cec.c 13.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2017-2019 Borislav Petkov, SUSE Labs.
 */
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/ras.h>
#include <linux/kernel.h>
#include <linux/workqueue.h>

#include <asm/mce.h>

#include "debugfs.h"

/*
 * RAS Correctable Errors Collector
 *
 * This is a simple gadget which collects correctable errors and counts their
 * occurrence per physical page address.
 *
 * We've opted for possibly the simplest data structure to collect those - an
 * array of the size of a memory page. It stores 512 u64's with the following
 * structure:
 *
 * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0]
 *
 * The generation in the two highest order bits is two bits which are set to 11b
 * on every insertion. During the course of each entry's existence, the
 * generation field gets decremented during spring cleaning to 10b, then 01b and
 * then 00b.
 *
 * This way we're employing the natural numeric ordering to make sure that newly
 * inserted/touched elements have higher 12-bit counts (which we've manufactured)
 * and thus iterating over the array initially won't kick out those elements
 * which were inserted last.
 *
 * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of
 * elements entered into the array, during which, we're decaying all elements.
 * If, after decay, an element gets inserted again, its generation is set to 11b
 * to make sure it has higher numerical count than other, older elements and
 * thus emulate an an LRU-like behavior when deleting elements to free up space
 * in the page.
 *
 * When an element reaches it's max count of action_threshold, we try to poison
 * it by assuming that errors triggered action_threshold times in a single page
 * are excessive and that page shouldn't be used anymore. action_threshold is
 * initialized to COUNT_MASK which is the maximum.
 *
 * That error event entry causes cec_add_elem() to return !0 value and thus
 * signal to its callers to log the error.
 *
 * To the question why we've chosen a page and moving elements around with
 * memmove(), it is because it is a very simple structure to handle and max data
 * movement is 4K which on highly optimized modern CPUs is almost unnoticeable.
 * We wanted to avoid the pointer traversal of more complex structures like a
 * linked list or some sort of a balancing search tree.
 *
 * Deleting an element takes O(n) but since it is only a single page, it should
 * be fast enough and it shouldn't happen all too often depending on error
 * patterns.
 */

#undef pr_fmt
#define pr_fmt(fmt) "RAS: " fmt

/*
 * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long
 * elements have stayed in the array without having been accessed again.
 */
#define DECAY_BITS		2
#define DECAY_MASK		((1ULL << DECAY_BITS) - 1)
#define MAX_ELEMS		(PAGE_SIZE / sizeof(u64))

/*
 * Threshold amount of inserted elements after which we start spring
 * cleaning.
 */
#define CLEAN_ELEMS		(MAX_ELEMS >> DECAY_BITS)

/* Bits which count the number of errors happened in this 4K page. */
#define COUNT_BITS		(PAGE_SHIFT - DECAY_BITS)
#define COUNT_MASK		((1ULL << COUNT_BITS) - 1)
#define FULL_COUNT_MASK		(PAGE_SIZE - 1)

/*
 * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ]
 */

#define PFN(e)			((e) >> PAGE_SHIFT)
#define DECAY(e)		(((e) >> COUNT_BITS) & DECAY_MASK)
#define COUNT(e)		((unsigned int)(e) & COUNT_MASK)
#define FULL_COUNT(e)		((e) & (PAGE_SIZE - 1))

static struct ce_array {
	u64 *array;			/* container page */
	unsigned int n;			/* number of elements in the array */

	unsigned int decay_count;	/*
					 * number of element insertions/increments
					 * since the last spring cleaning.
					 */

	u64 pfns_poisoned;		/*
					 * number of PFNs which got poisoned.
					 */

	u64 ces_entered;		/*
					 * The number of correctable errors
					 * entered into the collector.
					 */

	u64 decays_done;		/*
					 * Times we did spring cleaning.
					 */

	union {
		struct {
			__u32	disabled : 1,	/* cmdline disabled */
			__resv   : 31;
		};
		__u32 flags;
	};
} ce_arr;

static DEFINE_MUTEX(ce_mutex);
static u64 dfs_pfn;

/* Amount of errors after which we offline */
static u64 action_threshold = COUNT_MASK;

/* Each element "decays" each decay_interval which is 24hrs by default. */
#define CEC_DECAY_DEFAULT_INTERVAL	24 * 60 * 60	/* 24 hrs */
#define CEC_DECAY_MIN_INTERVAL		 1 * 60 * 60	/* 1h */
#define CEC_DECAY_MAX_INTERVAL	   30 *	24 * 60 * 60	/* one month */
static struct delayed_work cec_work;
static u64 decay_interval = CEC_DECAY_DEFAULT_INTERVAL;

/*
 * Decrement decay value. We're using DECAY_BITS bits to denote decay of an
 * element in the array. On insertion and any access, it gets reset to max.
 */
static void do_spring_cleaning(struct ce_array *ca)
{
	int i;

	for (i = 0; i < ca->n; i++) {
		u8 decay = DECAY(ca->array[i]);

		if (!decay)
			continue;

		decay--;

		ca->array[i] &= ~(DECAY_MASK << COUNT_BITS);
		ca->array[i] |= (decay << COUNT_BITS);
	}
	ca->decay_count = 0;
	ca->decays_done++;
}

/*
 * @interval in seconds
 */
static void cec_mod_work(unsigned long interval)
{
	unsigned long iv;

	iv = interval * HZ;
	mod_delayed_work(system_wq, &cec_work, round_jiffies(iv));
}

static void cec_work_fn(struct work_struct *work)
{
	mutex_lock(&ce_mutex);
	do_spring_cleaning(&ce_arr);
	mutex_unlock(&ce_mutex);

	cec_mod_work(decay_interval);
}

/*
 * @to: index of the smallest element which is >= then @pfn.
 *
 * Return the index of the pfn if found, otherwise negative value.
 */
static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
{
	int min = 0, max = ca->n - 1;
	u64 this_pfn;

	while (min <= max) {
		int i = (min + max) >> 1;

		this_pfn = PFN(ca->array[i]);

		if (this_pfn < pfn)
			min = i + 1;
		else if (this_pfn > pfn)
			max = i - 1;
		else if (this_pfn == pfn) {
			if (to)
				*to = i;

			return i;
		}
	}

	/*
	 * When the loop terminates without finding @pfn, min has the index of
	 * the element slot where the new @pfn should be inserted. The loop
	 * terminates when min > max, which means the min index points to the
	 * bigger element while the max index to the smaller element, in-between
	 * which the new @pfn belongs to.
	 *
	 * For more details, see exercise 1, Section 6.2.1 in TAOCP, vol. 3.
	 */
	if (to)
		*to = min;

	return -ENOKEY;
}

static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
{
	WARN_ON(!to);

	if (!ca->n) {
		*to = 0;
		return -ENOKEY;
	}
	return __find_elem(ca, pfn, to);
}

static void del_elem(struct ce_array *ca, int idx)
{
	/* Save us a function call when deleting the last element. */
	if (ca->n - (idx + 1))
		memmove((void *)&ca->array[idx],
			(void *)&ca->array[idx + 1],
			(ca->n - (idx + 1)) * sizeof(u64));

	ca->n--;
}

static u64 del_lru_elem_unlocked(struct ce_array *ca)
{
	unsigned int min = FULL_COUNT_MASK;
	int i, min_idx = 0;

	for (i = 0; i < ca->n; i++) {
		unsigned int this = FULL_COUNT(ca->array[i]);

		if (min > this) {
			min = this;
			min_idx = i;
		}
	}

	del_elem(ca, min_idx);

	return PFN(ca->array[min_idx]);
}

/*
 * We return the 0th pfn in the error case under the assumption that it cannot
 * be poisoned and excessive CEs in there are a serious deal anyway.
 */
static u64 __maybe_unused del_lru_elem(void)
{
	struct ce_array *ca = &ce_arr;
	u64 pfn;

	if (!ca->n)
		return 0;

	mutex_lock(&ce_mutex);
	pfn = del_lru_elem_unlocked(ca);
	mutex_unlock(&ce_mutex);

	return pfn;
}

static bool sanity_check(struct ce_array *ca)
{
	bool ret = false;
	u64 prev = 0;
	int i;

	for (i = 0; i < ca->n; i++) {
		u64 this = PFN(ca->array[i]);

		if (WARN(prev > this, "prev: 0x%016llx <-> this: 0x%016llx\n", prev, this))
			ret = true;

		prev = this;
	}

	if (!ret)
		return ret;

	pr_info("Sanity check dump:\n{ n: %d\n", ca->n);
	for (i = 0; i < ca->n; i++) {
		u64 this = PFN(ca->array[i]);

		pr_info(" %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i]));
	}
	pr_info("}\n");

	return ret;
}

static int cec_add_elem(u64 pfn)
{
	struct ce_array *ca = &ce_arr;
	unsigned int to = 0;
	int count, ret = 0;

	/*
	 * We can be called very early on the identify_cpu() path where we are
	 * not initialized yet. We ignore the error for simplicity.
	 */
	if (!ce_arr.array || ce_arr.disabled)
		return -ENODEV;

	mutex_lock(&ce_mutex);

	ca->ces_entered++;

	/* Array full, free the LRU slot. */
	if (ca->n == MAX_ELEMS)
		WARN_ON(!del_lru_elem_unlocked(ca));

	ret = find_elem(ca, pfn, &to);
	if (ret < 0) {
		/*
		 * Shift range [to-end] to make room for one more element.
		 */
		memmove((void *)&ca->array[to + 1],
			(void *)&ca->array[to],
			(ca->n - to) * sizeof(u64));

		ca->array[to] = pfn << PAGE_SHIFT;
		ca->n++;
	}

	/* Add/refresh element generation and increment count */
	ca->array[to] |= DECAY_MASK << COUNT_BITS;
	ca->array[to]++;

	/* Check action threshold and soft-offline, if reached. */
	count = COUNT(ca->array[to]);
	if (count >= action_threshold) {
		u64 pfn = ca->array[to] >> PAGE_SHIFT;

		if (!pfn_valid(pfn)) {
			pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn);
		} else {
			/* We have reached max count for this page, soft-offline it. */
			pr_err("Soft-offlining pfn: 0x%llx\n", pfn);
			memory_failure_queue(pfn, MF_SOFT_OFFLINE);
			ca->pfns_poisoned++;
		}

		del_elem(ca, to);

		/*
		 * Return a >0 value to callers, to denote that we've reached
		 * the offlining threshold.
		 */
		ret = 1;

		goto unlock;
	}

	ca->decay_count++;

	if (ca->decay_count >= CLEAN_ELEMS)
		do_spring_cleaning(ca);

	WARN_ON_ONCE(sanity_check(ca));

unlock:
	mutex_unlock(&ce_mutex);

	return ret;
}

static int u64_get(void *data, u64 *val)
{
	*val = *(u64 *)data;

	return 0;
}

static int pfn_set(void *data, u64 val)
{
	*(u64 *)data = val;

	cec_add_elem(val);

	return 0;
}

DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n");

static int decay_interval_set(void *data, u64 val)
{
	if (val < CEC_DECAY_MIN_INTERVAL)
		return -EINVAL;

	if (val > CEC_DECAY_MAX_INTERVAL)
		return -EINVAL;

	*(u64 *)data   = val;
	decay_interval = val;

	cec_mod_work(decay_interval);

	return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n");

static int action_threshold_set(void *data, u64 val)
{
	*(u64 *)data = val;

	if (val > COUNT_MASK)
		val = COUNT_MASK;

	action_threshold = val;

	return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(action_threshold_ops, u64_get, action_threshold_set, "%lld\n");

static const char * const bins[] = { "00", "01", "10", "11" };

static int array_show(struct seq_file *m, void *v)
{
	struct ce_array *ca = &ce_arr;
	int i;

	mutex_lock(&ce_mutex);

	seq_printf(m, "{ n: %d\n", ca->n);
	for (i = 0; i < ca->n; i++) {
		u64 this = PFN(ca->array[i]);

		seq_printf(m, " %3d: [%016llx|%s|%03llx]\n",
			   i, this, bins[DECAY(ca->array[i])], COUNT(ca->array[i]));
	}

	seq_printf(m, "}\n");

	seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n",
		   ca->ces_entered, ca->pfns_poisoned);

	seq_printf(m, "Flags: 0x%x\n", ca->flags);

	seq_printf(m, "Decay interval: %lld seconds\n", decay_interval);
	seq_printf(m, "Decays: %lld\n", ca->decays_done);

	seq_printf(m, "Action threshold: %lld\n", action_threshold);

	mutex_unlock(&ce_mutex);

	return 0;
}

DEFINE_SHOW_ATTRIBUTE(array);

static int __init create_debugfs_nodes(void)
{
	struct dentry *d, *pfn, *decay, *count, *array;

	d = debugfs_create_dir("cec", ras_debugfs_dir);
	if (!d) {
		pr_warn("Error creating cec debugfs node!\n");
		return -1;
	}

	decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d,
				    &decay_interval, &decay_interval_ops);
	if (!decay) {
		pr_warn("Error creating decay_interval debugfs node!\n");
		goto err;
	}

	count = debugfs_create_file("action_threshold", S_IRUSR | S_IWUSR, d,
				    &action_threshold, &action_threshold_ops);
	if (!count) {
		pr_warn("Error creating action_threshold debugfs node!\n");
		goto err;
	}

	if (!IS_ENABLED(CONFIG_RAS_CEC_DEBUG))
		return 0;

	pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops);
	if (!pfn) {
		pr_warn("Error creating pfn debugfs node!\n");
		goto err;
	}

	array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_fops);
	if (!array) {
		pr_warn("Error creating array debugfs node!\n");
		goto err;
	}

	return 0;

err:
	debugfs_remove_recursive(d);

	return 1;
}

static int cec_notifier(struct notifier_block *nb, unsigned long val,
			void *data)
{
	struct mce *m = (struct mce *)data;

	if (!m)
		return NOTIFY_DONE;

	/* We eat only correctable DRAM errors with usable addresses. */
	if (mce_is_memory_error(m) &&
	    mce_is_correctable(m)  &&
	    mce_usable_address(m)) {
		if (!cec_add_elem(m->addr >> PAGE_SHIFT)) {
			m->kflags |= MCE_HANDLED_CEC;
			return NOTIFY_OK;
		}
	}

	return NOTIFY_DONE;
}

static struct notifier_block cec_nb = {
	.notifier_call	= cec_notifier,
	.priority	= MCE_PRIO_CEC,
};

static int __init cec_init(void)
{
	if (ce_arr.disabled)
		return -ENODEV;

	ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL);
	if (!ce_arr.array) {
		pr_err("Error allocating CE array page!\n");
		return -ENOMEM;
	}

	if (create_debugfs_nodes()) {
		free_page((unsigned long)ce_arr.array);
		return -ENOMEM;
	}

	INIT_DELAYED_WORK(&cec_work, cec_work_fn);
	schedule_delayed_work(&cec_work, CEC_DECAY_DEFAULT_INTERVAL);

	mce_register_decode_chain(&cec_nb);

	pr_info("Correctable Errors collector initialized.\n");
	return 0;
}
late_initcall(cec_init);

int __init parse_cec_param(char *str)
{
	if (!str)
		return 0;

	if (*str == '=')
		str++;

	if (!strcmp(str, "cec_disable"))
		ce_arr.disabled = 1;
	else
		return 0;

	return 1;
}