rtc-mt7622.c 9.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Driver for MediaTek SoC based RTC
 *
 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
 */

#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>

#define MTK_RTC_DEV KBUILD_MODNAME

#define MTK_RTC_PWRCHK1		0x4
#define	RTC_PWRCHK1_MAGIC	0xc6

#define MTK_RTC_PWRCHK2		0x8
#define	RTC_PWRCHK2_MAGIC	0x9a

#define MTK_RTC_KEY		0xc
#define	RTC_KEY_MAGIC		0x59

#define MTK_RTC_PROT1		0x10
#define	RTC_PROT1_MAGIC		0xa3

#define MTK_RTC_PROT2		0x14
#define	RTC_PROT2_MAGIC		0x57

#define MTK_RTC_PROT3		0x18
#define	RTC_PROT3_MAGIC		0x67

#define MTK_RTC_PROT4		0x1c
#define	RTC_PROT4_MAGIC		0xd2

#define MTK_RTC_CTL		0x20
#define	RTC_RC_STOP		BIT(0)

#define MTK_RTC_DEBNCE		0x2c
#define	RTC_DEBNCE_MASK		GENMASK(2, 0)

#define MTK_RTC_INT		0x30
#define RTC_INT_AL_STA		BIT(4)

/*
 * Ranges from 0x40 to 0x78 provide RTC time setup for year, month,
 * day of month, day of week, hour, minute and second.
 */
#define MTK_RTC_TREG(_t, _f)	(0x40 + (0x4 * (_f)) + ((_t) * 0x20))

#define MTK_RTC_AL_CTL		0x7c
#define	RTC_AL_EN		BIT(0)
#define	RTC_AL_ALL		GENMASK(7, 0)

/*
 * The offset is used in the translation for the year between in struct
 * rtc_time and in hardware register MTK_RTC_TREG(x,MTK_YEA)
 */
#define MTK_RTC_TM_YR_OFFSET	100

/*
 * The lowest value for the valid tm_year. RTC hardware would take incorrectly
 * tm_year 100 as not a leap year and thus it is also required being excluded
 * from the valid options.
 */
#define MTK_RTC_TM_YR_L		(MTK_RTC_TM_YR_OFFSET + 1)

/*
 * The most year the RTC can hold is 99 and the next to 99 in year register
 * would be wraparound to 0, for MT7622.
 */
#define MTK_RTC_HW_YR_LIMIT	99

/* The highest value for the valid tm_year */
#define MTK_RTC_TM_YR_H		(MTK_RTC_TM_YR_OFFSET + MTK_RTC_HW_YR_LIMIT)

/* Simple macro helps to check whether the hardware supports the tm_year */
#define MTK_RTC_TM_YR_VALID(_y)	((_y) >= MTK_RTC_TM_YR_L && \
				 (_y) <= MTK_RTC_TM_YR_H)

/* Types of the function the RTC provides are time counter and alarm. */
enum {
	MTK_TC,
	MTK_AL,
};

/* Indexes are used for the pointer to relevant registers in MTK_RTC_TREG */
enum {
	MTK_YEA,
	MTK_MON,
	MTK_DOM,
	MTK_DOW,
	MTK_HOU,
	MTK_MIN,
	MTK_SEC
};

struct mtk_rtc {
	struct rtc_device *rtc;
	void __iomem *base;
	int irq;
	struct clk *clk;
};

static void mtk_w32(struct mtk_rtc *rtc, u32 reg, u32 val)
{
	writel_relaxed(val, rtc->base + reg);
}

static u32 mtk_r32(struct mtk_rtc *rtc, u32 reg)
{
	return readl_relaxed(rtc->base + reg);
}

static void mtk_rmw(struct mtk_rtc *rtc, u32 reg, u32 mask, u32 set)
{
	u32 val;

	val = mtk_r32(rtc, reg);
	val &= ~mask;
	val |= set;
	mtk_w32(rtc, reg, val);
}

static void mtk_set(struct mtk_rtc *rtc, u32 reg, u32 val)
{
	mtk_rmw(rtc, reg, 0, val);
}

static void mtk_clr(struct mtk_rtc *rtc, u32 reg, u32 val)
{
	mtk_rmw(rtc, reg, val, 0);
}

static void mtk_rtc_hw_init(struct mtk_rtc *hw)
{
	/* The setup of the init sequence is for allowing RTC got to work */
	mtk_w32(hw, MTK_RTC_PWRCHK1, RTC_PWRCHK1_MAGIC);
	mtk_w32(hw, MTK_RTC_PWRCHK2, RTC_PWRCHK2_MAGIC);
	mtk_w32(hw, MTK_RTC_KEY, RTC_KEY_MAGIC);
	mtk_w32(hw, MTK_RTC_PROT1, RTC_PROT1_MAGIC);
	mtk_w32(hw, MTK_RTC_PROT2, RTC_PROT2_MAGIC);
	mtk_w32(hw, MTK_RTC_PROT3, RTC_PROT3_MAGIC);
	mtk_w32(hw, MTK_RTC_PROT4, RTC_PROT4_MAGIC);
	mtk_rmw(hw, MTK_RTC_DEBNCE, RTC_DEBNCE_MASK, 0);
	mtk_clr(hw, MTK_RTC_CTL, RTC_RC_STOP);
}

static void mtk_rtc_get_alarm_or_time(struct mtk_rtc *hw, struct rtc_time *tm,
				      int time_alarm)
{
	u32 year, mon, mday, wday, hour, min, sec;

	/*
	 * Read again until the field of the second is not changed which
	 * ensures all fields in the consistent state. Note that MTK_SEC must
	 * be read first. In this way, it guarantees the others remain not
	 * changed when the results for two MTK_SEC consecutive reads are same.
	 */
	do {
		sec = mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_SEC));
		min = mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_MIN));
		hour = mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_HOU));
		wday = mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_DOW));
		mday = mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_DOM));
		mon = mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_MON));
		year = mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_YEA));
	} while (sec != mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_SEC)));

	tm->tm_sec  = sec;
	tm->tm_min  = min;
	tm->tm_hour = hour;
	tm->tm_wday = wday;
	tm->tm_mday = mday;
	tm->tm_mon  = mon - 1;

	/* Rebase to the absolute year which userspace queries */
	tm->tm_year = year + MTK_RTC_TM_YR_OFFSET;
}

static void mtk_rtc_set_alarm_or_time(struct mtk_rtc *hw, struct rtc_time *tm,
				      int time_alarm)
{
	u32 year;

	/* Rebase to the relative year which RTC hardware requires */
	year = tm->tm_year - MTK_RTC_TM_YR_OFFSET;

	mtk_w32(hw, MTK_RTC_TREG(time_alarm, MTK_YEA), year);
	mtk_w32(hw, MTK_RTC_TREG(time_alarm, MTK_MON), tm->tm_mon + 1);
	mtk_w32(hw, MTK_RTC_TREG(time_alarm, MTK_DOW), tm->tm_wday);
	mtk_w32(hw, MTK_RTC_TREG(time_alarm, MTK_DOM), tm->tm_mday);
	mtk_w32(hw, MTK_RTC_TREG(time_alarm, MTK_HOU), tm->tm_hour);
	mtk_w32(hw, MTK_RTC_TREG(time_alarm, MTK_MIN), tm->tm_min);
	mtk_w32(hw, MTK_RTC_TREG(time_alarm, MTK_SEC), tm->tm_sec);
}

static irqreturn_t mtk_rtc_alarmirq(int irq, void *id)
{
	struct mtk_rtc *hw = (struct mtk_rtc *)id;
	u32 irq_sta;

	irq_sta = mtk_r32(hw, MTK_RTC_INT);
	if (irq_sta & RTC_INT_AL_STA) {
		/* Stop alarm also implicitly disables the alarm interrupt */
		mtk_w32(hw, MTK_RTC_AL_CTL, 0);
		rtc_update_irq(hw->rtc, 1, RTC_IRQF | RTC_AF);

		/* Ack alarm interrupt status */
		mtk_w32(hw, MTK_RTC_INT, RTC_INT_AL_STA);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static int mtk_rtc_gettime(struct device *dev, struct rtc_time *tm)
{
	struct mtk_rtc *hw = dev_get_drvdata(dev);

	mtk_rtc_get_alarm_or_time(hw, tm, MTK_TC);

	return 0;
}

static int mtk_rtc_settime(struct device *dev, struct rtc_time *tm)
{
	struct mtk_rtc *hw = dev_get_drvdata(dev);

	if (!MTK_RTC_TM_YR_VALID(tm->tm_year))
		return -EINVAL;

	/* Stop time counter before setting a new one*/
	mtk_set(hw, MTK_RTC_CTL, RTC_RC_STOP);

	mtk_rtc_set_alarm_or_time(hw, tm, MTK_TC);

	/* Restart the time counter */
	mtk_clr(hw, MTK_RTC_CTL, RTC_RC_STOP);

	return 0;
}

static int mtk_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
{
	struct mtk_rtc *hw = dev_get_drvdata(dev);
	struct rtc_time *alrm_tm = &wkalrm->time;

	mtk_rtc_get_alarm_or_time(hw, alrm_tm, MTK_AL);

	wkalrm->enabled = !!(mtk_r32(hw, MTK_RTC_AL_CTL) & RTC_AL_EN);
	wkalrm->pending = !!(mtk_r32(hw, MTK_RTC_INT) & RTC_INT_AL_STA);

	return 0;
}

static int mtk_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
{
	struct mtk_rtc *hw = dev_get_drvdata(dev);
	struct rtc_time *alrm_tm = &wkalrm->time;

	if (!MTK_RTC_TM_YR_VALID(alrm_tm->tm_year))
		return -EINVAL;

	/*
	 * Stop the alarm also implicitly including disables interrupt before
	 * setting a new one.
	 */
	mtk_clr(hw, MTK_RTC_AL_CTL, RTC_AL_EN);

	/*
	 * Avoid contention between mtk_rtc_setalarm and IRQ handler so that
	 * disabling the interrupt and awaiting for pending IRQ handler to
	 * complete.
	 */
	synchronize_irq(hw->irq);

	mtk_rtc_set_alarm_or_time(hw, alrm_tm, MTK_AL);

	/* Restart the alarm with the new setup */
	mtk_w32(hw, MTK_RTC_AL_CTL, RTC_AL_ALL);

	return 0;
}

static const struct rtc_class_ops mtk_rtc_ops = {
	.read_time		= mtk_rtc_gettime,
	.set_time		= mtk_rtc_settime,
	.read_alarm		= mtk_rtc_getalarm,
	.set_alarm		= mtk_rtc_setalarm,
};

static const struct of_device_id mtk_rtc_match[] = {
	{ .compatible = "mediatek,mt7622-rtc" },
	{ .compatible = "mediatek,soc-rtc" },
	{},
};
MODULE_DEVICE_TABLE(of, mtk_rtc_match);

static int mtk_rtc_probe(struct platform_device *pdev)
{
	struct mtk_rtc *hw;
	int ret;

	hw = devm_kzalloc(&pdev->dev, sizeof(*hw), GFP_KERNEL);
	if (!hw)
		return -ENOMEM;

	platform_set_drvdata(pdev, hw);

	hw->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(hw->base))
		return PTR_ERR(hw->base);

	hw->clk = devm_clk_get(&pdev->dev, "rtc");
	if (IS_ERR(hw->clk)) {
		dev_err(&pdev->dev, "No clock\n");
		return PTR_ERR(hw->clk);
	}

	ret = clk_prepare_enable(hw->clk);
	if (ret)
		return ret;

	hw->irq = platform_get_irq(pdev, 0);
	if (hw->irq < 0) {
		ret = hw->irq;
		goto err;
	}

	ret = devm_request_irq(&pdev->dev, hw->irq, mtk_rtc_alarmirq,
			       0, dev_name(&pdev->dev), hw);
	if (ret) {
		dev_err(&pdev->dev, "Can't request IRQ\n");
		goto err;
	}

	mtk_rtc_hw_init(hw);

	device_init_wakeup(&pdev->dev, true);

	hw->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
					   &mtk_rtc_ops, THIS_MODULE);
	if (IS_ERR(hw->rtc)) {
		ret = PTR_ERR(hw->rtc);
		dev_err(&pdev->dev, "Unable to register device\n");
		goto err;
	}

	return 0;
err:
	clk_disable_unprepare(hw->clk);

	return ret;
}

static int mtk_rtc_remove(struct platform_device *pdev)
{
	struct mtk_rtc *hw = platform_get_drvdata(pdev);

	clk_disable_unprepare(hw->clk);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int mtk_rtc_suspend(struct device *dev)
{
	struct mtk_rtc *hw = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		enable_irq_wake(hw->irq);

	return 0;
}

static int mtk_rtc_resume(struct device *dev)
{
	struct mtk_rtc *hw = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		disable_irq_wake(hw->irq);

	return 0;
}

static SIMPLE_DEV_PM_OPS(mtk_rtc_pm_ops, mtk_rtc_suspend, mtk_rtc_resume);

#define MTK_RTC_PM_OPS (&mtk_rtc_pm_ops)
#else	/* CONFIG_PM */
#define MTK_RTC_PM_OPS NULL
#endif	/* CONFIG_PM */

static struct platform_driver mtk_rtc_driver = {
	.probe	= mtk_rtc_probe,
	.remove	= mtk_rtc_remove,
	.driver = {
		.name = MTK_RTC_DEV,
		.of_match_table = mtk_rtc_match,
		.pm = MTK_RTC_PM_OPS,
	},
};

module_platform_driver(mtk_rtc_driver);

MODULE_DESCRIPTION("MediaTek SoC based RTC Driver");
MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
MODULE_LICENSE("GPL");