p2pdma.c 25.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
// SPDX-License-Identifier: GPL-2.0
/*
 * PCI Peer 2 Peer DMA support.
 *
 * Copyright (c) 2016-2018, Logan Gunthorpe
 * Copyright (c) 2016-2017, Microsemi Corporation
 * Copyright (c) 2017, Christoph Hellwig
 * Copyright (c) 2018, Eideticom Inc.
 */

#define pr_fmt(fmt) "pci-p2pdma: " fmt
#include <linux/ctype.h>
#include <linux/pci-p2pdma.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/genalloc.h>
#include <linux/memremap.h>
#include <linux/percpu-refcount.h>
#include <linux/random.h>
#include <linux/seq_buf.h>
#include <linux/xarray.h>

enum pci_p2pdma_map_type {
	PCI_P2PDMA_MAP_UNKNOWN = 0,
	PCI_P2PDMA_MAP_NOT_SUPPORTED,
	PCI_P2PDMA_MAP_BUS_ADDR,
	PCI_P2PDMA_MAP_THRU_HOST_BRIDGE,
};

struct pci_p2pdma {
	struct gen_pool *pool;
	bool p2pmem_published;
	struct xarray map_types;
};

struct pci_p2pdma_pagemap {
	struct dev_pagemap pgmap;
	struct pci_dev *provider;
	u64 bus_offset;
};

static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap)
{
	return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap);
}

static ssize_t size_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	size_t size = 0;

	if (pdev->p2pdma->pool)
		size = gen_pool_size(pdev->p2pdma->pool);

	return scnprintf(buf, PAGE_SIZE, "%zd\n", size);
}
static DEVICE_ATTR_RO(size);

static ssize_t available_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	size_t avail = 0;

	if (pdev->p2pdma->pool)
		avail = gen_pool_avail(pdev->p2pdma->pool);

	return scnprintf(buf, PAGE_SIZE, "%zd\n", avail);
}
static DEVICE_ATTR_RO(available);

static ssize_t published_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n",
			 pdev->p2pdma->p2pmem_published);
}
static DEVICE_ATTR_RO(published);

static struct attribute *p2pmem_attrs[] = {
	&dev_attr_size.attr,
	&dev_attr_available.attr,
	&dev_attr_published.attr,
	NULL,
};

static const struct attribute_group p2pmem_group = {
	.attrs = p2pmem_attrs,
	.name = "p2pmem",
};

static void pci_p2pdma_release(void *data)
{
	struct pci_dev *pdev = data;
	struct pci_p2pdma *p2pdma = pdev->p2pdma;

	if (!p2pdma)
		return;

	/* Flush and disable pci_alloc_p2p_mem() */
	pdev->p2pdma = NULL;
	synchronize_rcu();

	gen_pool_destroy(p2pdma->pool);
	sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
	xa_destroy(&p2pdma->map_types);
}

static int pci_p2pdma_setup(struct pci_dev *pdev)
{
	int error = -ENOMEM;
	struct pci_p2pdma *p2p;

	p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
	if (!p2p)
		return -ENOMEM;

	xa_init(&p2p->map_types);

	p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
	if (!p2p->pool)
		goto out;

	error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
	if (error)
		goto out_pool_destroy;

	pdev->p2pdma = p2p;

	error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
	if (error)
		goto out_pool_destroy;

	return 0;

out_pool_destroy:
	pdev->p2pdma = NULL;
	gen_pool_destroy(p2p->pool);
out:
	devm_kfree(&pdev->dev, p2p);
	return error;
}

/**
 * pci_p2pdma_add_resource - add memory for use as p2p memory
 * @pdev: the device to add the memory to
 * @bar: PCI BAR to add
 * @size: size of the memory to add, may be zero to use the whole BAR
 * @offset: offset into the PCI BAR
 *
 * The memory will be given ZONE_DEVICE struct pages so that it may
 * be used with any DMA request.
 */
int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
			    u64 offset)
{
	struct pci_p2pdma_pagemap *p2p_pgmap;
	struct dev_pagemap *pgmap;
	void *addr;
	int error;

	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
		return -EINVAL;

	if (offset >= pci_resource_len(pdev, bar))
		return -EINVAL;

	if (!size)
		size = pci_resource_len(pdev, bar) - offset;

	if (size + offset > pci_resource_len(pdev, bar))
		return -EINVAL;

	if (!pdev->p2pdma) {
		error = pci_p2pdma_setup(pdev);
		if (error)
			return error;
	}

	p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL);
	if (!p2p_pgmap)
		return -ENOMEM;

	pgmap = &p2p_pgmap->pgmap;
	pgmap->range.start = pci_resource_start(pdev, bar) + offset;
	pgmap->range.end = pgmap->range.start + size - 1;
	pgmap->nr_range = 1;
	pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;

	p2p_pgmap->provider = pdev;
	p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) -
		pci_resource_start(pdev, bar);

	addr = devm_memremap_pages(&pdev->dev, pgmap);
	if (IS_ERR(addr)) {
		error = PTR_ERR(addr);
		goto pgmap_free;
	}

	error = gen_pool_add_owner(pdev->p2pdma->pool, (unsigned long)addr,
			pci_bus_address(pdev, bar) + offset,
			range_len(&pgmap->range), dev_to_node(&pdev->dev),
			pgmap->ref);
	if (error)
		goto pages_free;

	pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n",
		 pgmap->range.start, pgmap->range.end);

	return 0;

pages_free:
	devm_memunmap_pages(&pdev->dev, pgmap);
pgmap_free:
	devm_kfree(&pdev->dev, pgmap);
	return error;
}
EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);

/*
 * Note this function returns the parent PCI device with a
 * reference taken. It is the caller's responsibility to drop
 * the reference.
 */
static struct pci_dev *find_parent_pci_dev(struct device *dev)
{
	struct device *parent;

	dev = get_device(dev);

	while (dev) {
		if (dev_is_pci(dev))
			return to_pci_dev(dev);

		parent = get_device(dev->parent);
		put_device(dev);
		dev = parent;
	}

	return NULL;
}

/*
 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
 * TLPs upstream via ACS. Returns 1 if the packets will be redirected
 * upstream, 0 otherwise.
 */
static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
{
	int pos;
	u16 ctrl;

	pos = pdev->acs_cap;
	if (!pos)
		return 0;

	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);

	if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
		return 1;

	return 0;
}

static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
{
	if (!buf)
		return;

	seq_buf_printf(buf, "%s;", pci_name(pdev));
}

static bool cpu_supports_p2pdma(void)
{
#ifdef CONFIG_X86
	struct cpuinfo_x86 *c = &cpu_data(0);

	/* Any AMD CPU whose family ID is Zen or newer supports p2pdma */
	if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17)
		return true;
#endif

	return false;
}

static const struct pci_p2pdma_whitelist_entry {
	unsigned short vendor;
	unsigned short device;
	enum {
		REQ_SAME_HOST_BRIDGE	= 1 << 0,
	} flags;
} pci_p2pdma_whitelist[] = {
	/* Intel Xeon E5/Core i7 */
	{PCI_VENDOR_ID_INTEL,	0x3c00, REQ_SAME_HOST_BRIDGE},
	{PCI_VENDOR_ID_INTEL,	0x3c01, REQ_SAME_HOST_BRIDGE},
	/* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */
	{PCI_VENDOR_ID_INTEL,	0x2f00, REQ_SAME_HOST_BRIDGE},
	{PCI_VENDOR_ID_INTEL,	0x2f01, REQ_SAME_HOST_BRIDGE},
	/* Intel SkyLake-E */
	{PCI_VENDOR_ID_INTEL,	0x2030, 0},
	{PCI_VENDOR_ID_INTEL,	0x2031, 0},
	{PCI_VENDOR_ID_INTEL,	0x2032, 0},
	{PCI_VENDOR_ID_INTEL,	0x2033, 0},
	{PCI_VENDOR_ID_INTEL,	0x2020, 0},
	{}
};

static bool __host_bridge_whitelist(struct pci_host_bridge *host,
				    bool same_host_bridge)
{
	struct pci_dev *root = pci_get_slot(host->bus, PCI_DEVFN(0, 0));
	const struct pci_p2pdma_whitelist_entry *entry;
	unsigned short vendor, device;

	if (!root)
		return false;

	vendor = root->vendor;
	device = root->device;
	pci_dev_put(root);

	for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) {
		if (vendor != entry->vendor || device != entry->device)
			continue;
		if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge)
			return false;

		return true;
	}

	return false;
}

/*
 * If we can't find a common upstream bridge take a look at the root
 * complex and compare it to a whitelist of known good hardware.
 */
static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b)
{
	struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus);
	struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus);

	if (host_a == host_b)
		return __host_bridge_whitelist(host_a, true);

	if (__host_bridge_whitelist(host_a, false) &&
	    __host_bridge_whitelist(host_b, false))
		return true;

	return false;
}

static enum pci_p2pdma_map_type
__upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client,
		int *dist, bool *acs_redirects, struct seq_buf *acs_list)
{
	struct pci_dev *a = provider, *b = client, *bb;
	int dist_a = 0;
	int dist_b = 0;
	int acs_cnt = 0;

	if (acs_redirects)
		*acs_redirects = false;

	/*
	 * Note, we don't need to take references to devices returned by
	 * pci_upstream_bridge() seeing we hold a reference to a child
	 * device which will already hold a reference to the upstream bridge.
	 */

	while (a) {
		dist_b = 0;

		if (pci_bridge_has_acs_redir(a)) {
			seq_buf_print_bus_devfn(acs_list, a);
			acs_cnt++;
		}

		bb = b;

		while (bb) {
			if (a == bb)
				goto check_b_path_acs;

			bb = pci_upstream_bridge(bb);
			dist_b++;
		}

		a = pci_upstream_bridge(a);
		dist_a++;
	}

	if (dist)
		*dist = dist_a + dist_b;

	return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;

check_b_path_acs:
	bb = b;

	while (bb) {
		if (a == bb)
			break;

		if (pci_bridge_has_acs_redir(bb)) {
			seq_buf_print_bus_devfn(acs_list, bb);
			acs_cnt++;
		}

		bb = pci_upstream_bridge(bb);
	}

	if (dist)
		*dist = dist_a + dist_b;

	if (acs_cnt) {
		if (acs_redirects)
			*acs_redirects = true;

		return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
	}

	return PCI_P2PDMA_MAP_BUS_ADDR;
}

static unsigned long map_types_idx(struct pci_dev *client)
{
	return (pci_domain_nr(client->bus) << 16) |
		(client->bus->number << 8) | client->devfn;
}

/*
 * Find the distance through the nearest common upstream bridge between
 * two PCI devices.
 *
 * If the two devices are the same device then 0 will be returned.
 *
 * If there are two virtual functions of the same device behind the same
 * bridge port then 2 will be returned (one step down to the PCIe switch,
 * then one step back to the same device).
 *
 * In the case where two devices are connected to the same PCIe switch, the
 * value 4 will be returned. This corresponds to the following PCI tree:
 *
 *     -+  Root Port
 *      \+ Switch Upstream Port
 *       +-+ Switch Downstream Port
 *       + \- Device A
 *       \-+ Switch Downstream Port
 *         \- Device B
 *
 * The distance is 4 because we traverse from Device A through the downstream
 * port of the switch, to the common upstream port, back up to the second
 * downstream port and then to Device B.
 *
 * Any two devices that cannot communicate using p2pdma will return
 * PCI_P2PDMA_MAP_NOT_SUPPORTED.
 *
 * Any two devices that have a data path that goes through the host bridge
 * will consult a whitelist. If the host bridges are on the whitelist,
 * this function will return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE.
 *
 * If either bridge is not on the whitelist this function returns
 * PCI_P2PDMA_MAP_NOT_SUPPORTED.
 *
 * If a bridge which has any ACS redirection bits set is in the path,
 * acs_redirects will be set to true. In this case, a list of all infringing
 * bridge addresses will be populated in acs_list (assuming it's non-null)
 * for printk purposes.
 */
static enum pci_p2pdma_map_type
upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client,
		int *dist, bool *acs_redirects, struct seq_buf *acs_list)
{
	enum pci_p2pdma_map_type map_type;

	map_type = __upstream_bridge_distance(provider, client, dist,
					      acs_redirects, acs_list);

	if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) {
		if (!cpu_supports_p2pdma() &&
		    !host_bridge_whitelist(provider, client))
			map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
	}

	if (provider->p2pdma)
		xa_store(&provider->p2pdma->map_types, map_types_idx(client),
			 xa_mk_value(map_type), GFP_KERNEL);

	return map_type;
}

static enum pci_p2pdma_map_type
upstream_bridge_distance_warn(struct pci_dev *provider, struct pci_dev *client,
			      int *dist)
{
	struct seq_buf acs_list;
	bool acs_redirects;
	int ret;

	seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!acs_list.buffer)
		return -ENOMEM;

	ret = upstream_bridge_distance(provider, client, dist, &acs_redirects,
				       &acs_list);
	if (acs_redirects) {
		pci_warn(client, "ACS redirect is set between the client and provider (%s)\n",
			 pci_name(provider));
		/* Drop final semicolon */
		acs_list.buffer[acs_list.len-1] = 0;
		pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
			 acs_list.buffer);
	}

	if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED) {
		pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n",
			 pci_name(provider));
	}

	kfree(acs_list.buffer);

	return ret;
}

/**
 * pci_p2pdma_distance_many - Determine the cumulative distance between
 *	a p2pdma provider and the clients in use.
 * @provider: p2pdma provider to check against the client list
 * @clients: array of devices to check (NULL-terminated)
 * @num_clients: number of clients in the array
 * @verbose: if true, print warnings for devices when we return -1
 *
 * Returns -1 if any of the clients are not compatible, otherwise returns a
 * positive number where a lower number is the preferable choice. (If there's
 * one client that's the same as the provider it will return 0, which is best
 * choice).
 *
 * "compatible" means the provider and the clients are either all behind
 * the same PCI root port or the host bridges connected to each of the devices
 * are listed in the 'pci_p2pdma_whitelist'.
 */
int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
			     int num_clients, bool verbose)
{
	bool not_supported = false;
	struct pci_dev *pci_client;
	int total_dist = 0;
	int distance;
	int i, ret;

	if (num_clients == 0)
		return -1;

	for (i = 0; i < num_clients; i++) {
#ifdef CONFIG_DMA_VIRT_OPS
		if (clients[i]->dma_ops == &dma_virt_ops) {
			if (verbose)
				dev_warn(clients[i],
					 "cannot be used for peer-to-peer DMA because the driver makes use of dma_virt_ops\n");
			return -1;
		}
#endif

		pci_client = find_parent_pci_dev(clients[i]);
		if (!pci_client) {
			if (verbose)
				dev_warn(clients[i],
					 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
			return -1;
		}

		if (verbose)
			ret = upstream_bridge_distance_warn(provider,
					pci_client, &distance);
		else
			ret = upstream_bridge_distance(provider, pci_client,
						       &distance, NULL, NULL);

		pci_dev_put(pci_client);

		if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED)
			not_supported = true;

		if (not_supported && !verbose)
			break;

		total_dist += distance;
	}

	if (not_supported)
		return -1;

	return total_dist;
}
EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);

/**
 * pci_has_p2pmem - check if a given PCI device has published any p2pmem
 * @pdev: PCI device to check
 */
bool pci_has_p2pmem(struct pci_dev *pdev)
{
	return pdev->p2pdma && pdev->p2pdma->p2pmem_published;
}
EXPORT_SYMBOL_GPL(pci_has_p2pmem);

/**
 * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with
 *	the specified list of clients and shortest distance (as determined
 *	by pci_p2pmem_dma())
 * @clients: array of devices to check (NULL-terminated)
 * @num_clients: number of client devices in the list
 *
 * If multiple devices are behind the same switch, the one "closest" to the
 * client devices in use will be chosen first. (So if one of the providers is
 * the same as one of the clients, that provider will be used ahead of any
 * other providers that are unrelated). If multiple providers are an equal
 * distance away, one will be chosen at random.
 *
 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
 * to return the reference) or NULL if no compatible device is found. The
 * found provider will also be assigned to the client list.
 */
struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
{
	struct pci_dev *pdev = NULL;
	int distance;
	int closest_distance = INT_MAX;
	struct pci_dev **closest_pdevs;
	int dev_cnt = 0;
	const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
	int i;

	closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!closest_pdevs)
		return NULL;

	while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
		if (!pci_has_p2pmem(pdev))
			continue;

		distance = pci_p2pdma_distance_many(pdev, clients,
						    num_clients, false);
		if (distance < 0 || distance > closest_distance)
			continue;

		if (distance == closest_distance && dev_cnt >= max_devs)
			continue;

		if (distance < closest_distance) {
			for (i = 0; i < dev_cnt; i++)
				pci_dev_put(closest_pdevs[i]);

			dev_cnt = 0;
			closest_distance = distance;
		}

		closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
	}

	if (dev_cnt)
		pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]);

	for (i = 0; i < dev_cnt; i++)
		pci_dev_put(closest_pdevs[i]);

	kfree(closest_pdevs);
	return pdev;
}
EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);

/**
 * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory
 * @pdev: the device to allocate memory from
 * @size: number of bytes to allocate
 *
 * Returns the allocated memory or NULL on error.
 */
void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
{
	void *ret = NULL;
	struct percpu_ref *ref;

	/*
	 * Pairs with synchronize_rcu() in pci_p2pdma_release() to
	 * ensure pdev->p2pdma is non-NULL for the duration of the
	 * read-lock.
	 */
	rcu_read_lock();
	if (unlikely(!pdev->p2pdma))
		goto out;

	ret = (void *)gen_pool_alloc_owner(pdev->p2pdma->pool, size,
			(void **) &ref);
	if (!ret)
		goto out;

	if (unlikely(!percpu_ref_tryget_live(ref))) {
		gen_pool_free(pdev->p2pdma->pool, (unsigned long) ret, size);
		ret = NULL;
		goto out;
	}
out:
	rcu_read_unlock();
	return ret;
}
EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);

/**
 * pci_free_p2pmem - free peer-to-peer DMA memory
 * @pdev: the device the memory was allocated from
 * @addr: address of the memory that was allocated
 * @size: number of bytes that were allocated
 */
void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
{
	struct percpu_ref *ref;

	gen_pool_free_owner(pdev->p2pdma->pool, (uintptr_t)addr, size,
			(void **) &ref);
	percpu_ref_put(ref);
}
EXPORT_SYMBOL_GPL(pci_free_p2pmem);

/**
 * pci_virt_to_bus - return the PCI bus address for a given virtual
 *	address obtained with pci_alloc_p2pmem()
 * @pdev: the device the memory was allocated from
 * @addr: address of the memory that was allocated
 */
pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
{
	if (!addr)
		return 0;
	if (!pdev->p2pdma)
		return 0;

	/*
	 * Note: when we added the memory to the pool we used the PCI
	 * bus address as the physical address. So gen_pool_virt_to_phys()
	 * actually returns the bus address despite the misleading name.
	 */
	return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr);
}
EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);

/**
 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
 * @pdev: the device to allocate memory from
 * @nents: the number of SG entries in the list
 * @length: number of bytes to allocate
 *
 * Return: %NULL on error or &struct scatterlist pointer and @nents on success
 */
struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
					 unsigned int *nents, u32 length)
{
	struct scatterlist *sg;
	void *addr;

	sg = kmalloc(sizeof(*sg), GFP_KERNEL);
	if (!sg)
		return NULL;

	sg_init_table(sg, 1);

	addr = pci_alloc_p2pmem(pdev, length);
	if (!addr)
		goto out_free_sg;

	sg_set_buf(sg, addr, length);
	*nents = 1;
	return sg;

out_free_sg:
	kfree(sg);
	return NULL;
}
EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);

/**
 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
 * @pdev: the device to allocate memory from
 * @sgl: the allocated scatterlist
 */
void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
{
	struct scatterlist *sg;
	int count;

	for_each_sg(sgl, sg, INT_MAX, count) {
		if (!sg)
			break;

		pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
	}
	kfree(sgl);
}
EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);

/**
 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
 *	other devices with pci_p2pmem_find()
 * @pdev: the device with peer-to-peer DMA memory to publish
 * @publish: set to true to publish the memory, false to unpublish it
 *
 * Published memory can be used by other PCI device drivers for
 * peer-2-peer DMA operations. Non-published memory is reserved for
 * exclusive use of the device driver that registers the peer-to-peer
 * memory.
 */
void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
{
	if (pdev->p2pdma)
		pdev->p2pdma->p2pmem_published = publish;
}
EXPORT_SYMBOL_GPL(pci_p2pmem_publish);

static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct pci_dev *provider,
						    struct pci_dev *client)
{
	if (!provider->p2pdma)
		return PCI_P2PDMA_MAP_NOT_SUPPORTED;

	return xa_to_value(xa_load(&provider->p2pdma->map_types,
				   map_types_idx(client)));
}

static int __pci_p2pdma_map_sg(struct pci_p2pdma_pagemap *p2p_pgmap,
		struct device *dev, struct scatterlist *sg, int nents)
{
	struct scatterlist *s;
	phys_addr_t paddr;
	int i;

	/*
	 * p2pdma mappings are not compatible with devices that use
	 * dma_virt_ops. If the upper layers do the right thing
	 * this should never happen because it will be prevented
	 * by the check in pci_p2pdma_distance_many()
	 */
#ifdef CONFIG_DMA_VIRT_OPS
	if (WARN_ON_ONCE(dev->dma_ops == &dma_virt_ops))
		return 0;
#endif

	for_each_sg(sg, s, nents, i) {
		paddr = sg_phys(s);

		s->dma_address = paddr - p2p_pgmap->bus_offset;
		sg_dma_len(s) = s->length;
	}

	return nents;
}

/**
 * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA
 * @dev: device doing the DMA request
 * @sg: scatter list to map
 * @nents: elements in the scatterlist
 * @dir: DMA direction
 * @attrs: DMA attributes passed to dma_map_sg() (if called)
 *
 * Scatterlists mapped with this function should be unmapped using
 * pci_p2pdma_unmap_sg_attrs().
 *
 * Returns the number of SG entries mapped or 0 on error.
 */
int pci_p2pdma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, unsigned long attrs)
{
	struct pci_p2pdma_pagemap *p2p_pgmap =
		to_p2p_pgmap(sg_page(sg)->pgmap);
	struct pci_dev *client;

	if (WARN_ON_ONCE(!dev_is_pci(dev)))
		return 0;

	client = to_pci_dev(dev);

	switch (pci_p2pdma_map_type(p2p_pgmap->provider, client)) {
	case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
		return dma_map_sg_attrs(dev, sg, nents, dir, attrs);
	case PCI_P2PDMA_MAP_BUS_ADDR:
		return __pci_p2pdma_map_sg(p2p_pgmap, dev, sg, nents);
	default:
		WARN_ON_ONCE(1);
		return 0;
	}
}
EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg_attrs);

/**
 * pci_p2pdma_unmap_sg - unmap a PCI peer-to-peer scatterlist that was
 *	mapped with pci_p2pdma_map_sg()
 * @dev: device doing the DMA request
 * @sg: scatter list to map
 * @nents: number of elements returned by pci_p2pdma_map_sg()
 * @dir: DMA direction
 * @attrs: DMA attributes passed to dma_unmap_sg() (if called)
 */
void pci_p2pdma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, unsigned long attrs)
{
	struct pci_p2pdma_pagemap *p2p_pgmap =
		to_p2p_pgmap(sg_page(sg)->pgmap);
	enum pci_p2pdma_map_type map_type;
	struct pci_dev *client;

	if (WARN_ON_ONCE(!dev_is_pci(dev)))
		return;

	client = to_pci_dev(dev);

	map_type = pci_p2pdma_map_type(p2p_pgmap->provider, client);

	if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE)
		dma_unmap_sg_attrs(dev, sg, nents, dir, attrs);
}
EXPORT_SYMBOL_GPL(pci_p2pdma_unmap_sg_attrs);

/**
 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
 *		to enable p2pdma
 * @page: contents of the value to be stored
 * @p2p_dev: returns the PCI device that was selected to be used
 *		(if one was specified in the stored value)
 * @use_p2pdma: returns whether to enable p2pdma or not
 *
 * Parses an attribute value to decide whether to enable p2pdma.
 * The value can select a PCI device (using its full BDF device
 * name) or a boolean (in any format strtobool() accepts). A false
 * value disables p2pdma, a true value expects the caller
 * to automatically find a compatible device and specifying a PCI device
 * expects the caller to use the specific provider.
 *
 * pci_p2pdma_enable_show() should be used as the show operation for
 * the attribute.
 *
 * Returns 0 on success
 */
int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
			    bool *use_p2pdma)
{
	struct device *dev;

	dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
	if (dev) {
		*use_p2pdma = true;
		*p2p_dev = to_pci_dev(dev);

		if (!pci_has_p2pmem(*p2p_dev)) {
			pci_err(*p2p_dev,
				"PCI device has no peer-to-peer memory: %s\n",
				page);
			pci_dev_put(*p2p_dev);
			return -ENODEV;
		}

		return 0;
	} else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
		/*
		 * If the user enters a PCI device that  doesn't exist
		 * like "0000:01:00.1", we don't want strtobool to think
		 * it's a '0' when it's clearly not what the user wanted.
		 * So we require 0's and 1's to be exactly one character.
		 */
	} else if (!strtobool(page, use_p2pdma)) {
		return 0;
	}

	pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
	return -ENODEV;
}
EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);

/**
 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
 *		whether p2pdma is enabled
 * @page: contents of the stored value
 * @p2p_dev: the selected p2p device (NULL if no device is selected)
 * @use_p2pdma: whether p2pdma has been enabled
 *
 * Attributes that use pci_p2pdma_enable_store() should use this function
 * to show the value of the attribute.
 *
 * Returns 0 on success
 */
ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
			       bool use_p2pdma)
{
	if (!use_p2pdma)
		return sprintf(page, "0\n");

	if (!p2p_dev)
		return sprintf(page, "1\n");

	return sprintf(page, "%s\n", pci_name(p2p_dev));
}
EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);