spi-dw-dma.c 16.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Special handling for DW DMA core
 *
 * Copyright (c) 2009, 2014 Intel Corporation.
 */

#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/irqreturn.h>
#include <linux/jiffies.h>
#include <linux/pci.h>
#include <linux/platform_data/dma-dw.h>
#include <linux/spi/spi.h>
#include <linux/types.h>

#include "spi-dw.h"

#define RX_BUSY		0
#define RX_BURST_LEVEL	16
#define TX_BUSY		1
#define TX_BURST_LEVEL	16

static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
{
	struct dw_dma_slave *s = param;

	if (s->dma_dev != chan->device->dev)
		return false;

	chan->private = s;
	return true;
}

static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
{
	struct dma_slave_caps caps;
	u32 max_burst, def_burst;
	int ret;

	def_burst = dws->fifo_len / 2;

	ret = dma_get_slave_caps(dws->rxchan, &caps);
	if (!ret && caps.max_burst)
		max_burst = caps.max_burst;
	else
		max_burst = RX_BURST_LEVEL;

	dws->rxburst = min(max_burst, def_burst);
	dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);

	ret = dma_get_slave_caps(dws->txchan, &caps);
	if (!ret && caps.max_burst)
		max_burst = caps.max_burst;
	else
		max_burst = TX_BURST_LEVEL;

	/*
	 * Having a Rx DMA channel serviced with higher priority than a Tx DMA
	 * channel might not be enough to provide a well balanced DMA-based
	 * SPI transfer interface. There might still be moments when the Tx DMA
	 * channel is occasionally handled faster than the Rx DMA channel.
	 * That in its turn will eventually cause the SPI Rx FIFO overflow if
	 * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
	 * cleared by the Rx DMA channel. In order to fix the problem the Tx
	 * DMA activity is intentionally slowed down by limiting the SPI Tx
	 * FIFO depth with a value twice bigger than the Tx burst length.
	 */
	dws->txburst = min(max_burst, def_burst);
	dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
}

static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
{
	struct dma_slave_caps tx = {0}, rx = {0};

	dma_get_slave_caps(dws->txchan, &tx);
	dma_get_slave_caps(dws->rxchan, &rx);

	if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
		dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
	else if (tx.max_sg_burst > 0)
		dws->dma_sg_burst = tx.max_sg_burst;
	else if (rx.max_sg_burst > 0)
		dws->dma_sg_burst = rx.max_sg_burst;
	else
		dws->dma_sg_burst = 0;
}

static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
{
	struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
	struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
	struct pci_dev *dma_dev;
	dma_cap_mask_t mask;

	/*
	 * Get pci device for DMA controller, currently it could only
	 * be the DMA controller of Medfield
	 */
	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
	if (!dma_dev)
		return -ENODEV;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	/* 1. Init rx channel */
	rx->dma_dev = &dma_dev->dev;
	dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
	if (!dws->rxchan)
		goto err_exit;

	/* 2. Init tx channel */
	tx->dma_dev = &dma_dev->dev;
	dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
	if (!dws->txchan)
		goto free_rxchan;

	dws->master->dma_rx = dws->rxchan;
	dws->master->dma_tx = dws->txchan;

	init_completion(&dws->dma_completion);

	dw_spi_dma_maxburst_init(dws);

	dw_spi_dma_sg_burst_init(dws);

	return 0;

free_rxchan:
	dma_release_channel(dws->rxchan);
	dws->rxchan = NULL;
err_exit:
	return -EBUSY;
}

static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
{
	dws->rxchan = dma_request_slave_channel(dev, "rx");
	if (!dws->rxchan)
		return -ENODEV;

	dws->txchan = dma_request_slave_channel(dev, "tx");
	if (!dws->txchan) {
		dma_release_channel(dws->rxchan);
		dws->rxchan = NULL;
		return -ENODEV;
	}

	dws->master->dma_rx = dws->rxchan;
	dws->master->dma_tx = dws->txchan;

	init_completion(&dws->dma_completion);

	dw_spi_dma_maxburst_init(dws);

	dw_spi_dma_sg_burst_init(dws);

	return 0;
}

static void dw_spi_dma_exit(struct dw_spi *dws)
{
	if (dws->txchan) {
		dmaengine_terminate_sync(dws->txchan);
		dma_release_channel(dws->txchan);
	}

	if (dws->rxchan) {
		dmaengine_terminate_sync(dws->rxchan);
		dma_release_channel(dws->rxchan);
	}
}

static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
{
	dw_spi_check_status(dws, false);

	complete(&dws->dma_completion);

	return IRQ_HANDLED;
}

static bool dw_spi_can_dma(struct spi_controller *master,
			   struct spi_device *spi, struct spi_transfer *xfer)
{
	struct dw_spi *dws = spi_controller_get_devdata(master);

	return xfer->len > dws->fifo_len;
}

static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
{
	if (n_bytes == 1)
		return DMA_SLAVE_BUSWIDTH_1_BYTE;
	else if (n_bytes == 2)
		return DMA_SLAVE_BUSWIDTH_2_BYTES;

	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
}

static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
{
	unsigned long long ms;

	ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
	do_div(ms, speed);
	ms += ms + 200;

	if (ms > UINT_MAX)
		ms = UINT_MAX;

	ms = wait_for_completion_timeout(&dws->dma_completion,
					 msecs_to_jiffies(ms));

	if (ms == 0) {
		dev_err(&dws->master->cur_msg->spi->dev,
			"DMA transaction timed out\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
{
	return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT);
}

static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
				   struct spi_transfer *xfer)
{
	int retry = SPI_WAIT_RETRIES;
	struct spi_delay delay;
	u32 nents;

	nents = dw_readl(dws, DW_SPI_TXFLR);
	delay.unit = SPI_DELAY_UNIT_SCK;
	delay.value = nents * dws->n_bytes * BITS_PER_BYTE;

	while (dw_spi_dma_tx_busy(dws) && retry--)
		spi_delay_exec(&delay, xfer);

	if (retry < 0) {
		dev_err(&dws->master->dev, "Tx hanged up\n");
		return -EIO;
	}

	return 0;
}

/*
 * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
 * channel will clear a corresponding bit.
 */
static void dw_spi_dma_tx_done(void *arg)
{
	struct dw_spi *dws = arg;

	clear_bit(TX_BUSY, &dws->dma_chan_busy);
	if (test_bit(RX_BUSY, &dws->dma_chan_busy))
		return;

	complete(&dws->dma_completion);
}

static int dw_spi_dma_config_tx(struct dw_spi *dws)
{
	struct dma_slave_config txconf;

	memset(&txconf, 0, sizeof(txconf));
	txconf.direction = DMA_MEM_TO_DEV;
	txconf.dst_addr = dws->dma_addr;
	txconf.dst_maxburst = dws->txburst;
	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
	txconf.device_fc = false;

	return dmaengine_slave_config(dws->txchan, &txconf);
}

static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
				unsigned int nents)
{
	struct dma_async_tx_descriptor *txdesc;
	dma_cookie_t cookie;
	int ret;

	txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
					 DMA_MEM_TO_DEV,
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!txdesc)
		return -ENOMEM;

	txdesc->callback = dw_spi_dma_tx_done;
	txdesc->callback_param = dws;

	cookie = dmaengine_submit(txdesc);
	ret = dma_submit_error(cookie);
	if (ret) {
		dmaengine_terminate_sync(dws->txchan);
		return ret;
	}

	set_bit(TX_BUSY, &dws->dma_chan_busy);

	return 0;
}

static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
{
	return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT);
}

static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
{
	int retry = SPI_WAIT_RETRIES;
	struct spi_delay delay;
	unsigned long ns, us;
	u32 nents;

	/*
	 * It's unlikely that DMA engine is still doing the data fetching, but
	 * if it's let's give it some reasonable time. The timeout calculation
	 * is based on the synchronous APB/SSI reference clock rate, on a
	 * number of data entries left in the Rx FIFO, times a number of clock
	 * periods normally needed for a single APB read/write transaction
	 * without PREADY signal utilized (which is true for the DW APB SSI
	 * controller).
	 */
	nents = dw_readl(dws, DW_SPI_RXFLR);
	ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
	if (ns <= NSEC_PER_USEC) {
		delay.unit = SPI_DELAY_UNIT_NSECS;
		delay.value = ns;
	} else {
		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
		delay.unit = SPI_DELAY_UNIT_USECS;
		delay.value = clamp_val(us, 0, USHRT_MAX);
	}

	while (dw_spi_dma_rx_busy(dws) && retry--)
		spi_delay_exec(&delay, NULL);

	if (retry < 0) {
		dev_err(&dws->master->dev, "Rx hanged up\n");
		return -EIO;
	}

	return 0;
}

/*
 * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
 * channel will clear a corresponding bit.
 */
static void dw_spi_dma_rx_done(void *arg)
{
	struct dw_spi *dws = arg;

	clear_bit(RX_BUSY, &dws->dma_chan_busy);
	if (test_bit(TX_BUSY, &dws->dma_chan_busy))
		return;

	complete(&dws->dma_completion);
}

static int dw_spi_dma_config_rx(struct dw_spi *dws)
{
	struct dma_slave_config rxconf;

	memset(&rxconf, 0, sizeof(rxconf));
	rxconf.direction = DMA_DEV_TO_MEM;
	rxconf.src_addr = dws->dma_addr;
	rxconf.src_maxburst = dws->rxburst;
	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
	rxconf.device_fc = false;

	return dmaengine_slave_config(dws->rxchan, &rxconf);
}

static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
				unsigned int nents)
{
	struct dma_async_tx_descriptor *rxdesc;
	dma_cookie_t cookie;
	int ret;

	rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
					 DMA_DEV_TO_MEM,
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!rxdesc)
		return -ENOMEM;

	rxdesc->callback = dw_spi_dma_rx_done;
	rxdesc->callback_param = dws;

	cookie = dmaengine_submit(rxdesc);
	ret = dma_submit_error(cookie);
	if (ret) {
		dmaengine_terminate_sync(dws->rxchan);
		return ret;
	}

	set_bit(RX_BUSY, &dws->dma_chan_busy);

	return 0;
}

static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
{
	u16 imr, dma_ctrl;
	int ret;

	if (!xfer->tx_buf)
		return -EINVAL;

	/* Setup DMA channels */
	ret = dw_spi_dma_config_tx(dws);
	if (ret)
		return ret;

	if (xfer->rx_buf) {
		ret = dw_spi_dma_config_rx(dws);
		if (ret)
			return ret;
	}

	/* Set the DMA handshaking interface */
	dma_ctrl = SPI_DMA_TDMAE;
	if (xfer->rx_buf)
		dma_ctrl |= SPI_DMA_RDMAE;
	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);

	/* Set the interrupt mask */
	imr = SPI_INT_TXOI;
	if (xfer->rx_buf)
		imr |= SPI_INT_RXUI | SPI_INT_RXOI;
	spi_umask_intr(dws, imr);

	reinit_completion(&dws->dma_completion);

	dws->transfer_handler = dw_spi_dma_transfer_handler;

	return 0;
}

static int dw_spi_dma_transfer_all(struct dw_spi *dws,
				   struct spi_transfer *xfer)
{
	int ret;

	/* Submit the DMA Tx transfer */
	ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
	if (ret)
		goto err_clear_dmac;

	/* Submit the DMA Rx transfer if required */
	if (xfer->rx_buf) {
		ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
					   xfer->rx_sg.nents);
		if (ret)
			goto err_clear_dmac;

		/* rx must be started before tx due to spi instinct */
		dma_async_issue_pending(dws->rxchan);
	}

	dma_async_issue_pending(dws->txchan);

	ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);

err_clear_dmac:
	dw_writel(dws, DW_SPI_DMACR, 0);

	return ret;
}

/*
 * In case if at least one of the requested DMA channels doesn't support the
 * hardware accelerated SG list entries traverse, the DMA driver will most
 * likely work that around by performing the IRQ-based SG list entries
 * resubmission. That might and will cause a problem if the DMA Tx channel is
 * recharged and re-executed before the Rx DMA channel. Due to
 * non-deterministic IRQ-handler execution latency the DMA Tx channel will
 * start pushing data to the SPI bus before the Rx DMA channel is even
 * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
 * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
 * the DMA Rx channel being recharged and re-executed will eventually be
 * overflown.
 *
 * In order to solve the problem we have to feed the DMA engine with SG list
 * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
 * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
 * and rx_sg lists may have different number of entries of different lengths
 * (though total length should match) let's virtually split the SG-lists to the
 * set of DMA transfers, which length is a minimum of the ordered SG-entries
 * lengths. An ASCII-sketch of the implemented algo is following:
 *                  xfer->len
 *                |___________|
 * tx_sg list:    |___|____|__|
 * rx_sg list:    |_|____|____|
 * DMA transfers: |_|_|__|_|__|
 *
 * Note in order to have this workaround solving the denoted problem the DMA
 * engine driver should properly initialize the max_sg_burst capability and set
 * the DMA device max segment size parameter with maximum data block size the
 * DMA engine supports.
 */

static int dw_spi_dma_transfer_one(struct dw_spi *dws,
				   struct spi_transfer *xfer)
{
	struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
	unsigned int tx_len = 0, rx_len = 0;
	unsigned int base, len;
	int ret;

	sg_init_table(&tx_tmp, 1);
	sg_init_table(&rx_tmp, 1);

	for (base = 0, len = 0; base < xfer->len; base += len) {
		/* Fetch next Tx DMA data chunk */
		if (!tx_len) {
			tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
			sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
			tx_len = sg_dma_len(tx_sg);
		}

		/* Fetch next Rx DMA data chunk */
		if (!rx_len) {
			rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
			sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
			rx_len = sg_dma_len(rx_sg);
		}

		len = min(tx_len, rx_len);

		sg_dma_len(&tx_tmp) = len;
		sg_dma_len(&rx_tmp) = len;

		/* Submit DMA Tx transfer */
		ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
		if (ret)
			break;

		/* Submit DMA Rx transfer */
		ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
		if (ret)
			break;

		/* Rx must be started before Tx due to SPI instinct */
		dma_async_issue_pending(dws->rxchan);

		dma_async_issue_pending(dws->txchan);

		/*
		 * Here we only need to wait for the DMA transfer to be
		 * finished since SPI controller is kept enabled during the
		 * procedure this loop implements and there is no risk to lose
		 * data left in the Tx/Rx FIFOs.
		 */
		ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
		if (ret)
			break;

		reinit_completion(&dws->dma_completion);

		sg_dma_address(&tx_tmp) += len;
		sg_dma_address(&rx_tmp) += len;
		tx_len -= len;
		rx_len -= len;
	}

	dw_writel(dws, DW_SPI_DMACR, 0);

	return ret;
}

static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
{
	unsigned int nents;
	int ret;

	nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);

	/*
	 * Execute normal DMA-based transfer (which submits the Rx and Tx SG
	 * lists directly to the DMA engine at once) if either full hardware
	 * accelerated SG list traverse is supported by both channels, or the
	 * Tx-only SPI transfer is requested, or the DMA engine is capable to
	 * handle both SG lists on hardware accelerated basis.
	 */
	if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
		ret = dw_spi_dma_transfer_all(dws, xfer);
	else
		ret = dw_spi_dma_transfer_one(dws, xfer);
	if (ret)
		return ret;

	if (dws->master->cur_msg->status == -EINPROGRESS) {
		ret = dw_spi_dma_wait_tx_done(dws, xfer);
		if (ret)
			return ret;
	}

	if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
		ret = dw_spi_dma_wait_rx_done(dws);

	return ret;
}

static void dw_spi_dma_stop(struct dw_spi *dws)
{
	if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
		dmaengine_terminate_sync(dws->txchan);
		clear_bit(TX_BUSY, &dws->dma_chan_busy);
	}
	if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
		dmaengine_terminate_sync(dws->rxchan);
		clear_bit(RX_BUSY, &dws->dma_chan_busy);
	}
}

static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
	.dma_init	= dw_spi_dma_init_mfld,
	.dma_exit	= dw_spi_dma_exit,
	.dma_setup	= dw_spi_dma_setup,
	.can_dma	= dw_spi_can_dma,
	.dma_transfer	= dw_spi_dma_transfer,
	.dma_stop	= dw_spi_dma_stop,
};

void dw_spi_dma_setup_mfld(struct dw_spi *dws)
{
	dws->dma_ops = &dw_spi_dma_mfld_ops;
}
EXPORT_SYMBOL_GPL(dw_spi_dma_setup_mfld);

static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
	.dma_init	= dw_spi_dma_init_generic,
	.dma_exit	= dw_spi_dma_exit,
	.dma_setup	= dw_spi_dma_setup,
	.can_dma	= dw_spi_can_dma,
	.dma_transfer	= dw_spi_dma_transfer,
	.dma_stop	= dw_spi_dma_stop,
};

void dw_spi_dma_setup_generic(struct dw_spi *dws)
{
	dws->dma_ops = &dw_spi_dma_generic_ops;
}
EXPORT_SYMBOL_GPL(dw_spi_dma_setup_generic);