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);

	if (gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion))
		return 0;	/* Success! */

	dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
		opcode, channel_id, gsi_channel_state(channel));

	return -ETIMEDOUT;
}

/* Allocate GSI channel in NOT_ALLOCATED state */
static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
{
	struct gsi_channel *channel = &gsi->channel[channel_id];
	struct device *dev = gsi->dev;
	enum gsi_channel_state state;
	int ret;

	/* Get initial channel state */
	state = gsi_channel_state(channel);
	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
		dev_err(dev, "bad channel state %u before alloc\n", state);
		return -EINVAL;
	}

	ret = gsi_channel_command(channel, GSI_CH_ALLOCATE);

	/* Channel state will normally have been updated */
	state = gsi_channel_state(channel);
	if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED) {
		dev_err(dev, "bad channel state %u after alloc\n", state);
		ret = -EIO;
	}

	return ret;
}

/* Start an ALLOCATED channel */
static int gsi_channel_start_command(struct gsi_channel *channel)
{
	struct device *dev = channel->gsi->dev;
	enum gsi_channel_state state;
	int ret;

	state = gsi_channel_state(channel);
	if (state != GSI_CHANNEL_STATE_ALLOCATED &&
	    state != GSI_CHANNEL_STATE_STOPPED) {
		dev_err(dev, "bad channel state %u before start\n", state);
		return -EINVAL;
	}

	ret = gsi_channel_command(channel, GSI_CH_START);

	/* Channel state will normally have been updated */
	state = gsi_channel_state(channel);
	if (!ret && state != GSI_CHANNEL_STATE_STARTED) {
		dev_err(dev, "bad channel state %u after start\n", state);
		ret = -EIO;
	}

	return ret;
}

/* Stop a GSI channel in STARTED state */
static int gsi_channel_stop_command(struct gsi_channel *channel)
{
	struct device *dev = channel->gsi->dev;
	enum gsi_channel_state state;
	int ret;

	state = gsi_channel_state(channel);

	/* Channel could have entered STOPPED state since last call
	 * if it timed out.  If so, we're done.
	 */
	if (state == GSI_CHANNEL_STATE_STOPPED)
		return 0;

	if (state != GSI_CHANNEL_STATE_STARTED &&
	    state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
		dev_err(dev, "bad channel state %u before stop\n", state);
		return -EINVAL;
	}

	ret = gsi_channel_command(channel, GSI_CH_STOP);

	/* Channel state will normally have been updated */
	state = gsi_channel_state(channel);
	if (ret || state == GSI_CHANNEL_STATE_STOPPED)
		return ret;

	/* We may have to try again if stop is in progress */
	if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
		return -EAGAIN;

	dev_err(dev, "bad channel state %u after stop\n", state);

	return -EIO;
}

/* Reset a GSI channel in ALLOCATED or ERROR state. */
static void gsi_channel_reset_command(struct gsi_channel *channel)
{
	struct device *dev = channel->gsi->dev;
	enum gsi_channel_state state;
	int ret;

	msleep(1);	/* A short delay is required before a RESET command */

	state = gsi_channel_state(channel);
	if (state != GSI_CHANNEL_STATE_STOPPED &&
	    state != GSI_CHANNEL_STATE_ERROR) {
		dev_err(dev, "bad channel state %u before reset\n", state);
		return;
	}

	ret = gsi_channel_command(channel, GSI_CH_RESET);

	/* Channel state will normally have been updated */
	state = gsi_channel_state(channel);
	if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED)
		dev_err(dev, "bad channel state %u after reset\n", state);
}

/* Deallocate an ALLOCATED GSI channel */
static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
{
	struct gsi_channel *channel = &gsi->channel[channel_id];
	struct device *dev = gsi->dev;
	enum gsi_channel_state state;
	int ret;

	state = gsi_channel_state(channel);
	if (state != GSI_CHANNEL_STATE_ALLOCATED) {
		dev_err(dev, "bad channel state %u before dealloc\n", state);
		return;
	}

	ret = gsi_channel_command(channel, GSI_CH_DE_ALLOC);

	/* Channel state will normally have been updated */
	state = gsi_channel_state(channel);
	if (!ret && state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
		dev_err(dev, "bad channel state %u after dealloc\n", state);
}

/* Ring an event ring doorbell, reporting the last entry processed by the AP.
 * The index argument (modulo the ring count) is the first unfilled entry, so
 * we supply one less than that with the doorbell.  Update the event ring
 * index field with the value provided.
 */
static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
{
	struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
	u32 val;

	ring->index = index;	/* Next unused entry */

	/* Note: index *must* be used modulo the ring count here */
	val = gsi_ring_addr(ring, (index - 1) % ring->count);
	iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
}

/* Program an event ring for use */
static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
{
	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
	size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
	u32 val;

	val = u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK);
	val |= EV_INTYPE_FMASK;
	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));

	val = u32_encode_bits(size, EV_R_LENGTH_FMASK);
	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));

	/* The context 2 and 3 registers store the low-order and
	 * high-order 32 bits of the address of the event ring,
	 * respectively.
	 */
	val = evt_ring->ring.addr & GENMASK(31, 0);
	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));

	val = evt_ring->ring.addr >> 32;
	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));

	/* Enable interrupt moderation by setting the moderation delay */
	val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
	val |= u32_encode_bits(1, MODC_FMASK);	/* comes from channel */
	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));

	/* No MSI write data, and MSI address high and low address is 0 */
	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));

	/* We don't need to get event read pointer updates */
	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));

	/* Finally, tell the hardware we've completed event 0 (arbitrary) */
	gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
}

/* Return the last (most recent) transaction completed on a channel. */
static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
{
	struct gsi_trans_info *trans_info = &channel->trans_info;
	struct gsi_trans *trans;

	spin_lock_bh(&trans_info->spinlock);

	if (!list_empty(&trans_info->complete))
		trans = list_last_entry(&trans_info->complete,
					struct gsi_trans, links);
	else if (!list_empty(&trans_info->polled))
		trans = list_last_entry(&trans_info->polled,
					struct gsi_trans, links);
	else
		trans = NULL;

	/* Caller will wait for this, so take a reference */
	if (trans)
		refcount_inc(&trans->refcount);

	spin_unlock_bh(&trans_info->spinlock);

	return trans;
}

/* Wait for transaction activity on a channel to complete */
static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
{
	struct gsi_trans *trans;

	/* Get the last transaction, and wait for it to complete */
	trans = gsi_channel_trans_last(channel);
	if (trans) {
		wait_for_completion(&trans->completion);
		gsi_trans_free(trans);
	}
}

/* Stop channel activity.  Transactions may not be allocated until thawed. */
static void gsi_channel_freeze(struct gsi_channel *channel)
{
	gsi_channel_trans_quiesce(channel);

	napi_disable(&channel->napi);

	gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id);
}

/* Allow transactions to be used on the channel again. */
static void gsi_channel_thaw(struct gsi_channel *channel)
{
	gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);

	napi_enable(&channel->napi);
}

/* Program a channel for use */
static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
{
	size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
	u32 channel_id = gsi_channel_id(channel);
	union gsi_channel_scratch scr = { };
	struct gsi_channel_scratch_gpi *gpi;
	struct gsi *gsi = channel->gsi;
	u32 wrr_weight = 0;
	u32 val;

	/* Arbitrarily pick TRE 0 as the first channel element to use */
	channel->tre_ring.index = 0;

	/* We program all channels to use GPI protocol */
	val = u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK);
	if (channel->toward_ipa)
		val |= CHTYPE_DIR_FMASK;
	val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));

	val = u32_encode_bits(size, R_LENGTH_FMASK);
	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));

	/* The context 2 and 3 registers store the low-order and
	 * high-order 32 bits of the address of the channel ring,
	 * respectively.
	 */
	val = channel->tre_ring.addr & GENMASK(31, 0);
	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));

	val = channel->tre_ring.addr >> 32;
	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));

	/* Command channel gets low weighted round-robin priority */
	if (channel->command)
		wrr_weight = field_max(WRR_WEIGHT_FMASK);
	val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);

	/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */

	/* Enable the doorbell engine if requested */
	if (doorbell)
		val |= USE_DB_ENG_FMASK;

	if (!channel->use_prefetch)
		val |= USE_ESCAPE_BUF_ONLY_FMASK;

	iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));

	/* Now update the scratch registers for GPI protocol */
	gpi = &scr.gpi;
	gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
					GSI_RING_ELEMENT_SIZE;
	gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;

	val = scr.data.word1;
	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));

	val = scr.data.word2;
	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));

	val = scr.data.word3;
	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));

	/* We must preserve the upper 16 bits of the last scratch register.
	 * The next sequence assumes those bits remain unchanged between the
	 * read and the write.
	 */
	val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
	val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));

	/* All done! */
}

static void gsi_channel_deprogram(struct gsi_channel *channel)
{
	/* Nothing to do */
}

/* Start an allocated GSI channel */
int gsi_channel_start(struct gsi *gsi, u32 channel_id)
{
	struct gsi_channel *channel = &gsi->channel[channel_id];
	int ret;

	mutex_lock(&gsi->mutex);

	ret = gsi_channel_start_command(channel);

	mutex_unlock(&gsi->mutex);

	gsi_channel_thaw(channel);

	return ret;
}

/* Stop a started channel */
int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
{
	struct gsi_channel *channel = &gsi->channel[channel_id];
	u32 retries;
	int ret;

	gsi_channel_freeze(channel);

	/* RX channels might require a little time to enter STOPPED state */
	retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES;

	mutex_lock(&gsi->mutex);

	do {
		ret = gsi_channel_stop_command(channel);
		if (ret != -EAGAIN)
			break;
		msleep(1);
	} while (retries--);

	mutex_unlock(&gsi->mutex);

	/* Thaw the channel if we need to retry (or on error) */
	if (ret)
		gsi_channel_thaw(channel);

	return ret;
}

/* Reset and reconfigure a channel (possibly leaving doorbell disabled) */
void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool legacy)
{
	struct gsi_channel *channel = &gsi->channel[channel_id];

	mutex_lock(&gsi->mutex);

	gsi_channel_reset_command(channel);
	/* Due to a hardware quirk we may need to reset RX channels twice. */
	if (legacy && !channel->toward_ipa)
		gsi_channel_reset_command(channel);

	gsi_channel_program(channel, legacy);
	gsi_channel_trans_cancel_pending(channel);

	mutex_unlock(&gsi->mutex);
}

/* Stop a STARTED channel for suspend (using stop if requested) */
int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop)
{
	struct gsi_channel *channel = &gsi->channel[channel_id];

	if (stop)
		return gsi_channel_stop(gsi, channel_id);

	gsi_channel_freeze(channel);

	return 0;
}

/* Resume a suspended channel (starting will be requested if STOPPED) */
int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start)
{
	struct gsi_channel *channel = &gsi->channel[channel_id];

	if (start)
		return gsi_channel_start(gsi, channel_id);

	gsi_channel_thaw(channel);

	return 0;
}

/**
 * gsi_channel_tx_queued() - Report queued TX transfers for a channel
 * @channel:	Channel for which to report
 *
 * Report to the network stack the number of bytes and transactions that
 * have been queued to hardware since last call.  This and the next function
 * supply information used by the network stack for throttling.
 *
 * For each channel we track the number of transactions used and bytes of
 * data those transactions represent.  We also track what those values are
 * each time this function is called.  Subtracting the two tells us
 * the number of bytes and transactions that have been added between
 * successive calls.
 *
 * Calling this each time we ring the channel doorbell allows us to
 * provide accurate information to the network stack about how much
 * work we've given the hardware at any point in time.
 */
void gsi_channel_tx_queued(struct gsi_channel *channel)
{
	u32 trans_count;
	u32 byte_count;

	byte_count = channel->byte_count - channel->queued_byte_count;
	trans_count = channel->trans_count - channel->queued_trans_count;
	channel->queued_byte_count = channel->byte_count;
	channel->queued_trans_count = channel->trans_count;

	ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
				  trans_count, byte_count);
}

/**
 * gsi_channel_tx_update() - Report completed TX transfers
 * @channel:	Channel that has completed transmitting packets
 * @trans:	Last transation known to be complete
 *
 * Compute the number of transactions and bytes that have been transferred
 * over a TX channel since the given transaction was committed.  Report this
 * information to the network stack.
 *
 * At the time a transaction is committed, we record its channel's
 * committed transaction and byte counts *in the transaction*.
 * Completions are signaled by the hardware with an interrupt, and
 * we can determine the latest completed transaction at that time.
 *
 * The difference between the byte/transaction count recorded in
 * the transaction and the count last time we recorded a completion
 * tells us exactly how much data has been transferred between
 * completions.
 *
 * Calling this each time we learn of a newly-completed transaction
 * allows us to provide accurate information to the network stack
 * about how much work has been completed by the hardware at a given
 * point in time.
 */
static void
gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
{
	u64 byte_count = trans->byte_count + trans->len;
	u64 trans_count = trans->trans_count + 1;

	byte_count -= channel->compl_byte_count;
	channel->compl_byte_count += byte_count;
	trans_count -= channel->compl_trans_count;
	channel->compl_trans_count += trans_count;

	ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
				     trans_count, byte_count);
}

/* Channel control interrupt handler */
static void gsi_isr_chan_ctrl(struct gsi *gsi)
{
	u32 channel_mask;

	channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
	iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);

	while (channel_mask) {
		u32 channel_id = __ffs(channel_mask);
		struct gsi_channel *channel;

		channel_mask ^= BIT(channel_id);

		channel = &gsi->channel[channel_id];

		complete(&channel->completion);
	}
}

/* Event ring control interrupt handler */
static void gsi_isr_evt_ctrl(struct gsi *gsi)
{
	u32 event_mask;

	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);

	while (event_mask) {
		u32 evt_ring_id = __ffs(event_mask);
		struct gsi_evt_ring *evt_ring;

		event_mask ^= BIT(evt_ring_id);

		evt_ring = &gsi->evt_ring[evt_ring_id];
		evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);

		complete(&evt_ring->completion);
	}
}

/* Global channel error interrupt handler */
static void
gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
{
	if (code == GSI_OUT_OF_RESOURCES_ERR) {
		dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
		complete(&gsi->channel[channel_id].completion);
		return;
	}

	/* Report, but otherwise ignore all other error codes */
	dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
		channel_id, err_ee, code);
}

/* Global event error interrupt handler */
static void
gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
{
	if (code == GSI_OUT_OF_RESOURCES_ERR) {
		struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
		u32 channel_id = gsi_channel_id(evt_ring->channel);

		complete(&evt_ring->completion);
		dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
			channel_id);
		return;
	}

	/* Report, but otherwise ignore all other error codes */
	dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
		evt_ring_id, err_ee, code);
}

/* Global error interrupt handler */
static void gsi_isr_glob_err(struct gsi *gsi)
{
	enum gsi_err_type type;
	enum gsi_err_code code;
	u32 which;
	u32 val;
	u32 ee;

	/* Get the logged error, then reinitialize the log */
	val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
	iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);

	ee = u32_get_bits(val, ERR_EE_FMASK);
	which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
	type = u32_get_bits(val, ERR_TYPE_FMASK);
	code = u32_get_bits(val, ERR_CODE_FMASK);

	if (type == GSI_ERR_TYPE_CHAN)
		gsi_isr_glob_chan_err(gsi, ee, which, code);
	else if (type == GSI_ERR_TYPE_EVT)
		gsi_isr_glob_evt_err(gsi, ee, which, code);
	else	/* type GSI_ERR_TYPE_GLOB should be fatal */
		dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
}

/* Generic EE interrupt handler */
static void gsi_isr_gp_int1(struct gsi *gsi)
{
	u32 result;
	u32 val;

	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
	result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
	if (result != GENERIC_EE_SUCCESS_FVAL)
		dev_err(gsi->dev, "global INT1 generic result %u\n", result);

	complete(&gsi->completion);
}

/* Inter-EE interrupt handler */
static void gsi_isr_glob_ee(struct gsi *gsi)
{
	u32 val;

	val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);

	if (val & ERROR_INT_FMASK)
		gsi_isr_glob_err(gsi);

	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);

	val &= ~ERROR_INT_FMASK;

	if (val & GP_INT1_FMASK) {
		val ^= GP_INT1_FMASK;
		gsi_isr_gp_int1(gsi);
	}

	if (val)
		dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
}

/* I/O completion interrupt event */
static void gsi_isr_ieob(struct gsi *gsi)
{
	u32 event_mask;

	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);

	while (event_mask) {
		u32 evt_ring_id = __ffs(event_mask);

		event_mask ^= BIT(evt_ring_id);

		gsi_irq_ieob_disable(gsi, evt_ring_id);
		napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
	}
}

/* General event interrupts represent serious problems, so report them */
static void gsi_isr_general(struct gsi *gsi)
{
	struct device *dev = gsi->dev;
	u32 val;

	val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);

	if (val)
		dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
}

/**
 * gsi_isr() - Top level GSI interrupt service routine
 * @irq:	Interrupt number (ignored)
 * @dev_id:	GSI pointer supplied to request_irq()
 *
 * This is the main handler function registered for the GSI IRQ. Each type
 * of interrupt has a separate handler function that is called from here.
 */
static irqreturn_t gsi_isr(int irq, void *dev_id)
{
	struct gsi *gsi = dev_id;
	u32 intr_mask;
	u32 cnt = 0;

	while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
		/* intr_mask contains bitmask of pending GSI interrupts */
		do {
			u32 gsi_intr = BIT(__ffs(intr_mask));

			intr_mask ^= gsi_intr;

			switch (gsi_intr) {
			case CH_CTRL_FMASK:
				gsi_isr_chan_ctrl(gsi);
				break;
			case EV_CTRL_FMASK:
				gsi_isr_evt_ctrl(gsi);
				break;
			case GLOB_EE_FMASK:
				gsi_isr_glob_ee(gsi);
				break;
			case IEOB_FMASK:
				gsi_isr_ieob(gsi);
				break;
			case GENERAL_FMASK:
				gsi_isr_general(gsi);
				break;
			default:
				dev_err(gsi->dev,
					"unrecognized interrupt type 0x%08x\n",
					gsi_intr);
				break;
			}
		} while (intr_mask);

		if (++cnt > GSI_ISR_MAX_ITER) {
			dev_err(gsi->dev, "interrupt flood\n");
			break;
		}
	}

	return IRQ_HANDLED;
}

/* Return the transaction associated with a transfer completion event */
static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
					 struct gsi_event *event)
{
	u32 tre_offset;
	u32 tre_index;

	/* Event xfer_ptr records the TRE it's associated with */
	tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0);
	tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);

	return gsi_channel_trans_mapped(channel, tre_index);
}

/**
 * gsi_evt_ring_rx_update() - Record lengths of received data
 * @evt_ring:	Event ring associated with channel that received packets
 * @index:	Event index in ring reported by hardware
 *
 * Events for RX channels contain the actual number of bytes received into
 * the buffer.  Every event has a transaction associated with it, and here
 * we update transactions to record their actual received lengths.
 *
 * This function is called whenever we learn that the GSI hardware has filled
 * new events since the last time we checked.  The ring's index field tells
 * the first entry in need of processing.  The index provided is the
 * first *unfilled* event in the ring (following the last filled one).
 *
 * Events are sequential within the event ring, and transactions are
 * sequential within the transaction pool.
 *
 * Note that @index always refers to an element *within* the event ring.
 */
static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
{
	struct gsi_channel *channel = evt_ring->channel;
	struct gsi_ring *ring = &evt_ring->ring;
	struct gsi_trans_info *trans_info;
	struct gsi_event *event_done;
	struct gsi_event *event;
	struct gsi_trans *trans;
	u32 byte_count = 0;
	u32 old_index;
	u32 event_avail;

	trans_info = &channel->trans_info;

	/* We'll start with the oldest un-processed event.  RX channels
	 * replenish receive buffers in single-TRE transactions, so we
	 * can just map that event to its transaction.  Transactions
	 * associated with completion events are consecutive.
	 */
	old_index = ring->index;
	event = gsi_ring_virt(ring, old_index);
	trans = gsi_event_trans(channel, event);

	/* Compute the number of events to process before we wrap,
	 * and determine when we'll be done processing events.
	 */
	event_avail = ring->count - old_index % ring->count;
	event_done = gsi_ring_virt(ring, index);
	do {
		trans->len = __le16_to_cpu(event->len);
		byte_count += trans->len;

		/* Move on to the next event and transaction */
		if (--event_avail)
			event++;
		else
			event = gsi_ring_virt(ring, 0);
		trans = gsi_trans_pool_next(&trans_info->pool, trans);
	} while (event != event_done);

	/* We record RX bytes when they are received */
	channel->byte_count += byte_count;
	channel->trans_count++;
}

/* Initialize a ring, including allocating DMA memory for its entries */
static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
{
	size_t size = count * GSI_RING_ELEMENT_SIZE;
	struct device *dev = gsi->dev;
	dma_addr_t addr;

	/* Hardware requires a 2^n ring size, with alignment equal to size */
	ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
	if (ring->virt && addr % size) {
		dma_free_coherent(dev, size, ring->virt, ring->addr);
		dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n",
			size);
		return -EINVAL;	/* Not a good error value, but distinct */
	} else if (!ring->virt) {
		return -ENOMEM;
	}
	ring->addr = addr;
	ring->count = count;

	return 0;
}

/* Free a previously-allocated ring */
static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
{
	size_t size = ring->count * GSI_RING_ELEMENT_SIZE;

	dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
}

/* Allocate an available event ring id */
static int gsi_evt_ring_id_alloc(struct gsi *gsi)
{
	u32 evt_ring_id;

	if (gsi->event_bitmap == ~0U) {
		dev_err(gsi->dev, "event rings exhausted\n");
		return -ENOSPC;
	}

	evt_ring_id = ffz(gsi->event_bitmap);
	gsi->event_bitmap |= BIT(evt_ring_id);

	return (int)evt_ring_id;
}

/* Free a previously-allocated event ring id */
static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
{
	gsi->event_bitmap &= ~BIT(evt_ring_id);
}

/* Ring a channel doorbell, reporting the first un-filled entry */
void gsi_channel_doorbell(struct gsi_channel *channel)
{
	struct gsi_ring *tre_ring = &channel->tre_ring;
	u32 channel_id = gsi_channel_id(channel);
	struct gsi *gsi = channel->gsi;
	u32 val;

	/* Note: index *must* be used modulo the ring count here */
	val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
	iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
}

/* Consult hardware, move any newly completed transactions to completed list */
static void gsi_channel_update(struct gsi_channel *channel)
{
	u32 evt_ring_id = channel->evt_ring_id;
	struct gsi *gsi = channel->gsi;
	struct gsi_evt_ring *evt_ring;
	struct gsi_trans *trans;
	struct gsi_ring *ring;
	u32 offset;
	u32 index;

	evt_ring = &gsi->evt_ring[evt_ring_id];
	ring = &evt_ring->ring;

	/* See if there's anything new to process; if not, we're done.  Note
	 * that index always refers to an entry *within* the event ring.
	 */
	offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
	index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
	if (index == ring->index % ring->count)
		return;

	/* Get the transaction for the latest completed event.  Take a
	 * reference to keep it from completing before we give the events
	 * for this and previous transactions back to the hardware.
	 */
	trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
	refcount_inc(&trans->refcount);

	/* For RX channels, update each completed transaction with the number
	 * of bytes that were actually received.  For TX channels, report
	 * the number of transactions and bytes this completion represents
	 * up the network stack.
	 */
	if (channel->toward_ipa)
		gsi_channel_tx_update(channel, trans);
	else
		gsi_evt_ring_rx_update(evt_ring, index);

	gsi_trans_move_complete(trans);

	/* Tell the hardware we've handled these events */
	gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);

	gsi_trans_free(trans);
}

/**
 * gsi_channel_poll_one() - Return a single completed transaction on a channel
 * @channel:	Channel to be polled
 *
 * Return:	Transaction pointer, or null if none are available
 *
 * This function returns the first entry on a channel's completed transaction
 * list.  If that list is empty, the hardware is consulted to determine
 * whether any new transactions have completed.  If so, they're moved to the
 * completed list and the new first entry is returned.  If there are no more
 * completed transactions, a null pointer is returned.
 */
static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
{
	struct gsi_trans *trans;

	/* Get the first transaction from the completed list */
	trans = gsi_channel_trans_complete(channel);
	if (!trans) {
		/* List is empty; see if there's more to do */
		gsi_channel_update(channel);
		trans = gsi_channel_trans_complete(channel);
	}

	if (trans)
		gsi_trans_move_polled(trans);

	return trans;
}

/**
 * gsi_channel_poll() - NAPI poll function for a channel
 * @napi:	NAPI structure for the channel
 * @budget:	Budget supplied by NAPI core
 *
 * Return:	Number of items polled (<= budget)
 *
 * Single transactions completed by hardware are polled until either
 * the budget is exhausted, or there are no more.  Each transaction
 * polled is passed to gsi_trans_complete(), to perform remaining
 * completion processing and retire/free the transaction.
 */
static int gsi_channel_poll(struct napi_struct *napi, int budget)
{
	struct gsi_channel *channel;
	int count = 0;

	channel = container_of(napi, struct gsi_channel, napi);
	while (count < budget) {
		struct gsi_trans *trans;

		count++;
		trans = gsi_channel_poll_one(channel);
		if (!trans)
			break;
		gsi_trans_complete(trans);
	}

	if (count < budget) {
		napi_complete(&channel->napi);
		gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
	}

	return count;
}

/* The event bitmap represents which event ids are available for allocation.
 * Set bits are not available, clear bits can be used.  This function
 * initializes the map so all events supported by the hardware are available,
 * then precludes any reserved events from being allocated.
 */
static u32 gsi_event_bitmap_init(u32 evt_ring_max)
{
	u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);

	event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);

	return event_bitmap;
}

/* Setup function for event rings */
static void gsi_evt_ring_setup(struct gsi *gsi)
{
	/* Nothing to do */
}

/* Inverse of gsi_evt_ring_setup() */
static void gsi_evt_ring_teardown(struct gsi *gsi)
{
	/* Nothing to do */
}

/* Setup function for a single channel */
static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id,
				 bool legacy)
{
	struct gsi_channel *channel = &gsi->channel[channel_id];
	u32 evt_ring_id = channel->evt_ring_id;
	int ret;

	if (!channel->gsi)
		return 0;	/* Ignore uninitialized channels */

	ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
	if (ret)
		return ret;

	gsi_evt_ring_program(gsi, evt_ring_id);

	ret = gsi_channel_alloc_command(gsi, channel_id);
	if (ret)
		goto err_evt_ring_de_alloc;

	gsi_channel_program(channel, legacy);

	if (channel->toward_ipa)
		netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
				  gsi_channel_poll, NAPI_POLL_WEIGHT);
	else
		netif_napi_add(&gsi->dummy_dev, &channel->napi,
			       gsi_channel_poll, NAPI_POLL_WEIGHT);

	return 0;

err_evt_ring_de_alloc:
	/* We've done nothing with the event ring yet so don't reset */
	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);

	return ret;
}

/* Inverse of gsi_channel_setup_one() */
static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
{
	struct gsi_channel *channel = &gsi->channel[channel_id];
	u32 evt_ring_id = channel->evt_ring_id;

	if (!channel->gsi)
		return;		/* Ignore uninitialized channels */

	netif_napi_del(&channel->napi);

	gsi_channel_deprogram(channel);
	gsi_channel_de_alloc_command(gsi, channel_id);
	gsi_evt_ring_reset_command(gsi, evt_ring_id);
	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
}

static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
			       enum gsi_generic_cmd_opcode opcode)
{
	struct completion *completion = &gsi->completion;
	u32 val;

	/* First zero the result code field */
	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
	val &= ~GENERIC_EE_RESULT_FMASK;
	iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);

	/* Now issue the command */
	val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
	val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
	val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);

	if (gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion))
		return 0;	/* Success! */

	dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
		opcode, channel_id);

	return -ETIMEDOUT;
}

static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
{
	return gsi_generic_command(gsi, channel_id,
				   GSI_GENERIC_ALLOCATE_CHANNEL);
}

static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
{
	int ret;

	ret = gsi_generic_command(gsi, channel_id, GSI_GENERIC_HALT_CHANNEL);
	if (ret)
		dev_err(gsi->dev, "error %d halting modem channel %u\n",
			ret, channel_id);
}

/* Setup function for channels */
static int gsi_channel_setup(struct gsi *gsi, bool legacy)
{
	u32 channel_id = 0;
	u32 mask;
	int ret;

	gsi_evt_ring_setup(gsi);
	gsi_irq_enable(gsi);

	mutex_lock(&gsi->mutex);

	do {
		ret = gsi_channel_setup_one(gsi, channel_id, legacy);
		if (ret)
			goto err_unwind;
	} while (++channel_id < gsi->channel_count);

	/* Make sure no channels were defined that hardware does not support */
	while (channel_id < GSI_CHANNEL_COUNT_MAX) {
		struct gsi_channel *channel = &gsi->channel[channel_id++];

		if (!channel->gsi)
			continue;	/* Ignore uninitialized channels */

		dev_err(gsi->dev, "channel %u not supported by hardware\n",
			channel_id - 1);
		channel_id = gsi->channel_count;
		goto err_unwind;
	}

	/* Allocate modem channels if necessary */
	mask = gsi->modem_channel_bitmap;
	while (mask) {
		u32 modem_channel_id = __ffs(mask);

		ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
		if (ret)
			goto err_unwind_modem;

		/* Clear bit from mask only after success (for unwind) */
		mask ^= BIT(modem_channel_id);
	}

	mutex_unlock(&gsi->mutex);

	return 0;

err_unwind_modem:
	/* Compute which modem channels need to be deallocated */
	mask ^= gsi->modem_channel_bitmap;
	while (mask) {
		channel_id = __fls(mask);

		mask ^= BIT(channel_id);

		gsi_modem_channel_halt(gsi, channel_id);
	}

err_unwind:
	while (channel_id--)
		gsi_channel_teardown_one(gsi, channel_id);

	mutex_unlock(&gsi->mutex);

	gsi_irq_disable(gsi);
	gsi_evt_ring_teardown(gsi);

	return ret;
}

/* Inverse of gsi_channel_setup() */
static void gsi_channel_teardown(struct gsi *gsi)
{
	u32 mask = gsi->modem_channel_bitmap;
	u32 channel_id;

	mutex_lock(&gsi->mutex);

	while (mask) {
		channel_id = __fls(mask);

		mask ^= BIT(channel_id);

		gsi_modem_channel_halt(gsi, channel_id);
	}

	channel_id = gsi->channel_count - 1;
	do
		gsi_channel_teardown_one(gsi, channel_id);
	while (channel_id--);

	mutex_unlock(&gsi->mutex);

	gsi_irq_disable(gsi);
	gsi_evt_ring_teardown(gsi);
}

/* Setup function for GSI.  GSI firmware must be loaded and initialized */
int gsi_setup(struct gsi *gsi, bool legacy)
{
	struct device *dev = gsi->dev;
	u32 val;

	/* Here is where we first touch the GSI hardware */
	val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
	if (!(val & ENABLED_FMASK)) {
		dev_err(dev, "GSI has not been enabled\n");
		return -EIO;
	}

	val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);

	gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
	if (!gsi->channel_count) {
		dev_err(dev, "GSI reports zero channels supported\n");
		return -EINVAL;
	}
	if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) {
		dev_warn(dev,
			 "limiting to %u channels; hardware supports %u\n",
			 GSI_CHANNEL_COUNT_MAX, gsi->channel_count);
		gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
	}

	gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
	if (!gsi->evt_ring_count) {
		dev_err(dev, "GSI reports zero event rings supported\n");
		return -EINVAL;
	}
	if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) {
		dev_warn(dev,
			 "limiting to %u event rings; hardware supports %u\n",
			 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count);
		gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
	}

	/* Initialize the error log */
	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);

	/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
	iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);

	return gsi_channel_setup(gsi, legacy);
}

/* Inverse of gsi_setup() */
void gsi_teardown(struct gsi *gsi)
{
	gsi_channel_teardown(gsi);
}

/* Initialize a channel's event ring */
static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
{
	struct gsi *gsi = channel->gsi;
	struct gsi_evt_ring *evt_ring;
	int ret;

	ret = gsi_evt_ring_id_alloc(gsi);
	if (ret < 0)
		return ret;
	channel->evt_ring_id = ret;

	evt_ring = &gsi->evt_ring[channel->evt_ring_id];
	evt_ring->channel = channel;

	ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
	if (!ret)
		return 0;	/* Success! */

	dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
		ret, gsi_channel_id(channel));

	gsi_evt_ring_id_free(gsi, channel->evt_ring_id);

	return ret;
}

/* Inverse of gsi_channel_evt_ring_init() */
static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
{
	u32 evt_ring_id = channel->evt_ring_id;
	struct gsi *gsi = channel->gsi;
	struct gsi_evt_ring *evt_ring;

	evt_ring = &gsi->evt_ring[evt_ring_id];
	gsi_ring_free(gsi, &evt_ring->ring);
	gsi_evt_ring_id_free(gsi, evt_ring_id);
}

/* Init function for event rings */
static void gsi_evt_ring_init(struct gsi *gsi)
{
	u32 evt_ring_id = 0;

	gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
	gsi->event_enable_bitmap = 0;
	do
		init_completion(&gsi->evt_ring[evt_ring_id].completion);
	while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
}

/* Inverse of gsi_evt_ring_init() */
static void gsi_evt_ring_exit(struct gsi *gsi)
{
	/* Nothing to do */
}

static bool gsi_channel_data_valid(struct gsi *gsi,
				   const struct ipa_gsi_endpoint_data *data)
{
#ifdef IPA_VALIDATION
	u32 channel_id = data->channel_id;
	struct device *dev = gsi->dev;

	/* Make sure channel ids are in the range driver supports */
	if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
		dev_err(dev, "bad channel id %u; must be less than %u\n",
			channel_id, GSI_CHANNEL_COUNT_MAX);
		return false;
	}

	if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
		dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
		return false;
	}

	if (!data->channel.tlv_count ||
	    data->channel.tlv_count > GSI_TLV_MAX) {
		dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
			channel_id, data->channel.tlv_count, GSI_TLV_MAX);
		return false;
	}

	/* We have to allow at least one maximally-sized transaction to
	 * be outstanding (which would use tlv_count TREs).  Given how
	 * gsi_channel_tre_max() is computed, tre_count has to be almost
	 * twice the TLV FIFO size to satisfy this requirement.
	 */
	if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
		dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
			channel_id, data->channel.tlv_count,
			data->channel.tre_count);
		return false;
	}

	if (!is_power_of_2(data->channel.tre_count)) {
		dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
			channel_id, data->channel.tre_count);
		return false;
	}

	if (!is_power_of_2(data->channel.event_count)) {
		dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
			channel_id, data->channel.event_count);
		return false;
	}
#endif /* IPA_VALIDATION */

	return true;
}

/* Init function for a single channel */
static int gsi_channel_init_one(struct gsi *gsi,
				const struct ipa_gsi_endpoint_data *data,
				bool command, bool prefetch)
{
	struct gsi_channel *channel;
	u32 tre_count;
	int ret;

	if (!gsi_channel_data_valid(gsi, data))
		return -EINVAL;

	/* Worst case we need an event for every outstanding TRE */
	if (data->channel.tre_count > data->channel.event_count) {
		tre_count = data->channel.event_count;
		dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
			 data->channel_id, tre_count);
	} else {
		tre_count = data->channel.tre_count;
	}

	channel = &gsi->channel[data->channel_id];
	memset(channel, 0, sizeof(*channel));

	channel->gsi = gsi;
	channel->toward_ipa = data->toward_ipa;
	channel->command = command;
	channel->use_prefetch = command && prefetch;
	channel->tlv_count = data->channel.tlv_count;
	channel->tre_count = tre_count;
	channel->event_count = data->channel.event_count;
	init_completion(&channel->completion);

	ret = gsi_channel_evt_ring_init(channel);
	if (ret)
		goto err_clear_gsi;

	ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
	if (ret) {
		dev_err(gsi->dev, "error %d allocating channel %u ring\n",
			ret, data->channel_id);
		goto err_channel_evt_ring_exit;
	}

	ret = gsi_channel_trans_init(gsi, data->channel_id);
	if (ret)
		goto err_ring_free;

	if (command) {
		u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);

		ret = ipa_cmd_pool_init(channel, tre_max);
	}
	if (!ret)
		return 0;	/* Success! */

	gsi_channel_trans_exit(channel);
err_ring_free:
	gsi_ring_free(gsi, &channel->tre_ring);
err_channel_evt_ring_exit:
	gsi_channel_evt_ring_exit(channel);
err_clear_gsi:
	channel->gsi = NULL;	/* Mark it not (fully) initialized */

	return ret;
}

/* Inverse of gsi_channel_init_one() */
static void gsi_channel_exit_one(struct gsi_channel *channel)
{
	if (!channel->gsi)
		return;		/* Ignore uninitialized channels */

	if (channel->command)
		ipa_cmd_pool_exit(channel);
	gsi_channel_trans_exit(channel);
	gsi_ring_free(channel->gsi, &channel->tre_ring);
	gsi_channel_evt_ring_exit(channel);
}

/* Init function for channels */
static int gsi_channel_init(struct gsi *gsi, bool prefetch, u32 count,
			    const struct ipa_gsi_endpoint_data *data,
			    bool modem_alloc)
{
	int ret = 0;
	u32 i;

	gsi_evt_ring_init(gsi);

	/* The endpoint data array is indexed by endpoint name */
	for (i = 0; i < count; i++) {
		bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;

		if (ipa_gsi_endpoint_data_empty(&data[i]))
			continue;	/* Skip over empty slots */

		/* Mark modem channels to be allocated (hardware workaround) */
		if (data[i].ee_id == GSI_EE_MODEM) {
			if (modem_alloc)
				gsi->modem_channel_bitmap |=
						BIT(data[i].channel_id);
			continue;
		}

		ret = gsi_channel_init_one(gsi, &data[i], command, prefetch);
		if (ret)
			goto err_unwind;
	}

	return ret;

err_unwind:
	while (i--) {
		if (ipa_gsi_endpoint_data_empty(&data[i]))
			continue;
		if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
			gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
			continue;
		}
		gsi_channel_exit_one(&gsi->channel[data->channel_id]);
	}
	gsi_evt_ring_exit(gsi);

	return ret;
}

/* Inverse of gsi_channel_init() */
static void gsi_channel_exit(struct gsi *gsi)
{
	u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;

	do
		gsi_channel_exit_one(&gsi->channel[channel_id]);
	while (channel_id--);
	gsi->modem_channel_bitmap = 0;

	gsi_evt_ring_exit(gsi);
}

/* Init function for GSI.  GSI hardware does not need to be "ready" */
int gsi_init(struct gsi *gsi, struct platform_device *pdev, bool prefetch,
	     u32 count, const struct ipa_gsi_endpoint_data *data,
	     bool modem_alloc)
{
	struct device *dev = &pdev->dev;
	struct resource *res;
	resource_size_t size;
	unsigned int irq;
	int ret;

	gsi_validate_build();

	gsi->dev = dev;

	/* The GSI layer performs NAPI on all endpoints.  NAPI requires a
	 * network device structure, but the GSI layer does not have one,
	 * so we must create a dummy network device for this purpose.
	 */
	init_dummy_netdev(&gsi->dummy_dev);

	ret = platform_get_irq_byname(pdev, "gsi");
	if (ret <= 0) {
		dev_err(dev, "DT error %d getting \"gsi\" IRQ property\n", ret);
		return ret ? : -EINVAL;
	}
	irq = ret;

	ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
	if (ret) {
		dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret);
		return ret;
	}
	gsi->irq = irq;

	/* Get GSI memory range and map it */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
	if (!res) {
		dev_err(dev, "DT error getting \"gsi\" memory property\n");
		ret = -ENODEV;
		goto err_free_irq;
	}

	size = resource_size(res);
	if (res->start > U32_MAX || size > U32_MAX - res->start) {
		dev_err(dev, "DT memory resource \"gsi\" out of range\n");
		ret = -EINVAL;
		goto err_free_irq;
	}

	gsi->virt = ioremap(res->start, size);
	if (!gsi->virt) {
		dev_err(dev, "unable to remap \"gsi\" memory\n");
		ret = -ENOMEM;
		goto err_free_irq;
	}

	ret = gsi_channel_init(gsi, prefetch, count, data, modem_alloc);
	if (ret)
		goto err_iounmap;

	mutex_init(&gsi->mutex);
	init_completion(&gsi->completion);

	return 0;

err_iounmap:
	iounmap(gsi->virt);
err_free_irq:
	free_irq(gsi->irq, gsi);

	return ret;
}

/* Inverse of gsi_init() */
void gsi_exit(struct gsi *gsi)
{
	mutex_destroy(&gsi->mutex);
	gsi_channel_exit(gsi);
	free_irq(gsi->irq, gsi);
	iounmap(gsi->virt);
}

/* The maximum number of outstanding TREs on a channel.  This limits
 * a channel's maximum number of transactions outstanding (worst case
 * is one TRE per transaction).
 *
 * The absolute limit is the number of TREs in the channel's TRE ring,
 * and in theory we should be able use all of them.  But in practice,
 * doing that led to the hardware reporting exhaustion of event ring
 * slots for writing completion information.  So the hardware limit
 * would be (tre_count - 1).
 *
 * We reduce it a bit further though.  Transaction resource pools are
 * sized to be a little larger than this maximum, to allow resource
 * allocations to always be contiguous.  The number of entries in a
 * TRE ring buffer is a power of 2, and the extra resources in a pool
 * tends to nearly double the memory allocated for it.  Reducing the
 * maximum number of outstanding TREs allows the number of entries in
 * a pool to avoid crossing that power-of-2 boundary, and this can
 * substantially reduce pool memory requirements.  The number we
 * reduce it by matches the number added in gsi_trans_pool_init().
 */
u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
{
	struct gsi_channel *channel = &gsi->channel[channel_id];

	/* Hardware limit is channel->tre_count - 1 */
	return channel->tre_count - (channel->tlv_count - 1);
}

/* Returns the maximum number of TREs in a single transaction for a channel */
u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
{
	struct gsi_channel *channel = &gsi->channel[channel_id];

	return channel->tlv_count;
}