ide-v10.c 25.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
/* $Id: ide.c,v 1.4 2004/10/12 07:55:48 starvik Exp $
 *
 * Etrax specific IDE functions, like init and PIO-mode setting etc.
 * Almost the entire ide.c is used for the rest of the Etrax ATA driver.
 * Copyright (c) 2000-2004 Axis Communications AB
 *
 * Authors:    Bjorn Wesen        (initial version)
 *             Mikael Starvik     (pio setup stuff, Linux 2.6 port)
 */

/* Regarding DMA:
 *
 * There are two forms of DMA - "DMA handshaking" between the interface and the drive,
 * and DMA between the memory and the interface. We can ALWAYS use the latter, since it's
 * something built-in in the Etrax. However only some drives support the DMA-mode handshaking
 * on the ATA-bus. The normal PC driver and Triton interface disables memory-if DMA when the
 * device can't do DMA handshaking for some stupid reason. We don't need to do that.
 */

#undef REALLY_SLOW_IO           /* most systems can safely undef this */

#include <linux/config.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/scatterlist.h>

#include <asm/io.h>
#include <asm/arch/svinto.h>
#include <asm/dma.h>

/* number of Etrax DMA descriptors */
#define MAX_DMA_DESCRS 64

/* number of times to retry busy-flags when reading/writing IDE-registers
 * this can't be too high because a hung harddisk might cause the watchdog
 * to trigger (sometimes INB and OUTB are called with irq's disabled)
 */

#define IDE_REGISTER_TIMEOUT 300

static int e100_read_command = 0;

#define LOWDB(x)
#define D(x)

static int e100_ide_build_dmatable (ide_drive_t *drive);
static ide_startstop_t etrax_dma_intr (ide_drive_t *drive);

void
etrax100_ide_outw(unsigned short data, unsigned long reg) {
	int timeleft;
	LOWDB(printk("ow: data 0x%x, reg 0x%x\n", data, reg));

	/* note the lack of handling any timeouts. we stop waiting, but we don't
	 * really notify anybody.
	 */

	timeleft = IDE_REGISTER_TIMEOUT;
	/* wait for busy flag */
	while(timeleft && (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)))
		timeleft--;

	/*
	 * Fall through at a timeout, so the ongoing command will be
	 * aborted by the write below, which is expected to be a dummy
	 * command to the command register.  This happens when a faulty
	 * drive times out on a command.  See comment on timeout in
	 * INB.
	 */
	if(!timeleft)
		printk("ATA timeout reg 0x%lx := 0x%x\n", reg, data);

	*R_ATA_CTRL_DATA = reg | data; /* write data to the drive's register */

	timeleft = IDE_REGISTER_TIMEOUT;
	/* wait for transmitter ready */
	while(timeleft && !(*R_ATA_STATUS_DATA &
			    IO_MASK(R_ATA_STATUS_DATA, tr_rdy)))
		timeleft--;
}

void
etrax100_ide_outb(unsigned char data, unsigned long reg)
{
	etrax100_ide_outw(data, reg);
}

void
etrax100_ide_outbsync(ide_drive_t *drive, u8 addr, unsigned long port)
{
	etrax100_ide_outw(addr, port);
}

unsigned short
etrax100_ide_inw(unsigned long reg) {
	int status;
	int timeleft;

	timeleft = IDE_REGISTER_TIMEOUT;
	/* wait for busy flag */
	while(timeleft && (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)))
		timeleft--;

	if(!timeleft) {
		/*
		 * If we're asked to read the status register, like for
		 * example when a command does not complete for an
		 * extended time, but the ATA interface is stuck in a
		 * busy state at the *ETRAX* ATA interface level (as has
		 * happened repeatedly with at least one bad disk), then
		 * the best thing to do is to pretend that we read
		 * "busy" in the status register, so the IDE driver will
		 * time-out, abort the ongoing command and perform a
		 * reset sequence.  Note that the subsequent OUT_BYTE
		 * call will also timeout on busy, but as long as the
		 * write is still performed, everything will be fine.
		 */
		if ((reg & IO_MASK (R_ATA_CTRL_DATA, addr))
		    == IO_FIELD (R_ATA_CTRL_DATA, addr, IDE_STATUS_OFFSET))
			return BUSY_STAT;
		else
			/* For other rare cases we assume 0 is good enough.  */
			return 0;
	}

	*R_ATA_CTRL_DATA = reg | IO_STATE(R_ATA_CTRL_DATA, rw, read); /* read data */

	timeleft = IDE_REGISTER_TIMEOUT;
	/* wait for available */
	while(timeleft && !((status = *R_ATA_STATUS_DATA) &
			    IO_MASK(R_ATA_STATUS_DATA, dav)))
		timeleft--;

	if(!timeleft)
		return 0;

	LOWDB(printk("inb: 0x%x from reg 0x%x\n", status & 0xff, reg));

        return (unsigned short)status;
}

unsigned char
etrax100_ide_inb(unsigned long reg)
{
	return (unsigned char)etrax100_ide_inw(reg);
}

/* PIO timing (in R_ATA_CONFIG)
 *
 *                        _____________________________
 * ADDRESS :     ________/
 *
 *                            _______________
 * DIOR    :     ____________/               \__________
 *
 *                               _______________
 * DATA    :     XXXXXXXXXXXXXXXX_______________XXXXXXXX
 *
 *
 * DIOR is unbuffered while address and data is buffered.
 * This creates two problems:
 * 1. The DIOR pulse is to early (because it is unbuffered)
 * 2. The rise time of DIOR is long
 *
 * There are at least three different plausible solutions
 * 1. Use a pad capable of larger currents in Etrax
 * 2. Use an external buffer
 * 3. Make the strobe pulse longer
 *
 * Some of the strobe timings below are modified to compensate
 * for this. This implies a slight performance decrease.
 *
 * THIS SHOULD NEVER BE CHANGED!
 *
 * TODO: Is this true for the latest LX boards still ?
 */

#define ATA_DMA2_STROBE  4
#define ATA_DMA2_HOLD    0
#define ATA_DMA1_STROBE  4
#define ATA_DMA1_HOLD    1
#define ATA_DMA0_STROBE 12
#define ATA_DMA0_HOLD    9
#define ATA_PIO4_SETUP   1
#define ATA_PIO4_STROBE  5
#define ATA_PIO4_HOLD    0
#define ATA_PIO3_SETUP   1
#define ATA_PIO3_STROBE  5
#define ATA_PIO3_HOLD    1
#define ATA_PIO2_SETUP   1
#define ATA_PIO2_STROBE  6
#define ATA_PIO2_HOLD    2
#define ATA_PIO1_SETUP   2
#define ATA_PIO1_STROBE 11
#define ATA_PIO1_HOLD    4
#define ATA_PIO0_SETUP   4
#define ATA_PIO0_STROBE 19
#define ATA_PIO0_HOLD    4

static int e100_dma_check (ide_drive_t *drive);
static void e100_dma_start(ide_drive_t *drive);
static int e100_dma_end (ide_drive_t *drive);
static void e100_ide_input_data (ide_drive_t *drive, void *, unsigned int);
static void e100_ide_output_data (ide_drive_t *drive, void *, unsigned int);
static void e100_atapi_input_bytes(ide_drive_t *drive, void *, unsigned int);
static void e100_atapi_output_bytes(ide_drive_t *drive, void *, unsigned int);
static int e100_dma_off (ide_drive_t *drive);


/*
 * good_dma_drives() lists the model names (from "hdparm -i")
 * of drives which do not support mword2 DMA but which are
 * known to work fine with this interface under Linux.
 */

const char *good_dma_drives[] = {"Micropolis 2112A",
				 "CONNER CTMA 4000",
				 "CONNER CTT8000-A",
				 NULL};

static void tune_e100_ide(ide_drive_t *drive, byte pio)
{
	pio = 4;
	/* pio = ide_get_best_pio_mode(drive, pio, 4, NULL); */

	/* set pio mode! */

	switch(pio) {
		case 0:
			*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable,     1 ) |
					  IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, dma_hold,   ATA_DMA2_HOLD ) |
					  IO_FIELD( R_ATA_CONFIG, pio_setup,  ATA_PIO0_SETUP ) |
					  IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO0_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, pio_hold,   ATA_PIO0_HOLD ) );
			break;
		case 1:
			*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable,     1 ) |
					  IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, dma_hold,   ATA_DMA2_HOLD ) |
					  IO_FIELD( R_ATA_CONFIG, pio_setup,  ATA_PIO1_SETUP ) |
					  IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO1_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, pio_hold,   ATA_PIO1_HOLD ) );
			break;
		case 2:
			*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable,     1 ) |
					  IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, dma_hold,   ATA_DMA2_HOLD ) |
					  IO_FIELD( R_ATA_CONFIG, pio_setup,  ATA_PIO2_SETUP ) |
					  IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO2_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, pio_hold,   ATA_PIO2_HOLD ) );
			break;
		case 3:
			*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable,     1 ) |
					  IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, dma_hold,   ATA_DMA2_HOLD ) |
					  IO_FIELD( R_ATA_CONFIG, pio_setup,  ATA_PIO3_SETUP ) |
					  IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO3_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, pio_hold,   ATA_PIO3_HOLD ) );
			break;
		case 4:
			*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable,     1 ) |
					  IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, dma_hold,   ATA_DMA2_HOLD ) |
					  IO_FIELD( R_ATA_CONFIG, pio_setup,  ATA_PIO4_SETUP ) |
					  IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO4_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, pio_hold,   ATA_PIO4_HOLD ) );
			break;
	}
}

static int e100_dma_setup(ide_drive_t *drive)
{
	struct request *rq = drive->hwif->hwgroup->rq;

	if (rq_data_dir(rq)) {
		e100_read_command = 0;

		RESET_DMA(ATA_TX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
		WAIT_DMA(ATA_TX_DMA_NBR);
	} else {
		e100_read_command = 1;

		RESET_DMA(ATA_RX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
		WAIT_DMA(ATA_RX_DMA_NBR);
	}

	/* set up the Etrax DMA descriptors */
	if (e100_ide_build_dmatable(drive)) {
		ide_map_sg(drive, rq);
		return 1;
	}

	return 0;
}

static void e100_dma_exec_cmd(ide_drive_t *drive, u8 command)
{
	/* set the irq handler which will finish the request when DMA is done */
	ide_set_handler(drive, &etrax_dma_intr, WAIT_CMD, NULL);

	/* issue cmd to drive */
	etrax100_ide_outb(command, IDE_COMMAND_REG);
}

void __init
init_e100_ide (void)
{
	volatile unsigned int dummy;
	int h;

	printk("ide: ETRAX 100LX built-in ATA DMA controller\n");

	/* first fill in some stuff in the ide_hwifs fields */

	for(h = 0; h < MAX_HWIFS; h++) {
		ide_hwif_t *hwif = &ide_hwifs[h];
		hwif->mmio = 2;
		hwif->chipset = ide_etrax100;
		hwif->tuneproc = &tune_e100_ide;
                hwif->ata_input_data = &e100_ide_input_data;
                hwif->ata_output_data = &e100_ide_output_data;
                hwif->atapi_input_bytes = &e100_atapi_input_bytes;
                hwif->atapi_output_bytes = &e100_atapi_output_bytes;
                hwif->ide_dma_check = &e100_dma_check;
                hwif->ide_dma_end = &e100_dma_end;
		hwif->dma_setup = &e100_dma_setup;
		hwif->dma_exec_cmd = &e100_dma_exec_cmd;
		hwif->dma_start = &e100_dma_start;
		hwif->OUTB = &etrax100_ide_outb;
		hwif->OUTW = &etrax100_ide_outw;
		hwif->OUTBSYNC = &etrax100_ide_outbsync;
		hwif->INB = &etrax100_ide_inb;
		hwif->INW = &etrax100_ide_inw;
		hwif->ide_dma_off_quietly = &e100_dma_off;
	}

	/* actually reset and configure the etrax100 ide/ata interface */

	*R_ATA_CTRL_DATA = 0;
	*R_ATA_TRANSFER_CNT = 0;
	*R_ATA_CONFIG = 0;

	genconfig_shadow = (genconfig_shadow &
			    ~IO_MASK(R_GEN_CONFIG, dma2) &
			    ~IO_MASK(R_GEN_CONFIG, dma3) &
			    ~IO_MASK(R_GEN_CONFIG, ata)) |
		( IO_STATE( R_GEN_CONFIG, dma3, ata    ) |
		  IO_STATE( R_GEN_CONFIG, dma2, ata    ) |
		  IO_STATE( R_GEN_CONFIG, ata,  select ) );

	*R_GEN_CONFIG = genconfig_shadow;

        /* pull the chosen /reset-line low */

#ifdef CONFIG_ETRAX_IDE_G27_RESET
        REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, 0);
#endif
#ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET
        REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, 0);
#endif
#ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET
        REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, 0);
#endif
#ifdef CONFIG_ETRAX_IDE_PB7_RESET
	port_pb_dir_shadow = port_pb_dir_shadow |
		IO_STATE(R_PORT_PB_DIR, dir7, output);
	*R_PORT_PB_DIR = port_pb_dir_shadow;
	REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, 7, 1);
#endif

	/* wait some */

	udelay(25);

	/* de-assert bus-reset */

#ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET
	REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, 1);
#endif
#ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET
	REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, 1);
#endif
#ifdef CONFIG_ETRAX_IDE_G27_RESET
	REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, 1);
#endif

	/* make a dummy read to set the ata controller in a proper state */
	dummy = *R_ATA_STATUS_DATA;

	*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable,     1 ) |
			  IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
			  IO_FIELD( R_ATA_CONFIG, dma_hold,   ATA_DMA2_HOLD ) |
			  IO_FIELD( R_ATA_CONFIG, pio_setup,  ATA_PIO4_SETUP ) |
			  IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO4_STROBE ) |
			  IO_FIELD( R_ATA_CONFIG, pio_hold,   ATA_PIO4_HOLD ) );

	*R_ATA_CTRL_DATA = ( IO_STATE( R_ATA_CTRL_DATA, rw,   read) |
			     IO_FIELD( R_ATA_CTRL_DATA, addr, 1   ) );

	while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); /* wait for busy flag*/

	*R_IRQ_MASK0_SET = ( IO_STATE( R_IRQ_MASK0_SET, ata_irq0, set ) |
			     IO_STATE( R_IRQ_MASK0_SET, ata_irq1, set ) |
			     IO_STATE( R_IRQ_MASK0_SET, ata_irq2, set ) |
			     IO_STATE( R_IRQ_MASK0_SET, ata_irq3, set ) );

	printk("ide: waiting %d seconds for drives to regain consciousness\n",
	       CONFIG_ETRAX_IDE_DELAY);

	h = jiffies + (CONFIG_ETRAX_IDE_DELAY * HZ);
	while(time_before(jiffies, h)) /* nothing */ ;

	/* reset the dma channels we will use */

	RESET_DMA(ATA_TX_DMA_NBR);
	RESET_DMA(ATA_RX_DMA_NBR);
	WAIT_DMA(ATA_TX_DMA_NBR);
	WAIT_DMA(ATA_RX_DMA_NBR);

}

static int e100_dma_off (ide_drive_t *drive)
{
	return 0;
}

static etrax_dma_descr mydescr;

/*
 * The following routines are mainly used by the ATAPI drivers.
 *
 * These routines will round up any request for an odd number of bytes,
 * so if an odd bytecount is specified, be sure that there's at least one
 * extra byte allocated for the buffer.
 */
static void
e100_atapi_input_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
{
	unsigned long data_reg = IDE_DATA_REG;

	D(printk("atapi_input_bytes, dreg 0x%x, buffer 0x%x, count %d\n",
		 data_reg, buffer, bytecount));

	if(bytecount & 1) {
		printk("warning, odd bytecount in cdrom_in_bytes = %d.\n", bytecount);
		bytecount++; /* to round off */
	}

	/* make sure the DMA channel is available */
	RESET_DMA(ATA_RX_DMA_NBR);
	WAIT_DMA(ATA_RX_DMA_NBR);

	/* setup DMA descriptor */

	mydescr.sw_len = bytecount;
	mydescr.ctrl   = d_eol;
	mydescr.buf    = virt_to_phys(buffer);

	/* start the dma channel */

	*R_DMA_CH3_FIRST = virt_to_phys(&mydescr);
	*R_DMA_CH3_CMD   = IO_STATE(R_DMA_CH3_CMD, cmd, start);

	/* initiate a multi word dma read using PIO handshaking */

	*R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, bytecount >> 1);

	*R_ATA_CTRL_DATA = data_reg |
		IO_STATE(R_ATA_CTRL_DATA, rw,       read) |
		IO_STATE(R_ATA_CTRL_DATA, src_dst,  dma) |
		IO_STATE(R_ATA_CTRL_DATA, handsh,   pio) |
		IO_STATE(R_ATA_CTRL_DATA, multi,    on) |
		IO_STATE(R_ATA_CTRL_DATA, dma_size, word);

	/* wait for completion */

	LED_DISK_READ(1);
	WAIT_DMA(ATA_RX_DMA_NBR);
	LED_DISK_READ(0);

#if 0
        /* old polled transfer code
	 * this should be moved into a new function that can do polled
	 * transfers if DMA is not available
	 */

        /* initiate a multi word read */

        *R_ATA_TRANSFER_CNT = wcount << 1;

        *R_ATA_CTRL_DATA = data_reg |
                IO_STATE(R_ATA_CTRL_DATA, rw,       read) |
                IO_STATE(R_ATA_CTRL_DATA, src_dst,  register) |
                IO_STATE(R_ATA_CTRL_DATA, handsh,   pio) |
                IO_STATE(R_ATA_CTRL_DATA, multi,    on) |
                IO_STATE(R_ATA_CTRL_DATA, dma_size, word);

        /* svinto has a latency until the busy bit actually is set */

        nop(); nop();
        nop(); nop();
        nop(); nop();
        nop(); nop();
        nop(); nop();

        /* unit should be busy during multi transfer */
        while((status = *R_ATA_STATUS_DATA) & IO_MASK(R_ATA_STATUS_DATA, busy)) {
                while(!(status & IO_MASK(R_ATA_STATUS_DATA, dav)))
                        status = *R_ATA_STATUS_DATA;
                *ptr++ = (unsigned short)(status & 0xffff);
        }
#endif
}

static void
e100_atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
{
	unsigned long data_reg = IDE_DATA_REG;

	D(printk("atapi_output_bytes, dreg 0x%x, buffer 0x%x, count %d\n",
		 data_reg, buffer, bytecount));

	if(bytecount & 1) {
		printk("odd bytecount %d in atapi_out_bytes!\n", bytecount);
		bytecount++;
	}

	/* make sure the DMA channel is available */
	RESET_DMA(ATA_TX_DMA_NBR);
	WAIT_DMA(ATA_TX_DMA_NBR);

	/* setup DMA descriptor */

	mydescr.sw_len = bytecount;
	mydescr.ctrl   = d_eol;
	mydescr.buf    = virt_to_phys(buffer);

	/* start the dma channel */

	*R_DMA_CH2_FIRST = virt_to_phys(&mydescr);
	*R_DMA_CH2_CMD   = IO_STATE(R_DMA_CH2_CMD, cmd, start);

	/* initiate a multi word dma write using PIO handshaking */

	*R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, bytecount >> 1);

	*R_ATA_CTRL_DATA = data_reg |
		IO_STATE(R_ATA_CTRL_DATA, rw,       write) |
		IO_STATE(R_ATA_CTRL_DATA, src_dst,  dma) |
		IO_STATE(R_ATA_CTRL_DATA, handsh,   pio) |
		IO_STATE(R_ATA_CTRL_DATA, multi,    on) |
		IO_STATE(R_ATA_CTRL_DATA, dma_size, word);

	/* wait for completion */

	LED_DISK_WRITE(1);
	WAIT_DMA(ATA_TX_DMA_NBR);
	LED_DISK_WRITE(0);

#if 0
        /* old polled write code - see comment in input_bytes */

	/* wait for busy flag */
        while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy));

        /* initiate a multi word write */

        *R_ATA_TRANSFER_CNT = bytecount >> 1;

        ctrl = data_reg |
                IO_STATE(R_ATA_CTRL_DATA, rw,       write) |
                IO_STATE(R_ATA_CTRL_DATA, src_dst,  register) |
                IO_STATE(R_ATA_CTRL_DATA, handsh,   pio) |
                IO_STATE(R_ATA_CTRL_DATA, multi,    on) |
                IO_STATE(R_ATA_CTRL_DATA, dma_size, word);

        LED_DISK_WRITE(1);

        /* Etrax will set busy = 1 until the multi pio transfer has finished
         * and tr_rdy = 1 after each successful word transfer.
         * When the last byte has been transferred Etrax will first set tr_tdy = 1
         * and then busy = 0 (not in the same cycle). If we read busy before it
         * has been set to 0 we will think that we should transfer more bytes
         * and then tr_rdy would be 0 forever. This is solved by checking busy
         * in the inner loop.
         */

        do {
                *R_ATA_CTRL_DATA = ctrl | *ptr++;
                while(!(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, tr_rdy)) &&
                      (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)));
        } while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy));

        LED_DISK_WRITE(0);
#endif

}

/*
 * This is used for most PIO data transfers *from* the IDE interface
 */
static void
e100_ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
{
	e100_atapi_input_bytes(drive, buffer, wcount << 2);
}

/*
 * This is used for most PIO data transfers *to* the IDE interface
 */
static void
e100_ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
{
	e100_atapi_output_bytes(drive, buffer, wcount << 2);
}

/* we only have one DMA channel on the chip for ATA, so we can keep these statically */
static etrax_dma_descr ata_descrs[MAX_DMA_DESCRS];
static unsigned int ata_tot_size;

/*
 * e100_ide_build_dmatable() prepares a dma request.
 * Returns 0 if all went okay, returns 1 otherwise.
 */
static int e100_ide_build_dmatable (ide_drive_t *drive)
{
	ide_hwif_t *hwif = HWIF(drive);
	struct scatterlist* sg;
	struct request *rq  = HWGROUP(drive)->rq;
	unsigned long size, addr;
	unsigned int count = 0;
	int i = 0;

	sg = hwif->sg_table;

	ata_tot_size = 0;

	ide_map_sg(drive, rq);

	i = hwif->sg_nents;

	while(i) {
		/*
		 * Determine addr and size of next buffer area.  We assume that
		 * individual virtual buffers are always composed linearly in
		 * physical memory.  For example, we assume that any 8kB buffer
		 * is always composed of two adjacent physical 4kB pages rather
		 * than two possibly non-adjacent physical 4kB pages.
		 */
		/* group sequential buffers into one large buffer */
		addr = page_to_phys(sg->page) + sg->offset;
		size = sg_dma_len(sg);
		while (sg++, --i) {
			if ((addr + size) != page_to_phys(sg->page) + sg->offset)
				break;
			size += sg_dma_len(sg);
		}

		/* did we run out of descriptors? */

		if(count >= MAX_DMA_DESCRS) {
			printk("%s: too few DMA descriptors\n", drive->name);
			return 1;
		}

		/* however, this case is more difficult - R_ATA_TRANSFER_CNT cannot be more
		   than 65536 words per transfer, so in that case we need to either
		   1) use a DMA interrupt to re-trigger R_ATA_TRANSFER_CNT and continue with
		      the descriptors, or
		   2) simply do the request here, and get dma_intr to only ide_end_request on
		      those blocks that were actually set-up for transfer.
		*/

		if(ata_tot_size + size > 131072) {
			printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size, (int)size);
			return 1;
		}

		/* If size > 65536 it has to be splitted into new descriptors. Since we don't handle
                   size > 131072 only one split is necessary */

		if(size > 65536) {
 		        /* ok we want to do IO at addr, size bytes. set up a new descriptor entry */
                        ata_descrs[count].sw_len = 0;  /* 0 means 65536, this is a 16-bit field */
                        ata_descrs[count].ctrl = 0;
                        ata_descrs[count].buf = addr;
                        ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]);
                        count++;
                        ata_tot_size += 65536;
                        /* size and addr should refere to not handled data */
                        size -= 65536;
                        addr += 65536;
                }
		/* ok we want to do IO at addr, size bytes. set up a new descriptor entry */
                if(size == 65536) {
			ata_descrs[count].sw_len = 0;  /* 0 means 65536, this is a 16-bit field */
                } else {
			ata_descrs[count].sw_len = size;
                }
		ata_descrs[count].ctrl = 0;
		ata_descrs[count].buf = addr;
		ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]);
		count++;
		ata_tot_size += size;
	}

	if (count) {
		/* set the end-of-list flag on the last descriptor */
		ata_descrs[count - 1].ctrl |= d_eol;
		/* return and say all is ok */
		return 0;
	}

	printk("%s: empty DMA table?\n", drive->name);
	return 1;	/* let the PIO routines handle this weirdness */
}

static int config_drive_for_dma (ide_drive_t *drive)
{
        const char **list;
        struct hd_driveid *id = drive->id;

        if (id && (id->capability & 1)) {
                /* Enable DMA on any drive that supports mword2 DMA */
                if ((id->field_valid & 2) && (id->dma_mword & 0x404) == 0x404) {
                        drive->using_dma = 1;
                        return 0;               /* DMA enabled */
                }

                /* Consult the list of known "good" drives */
                list = good_dma_drives;
                while (*list) {
                        if (!strcmp(*list++,id->model)) {
                                drive->using_dma = 1;
                                return 0;       /* DMA enabled */
                        }
                }
        }
        return 1;       /* DMA not enabled */
}

/*
 * etrax_dma_intr() is the handler for disk read/write DMA interrupts
 */
static ide_startstop_t etrax_dma_intr (ide_drive_t *drive)
{
	LED_DISK_READ(0);
	LED_DISK_WRITE(0);

	return ide_dma_intr(drive);
}

/*
 * Functions below initiates/aborts DMA read/write operations on a drive.
 *
 * The caller is assumed to have selected the drive and programmed the drive's
 * sector address using CHS or LBA.  All that remains is to prepare for DMA
 * and then issue the actual read/write DMA/PIO command to the drive.
 *
 * Returns 0 if all went well.
 * Returns 1 if DMA read/write could not be started, in which case
 * the caller should revert to PIO for the current request.
 */

static int e100_dma_check(ide_drive_t *drive)
{
	return config_drive_for_dma (drive);
}

static int e100_dma_end(ide_drive_t *drive)
{
	/* TODO: check if something went wrong with the DMA */
	return 0;
}

static void e100_dma_start(ide_drive_t *drive)
{
	if (e100_read_command) {
		/* begin DMA */

		/* need to do this before RX DMA due to a chip bug
		 * it is enough to just flush the part of the cache that
		 * corresponds to the buffers we start, but since HD transfers
		 * usually are more than 8 kB, it is easier to optimize for the
		 * normal case and just flush the entire cache. its the only
		 * way to be sure! (OB movie quote)
		 */
		flush_etrax_cache();
		*R_DMA_CH3_FIRST = virt_to_phys(ata_descrs);
		*R_DMA_CH3_CMD   = IO_STATE(R_DMA_CH3_CMD, cmd, start);

		/* initiate a multi word dma read using DMA handshaking */

		*R_ATA_TRANSFER_CNT =
			IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1);

		*R_ATA_CTRL_DATA =
			IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) |
			IO_STATE(R_ATA_CTRL_DATA, rw,       read) |
			IO_STATE(R_ATA_CTRL_DATA, src_dst,  dma)  |
			IO_STATE(R_ATA_CTRL_DATA, handsh,   dma)  |
			IO_STATE(R_ATA_CTRL_DATA, multi,    on)   |
			IO_STATE(R_ATA_CTRL_DATA, dma_size, word);

		LED_DISK_READ(1);

		D(printk("dma read of %d bytes.\n", ata_tot_size));

	} else {
		/* writing */
		/* begin DMA */

		*R_DMA_CH2_FIRST = virt_to_phys(ata_descrs);
		*R_DMA_CH2_CMD   = IO_STATE(R_DMA_CH2_CMD, cmd, start);

		/* initiate a multi word dma write using DMA handshaking */

		*R_ATA_TRANSFER_CNT =
			IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1);

		*R_ATA_CTRL_DATA =
			IO_FIELD(R_ATA_CTRL_DATA, data,     IDE_DATA_REG) |
			IO_STATE(R_ATA_CTRL_DATA, rw,       write) |
			IO_STATE(R_ATA_CTRL_DATA, src_dst,  dma) |
			IO_STATE(R_ATA_CTRL_DATA, handsh,   dma) |
			IO_STATE(R_ATA_CTRL_DATA, multi,    on) |
			IO_STATE(R_ATA_CTRL_DATA, dma_size, word);

		LED_DISK_WRITE(1);

		D(printk("dma write of %d bytes.\n", ata_tot_size));
	}
}