amd-pstate.c 43.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * amd-pstate.c - AMD Processor P-state Frequency Driver
 *
 * Copyright (C) 2021 Advanced Micro Devices, Inc. All Rights Reserved.
 *
 * Author: Huang Rui <ray.huang@amd.com>
 *
 * AMD P-State introduces a new CPU performance scaling design for AMD
 * processors using the ACPI Collaborative Performance and Power Control (CPPC)
 * feature which works with the AMD SMU firmware providing a finer grained
 * frequency control range. It is to replace the legacy ACPI P-States control,
 * allows a flexible, low-latency interface for the Linux kernel to directly
 * communicate the performance hints to hardware.
 *
 * AMD P-State is supported on recent AMD Zen base CPU series include some of
 * Zen2 and Zen3 processors. _CPC needs to be present in the ACPI tables of AMD
 * P-State supported system. And there are two types of hardware implementations
 * for AMD P-State: 1) Full MSR Solution and 2) Shared Memory Solution.
 * X86_FEATURE_CPPC CPU feature flag is used to distinguish the different types.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/sched.h>
#include <linux/cpufreq.h>
#include <linux/compiler.h>
#include <linux/dmi.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/uaccess.h>
#include <linux/static_call.h>
#include <linux/amd-pstate.h>
#include <linux/topology.h>

#include <acpi/processor.h>
#include <acpi/cppc_acpi.h>

#include <asm/msr.h>
#include <asm/processor.h>
#include <asm/cpufeature.h>
#include <asm/cpu_device_id.h>
#include "amd-pstate-trace.h"

#define AMD_PSTATE_TRANSITION_LATENCY	20000
#define AMD_PSTATE_TRANSITION_DELAY	1000
#define CPPC_HIGHEST_PERF_PERFORMANCE	196
#define CPPC_HIGHEST_PERF_DEFAULT	166

/*
 * TODO: We need more time to fine tune processors with shared memory solution
 * with community together.
 *
 * There are some performance drops on the CPU benchmarks which reports from
 * Suse. We are co-working with them to fine tune the shared memory solution. So
 * we disable it by default to go acpi-cpufreq on these processors and add a
 * module parameter to be able to enable it manually for debugging.
 */
static struct cpufreq_driver *current_pstate_driver;
static struct cpufreq_driver amd_pstate_driver;
static struct cpufreq_driver amd_pstate_epp_driver;
static int cppc_state = AMD_PSTATE_UNDEFINED;
static bool cppc_enabled;
static bool amd_pstate_prefcore = true;

/*
 * AMD Energy Preference Performance (EPP)
 * The EPP is used in the CCLK DPM controller to drive
 * the frequency that a core is going to operate during
 * short periods of activity. EPP values will be utilized for
 * different OS profiles (balanced, performance, power savings)
 * display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
enum energy_perf_value_index {
	EPP_INDEX_DEFAULT = 0,
	EPP_INDEX_PERFORMANCE,
	EPP_INDEX_BALANCE_PERFORMANCE,
	EPP_INDEX_BALANCE_POWERSAVE,
	EPP_INDEX_POWERSAVE,
};

static const char * const energy_perf_strings[] = {
	[EPP_INDEX_DEFAULT] = "default",
	[EPP_INDEX_PERFORMANCE] = "performance",
	[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
	[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
	[EPP_INDEX_POWERSAVE] = "power",
	NULL
};

static unsigned int epp_values[] = {
	[EPP_INDEX_DEFAULT] = 0,
	[EPP_INDEX_PERFORMANCE] = AMD_CPPC_EPP_PERFORMANCE,
	[EPP_INDEX_BALANCE_PERFORMANCE] = AMD_CPPC_EPP_BALANCE_PERFORMANCE,
	[EPP_INDEX_BALANCE_POWERSAVE] = AMD_CPPC_EPP_BALANCE_POWERSAVE,
	[EPP_INDEX_POWERSAVE] = AMD_CPPC_EPP_POWERSAVE,
 };

typedef int (*cppc_mode_transition_fn)(int);

static inline int get_mode_idx_from_str(const char *str, size_t size)
{
	int i;

	for (i=0; i < AMD_PSTATE_MAX; i++) {
		if (!strncmp(str, amd_pstate_mode_string[i], size))
			return i;
	}
	return -EINVAL;
}

static DEFINE_MUTEX(amd_pstate_limits_lock);
static DEFINE_MUTEX(amd_pstate_driver_lock);

static s16 amd_pstate_get_epp(struct amd_cpudata *cpudata, u64 cppc_req_cached)
{
	u64 epp;
	int ret;

	if (boot_cpu_has(X86_FEATURE_CPPC)) {
		if (!cppc_req_cached) {
			epp = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ,
					&cppc_req_cached);
			if (epp)
				return epp;
		}
		epp = (cppc_req_cached >> 24) & 0xFF;
	} else {
		ret = cppc_get_epp_perf(cpudata->cpu, &epp);
		if (ret < 0) {
			pr_debug("Could not retrieve energy perf value (%d)\n", ret);
			return -EIO;
		}
	}

	return (s16)(epp & 0xff);
}

static int amd_pstate_get_energy_pref_index(struct amd_cpudata *cpudata)
{
	s16 epp;
	int index = -EINVAL;

	epp = amd_pstate_get_epp(cpudata, 0);
	if (epp < 0)
		return epp;

	switch (epp) {
	case AMD_CPPC_EPP_PERFORMANCE:
		index = EPP_INDEX_PERFORMANCE;
		break;
	case AMD_CPPC_EPP_BALANCE_PERFORMANCE:
		index = EPP_INDEX_BALANCE_PERFORMANCE;
		break;
	case AMD_CPPC_EPP_BALANCE_POWERSAVE:
		index = EPP_INDEX_BALANCE_POWERSAVE;
		break;
	case AMD_CPPC_EPP_POWERSAVE:
		index = EPP_INDEX_POWERSAVE;
		break;
	default:
		break;
	}

	return index;
}

static void pstate_update_perf(struct amd_cpudata *cpudata, u32 min_perf,
			       u32 des_perf, u32 max_perf, bool fast_switch)
{
	if (fast_switch)
		wrmsrl(MSR_AMD_CPPC_REQ, READ_ONCE(cpudata->cppc_req_cached));
	else
		wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ,
			      READ_ONCE(cpudata->cppc_req_cached));
}

DEFINE_STATIC_CALL(amd_pstate_update_perf, pstate_update_perf);

static inline void amd_pstate_update_perf(struct amd_cpudata *cpudata,
					  u32 min_perf, u32 des_perf,
					  u32 max_perf, bool fast_switch)
{
	static_call(amd_pstate_update_perf)(cpudata, min_perf, des_perf,
					    max_perf, fast_switch);
}

static int amd_pstate_set_epp(struct amd_cpudata *cpudata, u32 epp)
{
	int ret;
	struct cppc_perf_ctrls perf_ctrls;

	if (boot_cpu_has(X86_FEATURE_CPPC)) {
		u64 value = READ_ONCE(cpudata->cppc_req_cached);

		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
		WRITE_ONCE(cpudata->cppc_req_cached, value);

		ret = wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
		if (!ret)
			cpudata->epp_cached = epp;
	} else {
		amd_pstate_update_perf(cpudata, cpudata->min_limit_perf, 0U,
					     cpudata->max_limit_perf, false);

		perf_ctrls.energy_perf = epp;
		ret = cppc_set_epp_perf(cpudata->cpu, &perf_ctrls, 1);
		if (ret) {
			pr_debug("failed to set energy perf value (%d)\n", ret);
			return ret;
		}
		cpudata->epp_cached = epp;
	}

	return ret;
}

static int amd_pstate_set_energy_pref_index(struct amd_cpudata *cpudata,
		int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index) {
		pr_debug("EPP pref_index is invalid\n");
		return -EINVAL;
	}

	if (epp == -EINVAL)
		epp = epp_values[pref_index];

	if (epp > 0 && cpudata->policy == CPUFREQ_POLICY_PERFORMANCE) {
		pr_debug("EPP cannot be set under performance policy\n");
		return -EBUSY;
	}

	ret = amd_pstate_set_epp(cpudata, epp);

	return ret;
}

static inline int pstate_enable(bool enable)
{
	int ret, cpu;
	unsigned long logical_proc_id_mask = 0;

	if (enable == cppc_enabled)
		return 0;

	for_each_present_cpu(cpu) {
		unsigned long logical_id = topology_logical_die_id(cpu);

		if (test_bit(logical_id, &logical_proc_id_mask))
			continue;

		set_bit(logical_id, &logical_proc_id_mask);

		ret = wrmsrl_safe_on_cpu(cpu, MSR_AMD_CPPC_ENABLE,
				enable);
		if (ret)
			return ret;
	}

	cppc_enabled = enable;
	return 0;
}

static int cppc_enable(bool enable)
{
	int cpu, ret = 0;
	struct cppc_perf_ctrls perf_ctrls;

	if (enable == cppc_enabled)
		return 0;

	for_each_present_cpu(cpu) {
		ret = cppc_set_enable(cpu, enable);
		if (ret)
			return ret;

		/* Enable autonomous mode for EPP */
		if (cppc_state == AMD_PSTATE_ACTIVE) {
			/* Set desired perf as zero to allow EPP firmware control */
			perf_ctrls.desired_perf = 0;
			ret = cppc_set_perf(cpu, &perf_ctrls);
			if (ret)
				return ret;
		}
	}

	cppc_enabled = enable;
	return ret;
}

DEFINE_STATIC_CALL(amd_pstate_enable, pstate_enable);

static inline int amd_pstate_enable(bool enable)
{
	return static_call(amd_pstate_enable)(enable);
}

static u32 amd_pstate_highest_perf_set(struct amd_cpudata *cpudata)
{
	struct cpuinfo_x86 *c = &cpu_data(0);

	/*
	 * For AMD CPUs with Family ID 19H and Model ID range 0x70 to 0x7f,
	 * the highest performance level is set to 196.
	 * https://bugzilla.kernel.org/show_bug.cgi?id=218759
	 */
	if (c->x86 == 0x19 && (c->x86_model >= 0x70 && c->x86_model <= 0x7f))
		return CPPC_HIGHEST_PERF_PERFORMANCE;

	return CPPC_HIGHEST_PERF_DEFAULT;
}

static int pstate_init_perf(struct amd_cpudata *cpudata)
{
	u64 cap1;
	u32 highest_perf;

	int ret = rdmsrl_safe_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1,
				     &cap1);
	if (ret)
		return ret;

	/* For platforms that do not support the preferred core feature, the
	 * highest_pef may be configured with 166 or 255, to avoid max frequency
	 * calculated wrongly. we take the AMD_CPPC_HIGHEST_PERF(cap1) value as
	 * the default max perf.
	 */
	if (cpudata->hw_prefcore)
		highest_perf = amd_pstate_highest_perf_set(cpudata);
	else
		highest_perf = AMD_CPPC_HIGHEST_PERF(cap1);

	WRITE_ONCE(cpudata->highest_perf, highest_perf);
	WRITE_ONCE(cpudata->max_limit_perf, highest_perf);
	WRITE_ONCE(cpudata->nominal_perf, AMD_CPPC_NOMINAL_PERF(cap1));
	WRITE_ONCE(cpudata->lowest_nonlinear_perf, AMD_CPPC_LOWNONLIN_PERF(cap1));
	WRITE_ONCE(cpudata->lowest_perf, AMD_CPPC_LOWEST_PERF(cap1));
	WRITE_ONCE(cpudata->min_limit_perf, AMD_CPPC_LOWEST_PERF(cap1));
	return 0;
}

static int cppc_init_perf(struct amd_cpudata *cpudata)
{
	struct cppc_perf_caps cppc_perf;
	u32 highest_perf;

	int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
	if (ret)
		return ret;

	if (cpudata->hw_prefcore)
		highest_perf = amd_pstate_highest_perf_set(cpudata);
	else
		highest_perf = cppc_perf.highest_perf;

	WRITE_ONCE(cpudata->highest_perf, highest_perf);
	WRITE_ONCE(cpudata->max_limit_perf, highest_perf);
	WRITE_ONCE(cpudata->nominal_perf, cppc_perf.nominal_perf);
	WRITE_ONCE(cpudata->lowest_nonlinear_perf,
		   cppc_perf.lowest_nonlinear_perf);
	WRITE_ONCE(cpudata->lowest_perf, cppc_perf.lowest_perf);
	WRITE_ONCE(cpudata->min_limit_perf, cppc_perf.lowest_perf);

	if (cppc_state == AMD_PSTATE_ACTIVE)
		return 0;

	ret = cppc_get_auto_sel_caps(cpudata->cpu, &cppc_perf);
	if (ret) {
		pr_warn("failed to get auto_sel, ret: %d\n", ret);
		return 0;
	}

	ret = cppc_set_auto_sel(cpudata->cpu,
			(cppc_state == AMD_PSTATE_PASSIVE) ? 0 : 1);

	if (ret)
		pr_warn("failed to set auto_sel, ret: %d\n", ret);

	return ret;
}

DEFINE_STATIC_CALL(amd_pstate_init_perf, pstate_init_perf);

static inline int amd_pstate_init_perf(struct amd_cpudata *cpudata)
{
	return static_call(amd_pstate_init_perf)(cpudata);
}

static void cppc_update_perf(struct amd_cpudata *cpudata,
			     u32 min_perf, u32 des_perf,
			     u32 max_perf, bool fast_switch)
{
	struct cppc_perf_ctrls perf_ctrls;

	perf_ctrls.max_perf = max_perf;
	perf_ctrls.min_perf = min_perf;
	perf_ctrls.desired_perf = des_perf;

	cppc_set_perf(cpudata->cpu, &perf_ctrls);
}

static inline bool amd_pstate_sample(struct amd_cpudata *cpudata)
{
	u64 aperf, mperf, tsc;
	unsigned long flags;

	local_irq_save(flags);
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
	tsc = rdtsc();

	if (cpudata->prev.mperf == mperf || cpudata->prev.tsc == tsc) {
		local_irq_restore(flags);
		return false;
	}

	local_irq_restore(flags);

	cpudata->cur.aperf = aperf;
	cpudata->cur.mperf = mperf;
	cpudata->cur.tsc =  tsc;
	cpudata->cur.aperf -= cpudata->prev.aperf;
	cpudata->cur.mperf -= cpudata->prev.mperf;
	cpudata->cur.tsc -= cpudata->prev.tsc;

	cpudata->prev.aperf = aperf;
	cpudata->prev.mperf = mperf;
	cpudata->prev.tsc = tsc;

	cpudata->freq = div64_u64((cpudata->cur.aperf * cpu_khz), cpudata->cur.mperf);

	return true;
}

static void amd_pstate_update(struct amd_cpudata *cpudata, u32 min_perf,
			      u32 des_perf, u32 max_perf, bool fast_switch, int gov_flags)
{
	u64 prev = READ_ONCE(cpudata->cppc_req_cached);
	u64 value = prev;

	min_perf = clamp_t(unsigned long, min_perf, cpudata->min_limit_perf,
			cpudata->max_limit_perf);
	max_perf = clamp_t(unsigned long, max_perf, cpudata->min_limit_perf,
			cpudata->max_limit_perf);
	des_perf = clamp_t(unsigned long, des_perf, min_perf, max_perf);

	if ((cppc_state == AMD_PSTATE_GUIDED) && (gov_flags & CPUFREQ_GOV_DYNAMIC_SWITCHING)) {
		min_perf = des_perf;
		des_perf = 0;
	}

	value &= ~AMD_CPPC_MIN_PERF(~0L);
	value |= AMD_CPPC_MIN_PERF(min_perf);

	value &= ~AMD_CPPC_DES_PERF(~0L);
	value |= AMD_CPPC_DES_PERF(des_perf);

	value &= ~AMD_CPPC_MAX_PERF(~0L);
	value |= AMD_CPPC_MAX_PERF(max_perf);

	if (trace_amd_pstate_perf_enabled() && amd_pstate_sample(cpudata)) {
		trace_amd_pstate_perf(min_perf, des_perf, max_perf, cpudata->freq,
			cpudata->cur.mperf, cpudata->cur.aperf, cpudata->cur.tsc,
				cpudata->cpu, (value != prev), fast_switch);
	}

	if (value == prev)
		return;

	WRITE_ONCE(cpudata->cppc_req_cached, value);

	amd_pstate_update_perf(cpudata, min_perf, des_perf,
			       max_perf, fast_switch);
}

static int amd_pstate_verify(struct cpufreq_policy_data *policy)
{
	cpufreq_verify_within_cpu_limits(policy);

	return 0;
}

static int amd_pstate_update_min_max_limit(struct cpufreq_policy *policy)
{
	u32 max_limit_perf, min_limit_perf;
	struct amd_cpudata *cpudata = policy->driver_data;

	max_limit_perf = div_u64(policy->max * cpudata->highest_perf, cpudata->max_freq);
	min_limit_perf = div_u64(policy->min * cpudata->highest_perf, cpudata->max_freq);

	WRITE_ONCE(cpudata->max_limit_perf, max_limit_perf);
	WRITE_ONCE(cpudata->min_limit_perf, min_limit_perf);
	WRITE_ONCE(cpudata->max_limit_freq, policy->max);
	WRITE_ONCE(cpudata->min_limit_freq, policy->min);

	return 0;
}

static int amd_pstate_update_freq(struct cpufreq_policy *policy,
				  unsigned int target_freq, bool fast_switch)
{
	struct cpufreq_freqs freqs;
	struct amd_cpudata *cpudata = policy->driver_data;
	unsigned long max_perf, min_perf, des_perf, cap_perf;

	if (!cpudata->max_freq)
		return -ENODEV;

	if (policy->min != cpudata->min_limit_freq || policy->max != cpudata->max_limit_freq)
		amd_pstate_update_min_max_limit(policy);

	cap_perf = READ_ONCE(cpudata->highest_perf);
	min_perf = READ_ONCE(cpudata->lowest_perf);
	max_perf = cap_perf;

	freqs.old = policy->cur;
	freqs.new = target_freq;

	des_perf = DIV_ROUND_CLOSEST(target_freq * cap_perf,
				     cpudata->max_freq);

	WARN_ON(fast_switch && !policy->fast_switch_enabled);
	/*
	 * If fast_switch is desired, then there aren't any registered
	 * transition notifiers. See comment for
	 * cpufreq_enable_fast_switch().
	 */
	if (!fast_switch)
		cpufreq_freq_transition_begin(policy, &freqs);

	amd_pstate_update(cpudata, min_perf, des_perf,
			max_perf, fast_switch, policy->governor->flags);

	if (!fast_switch)
		cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static int amd_pstate_target(struct cpufreq_policy *policy,
			     unsigned int target_freq,
			     unsigned int relation)
{
	return amd_pstate_update_freq(policy, target_freq, false);
}

static unsigned int amd_pstate_fast_switch(struct cpufreq_policy *policy,
				  unsigned int target_freq)
{
	if (!amd_pstate_update_freq(policy, target_freq, true))
		return target_freq;
	return policy->cur;
}

static void amd_pstate_adjust_perf(unsigned int cpu,
				   unsigned long _min_perf,
				   unsigned long target_perf,
				   unsigned long capacity)
{
	unsigned long max_perf, min_perf, des_perf,
		      cap_perf, lowest_nonlinear_perf, max_freq;
	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
	struct amd_cpudata *cpudata = policy->driver_data;
	unsigned int target_freq;

	if (policy->min != cpudata->min_limit_freq || policy->max != cpudata->max_limit_freq)
		amd_pstate_update_min_max_limit(policy);


	cap_perf = READ_ONCE(cpudata->highest_perf);
	lowest_nonlinear_perf = READ_ONCE(cpudata->lowest_nonlinear_perf);
	max_freq = READ_ONCE(cpudata->max_freq);

	des_perf = cap_perf;
	if (target_perf < capacity)
		des_perf = DIV_ROUND_UP(cap_perf * target_perf, capacity);

	min_perf = READ_ONCE(cpudata->lowest_perf);
	if (_min_perf < capacity)
		min_perf = DIV_ROUND_UP(cap_perf * _min_perf, capacity);

	if (min_perf < lowest_nonlinear_perf)
		min_perf = lowest_nonlinear_perf;

	max_perf = cap_perf;
	if (max_perf < min_perf)
		max_perf = min_perf;

	des_perf = clamp_t(unsigned long, des_perf, min_perf, max_perf);
	target_freq = div_u64(des_perf * max_freq, max_perf);
	policy->cur = target_freq;

	amd_pstate_update(cpudata, min_perf, des_perf, max_perf, true,
			policy->governor->flags);
	cpufreq_cpu_put(policy);
}

static int amd_get_min_freq(struct amd_cpudata *cpudata)
{
	struct cppc_perf_caps cppc_perf;

	int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
	if (ret)
		return ret;

	/* Switch to khz */
	return cppc_perf.lowest_freq * 1000;
}

static int amd_get_max_freq(struct amd_cpudata *cpudata)
{
	struct cppc_perf_caps cppc_perf;
	u32 max_perf, max_freq, nominal_freq, nominal_perf;
	u64 boost_ratio;

	int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
	if (ret)
		return ret;

	nominal_freq = cppc_perf.nominal_freq;
	nominal_perf = READ_ONCE(cpudata->nominal_perf);
	max_perf = READ_ONCE(cpudata->highest_perf);

	boost_ratio = div_u64(max_perf << SCHED_CAPACITY_SHIFT,
			      nominal_perf);

	max_freq = nominal_freq * boost_ratio >> SCHED_CAPACITY_SHIFT;

	/* Switch to khz */
	return max_freq * 1000;
}

static int amd_get_nominal_freq(struct amd_cpudata *cpudata)
{
	struct cppc_perf_caps cppc_perf;

	int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
	if (ret)
		return ret;

	/* Switch to khz */
	return cppc_perf.nominal_freq * 1000;
}

static int amd_get_lowest_nonlinear_freq(struct amd_cpudata *cpudata)
{
	struct cppc_perf_caps cppc_perf;
	u32 lowest_nonlinear_freq, lowest_nonlinear_perf,
	    nominal_freq, nominal_perf;
	u64 lowest_nonlinear_ratio;

	int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
	if (ret)
		return ret;

	nominal_freq = cppc_perf.nominal_freq;
	nominal_perf = READ_ONCE(cpudata->nominal_perf);

	lowest_nonlinear_perf = cppc_perf.lowest_nonlinear_perf;

	lowest_nonlinear_ratio = div_u64(lowest_nonlinear_perf << SCHED_CAPACITY_SHIFT,
					 nominal_perf);

	lowest_nonlinear_freq = nominal_freq * lowest_nonlinear_ratio >> SCHED_CAPACITY_SHIFT;

	/* Switch to khz */
	return lowest_nonlinear_freq * 1000;
}

static int amd_pstate_set_boost(struct cpufreq_policy *policy, int state)
{
	struct amd_cpudata *cpudata = policy->driver_data;
	int ret;

	if (!cpudata->boost_supported) {
		pr_err("Boost mode is not supported by this processor or SBIOS\n");
		return -EINVAL;
	}

	if (state)
		policy->cpuinfo.max_freq = cpudata->max_freq;
	else
		policy->cpuinfo.max_freq = cpudata->nominal_freq;

	policy->max = policy->cpuinfo.max_freq;

	ret = freq_qos_update_request(&cpudata->req[1],
				      policy->cpuinfo.max_freq);
	if (ret < 0)
		return ret;

	return 0;
}

static void amd_pstate_boost_init(struct amd_cpudata *cpudata)
{
	u32 highest_perf, nominal_perf;

	highest_perf = READ_ONCE(cpudata->highest_perf);
	nominal_perf = READ_ONCE(cpudata->nominal_perf);

	if (highest_perf <= nominal_perf)
		return;

	cpudata->boost_supported = true;
	current_pstate_driver->boost_enabled = true;
}

static void amd_perf_ctl_reset(unsigned int cpu)
{
	wrmsrl_on_cpu(cpu, MSR_AMD_PERF_CTL, 0);
}

/*
 * Set amd-pstate preferred core enable can't be done directly from cpufreq callbacks
 * due to locking, so queue the work for later.
 */
static void amd_pstste_sched_prefcore_workfn(struct work_struct *work)
{
	sched_set_itmt_support();
}
static DECLARE_WORK(sched_prefcore_work, amd_pstste_sched_prefcore_workfn);

/*
 * Get the highest performance register value.
 * @cpu: CPU from which to get highest performance.
 * @highest_perf: Return address.
 *
 * Return: 0 for success, -EIO otherwise.
 */
static int amd_pstate_get_highest_perf(int cpu, u32 *highest_perf)
{
	int ret;

	if (boot_cpu_has(X86_FEATURE_CPPC)) {
		u64 cap1;

		ret = rdmsrl_safe_on_cpu(cpu, MSR_AMD_CPPC_CAP1, &cap1);
		if (ret)
			return ret;
		WRITE_ONCE(*highest_perf, AMD_CPPC_HIGHEST_PERF(cap1));
	} else {
		u64 cppc_highest_perf;

		ret = cppc_get_highest_perf(cpu, &cppc_highest_perf);
		if (ret)
			return ret;
		WRITE_ONCE(*highest_perf, cppc_highest_perf);
	}

	return (ret);
}

#define CPPC_MAX_PERF	U8_MAX

static void amd_pstate_init_prefcore(struct amd_cpudata *cpudata)
{
	int ret, prio;
	u32 highest_perf;

	ret = amd_pstate_get_highest_perf(cpudata->cpu, &highest_perf);
	if (ret)
		return;

	cpudata->hw_prefcore = true;
	/* check if CPPC preferred core feature is enabled*/
	if (highest_perf < CPPC_MAX_PERF)
		prio = (int)highest_perf;
	else {
		pr_debug("AMD CPPC preferred core is unsupported!\n");
		cpudata->hw_prefcore = false;
		return;
	}

	if (!amd_pstate_prefcore)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(prio, cpudata->cpu);

	schedule_work(&sched_prefcore_work);
}

static int amd_pstate_cpu_init(struct cpufreq_policy *policy)
{
	int min_freq, max_freq, nominal_freq, lowest_nonlinear_freq, ret;
	struct device *dev;
	struct amd_cpudata *cpudata;

	/*
	 * Resetting PERF_CTL_MSR will put the CPU in P0 frequency,
	 * which is ideal for initialization process.
	 */
	amd_perf_ctl_reset(policy->cpu);
	dev = get_cpu_device(policy->cpu);
	if (!dev)
		return -ENODEV;

	cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL);
	if (!cpudata)
		return -ENOMEM;

	cpudata->cpu = policy->cpu;

	amd_pstate_init_prefcore(cpudata);

	ret = amd_pstate_init_perf(cpudata);
	if (ret)
		goto free_cpudata1;

	min_freq = amd_get_min_freq(cpudata);
	max_freq = amd_get_max_freq(cpudata);
	nominal_freq = amd_get_nominal_freq(cpudata);
	lowest_nonlinear_freq = amd_get_lowest_nonlinear_freq(cpudata);

	if (min_freq < 0 || max_freq < 0 || min_freq > max_freq) {
		dev_err(dev, "min_freq(%d) or max_freq(%d) value is incorrect\n",
			min_freq, max_freq);
		ret = -EINVAL;
		goto free_cpudata1;
	}

	policy->cpuinfo.transition_latency = AMD_PSTATE_TRANSITION_LATENCY;
	policy->transition_delay_us = AMD_PSTATE_TRANSITION_DELAY;

	policy->min = min_freq;
	policy->max = max_freq;

	policy->cpuinfo.min_freq = min_freq;
	policy->cpuinfo.max_freq = max_freq;

	/* It will be updated by governor */
	policy->cur = policy->cpuinfo.min_freq;

	if (boot_cpu_has(X86_FEATURE_CPPC))
		policy->fast_switch_possible = true;

	ret = freq_qos_add_request(&policy->constraints, &cpudata->req[0],
				   FREQ_QOS_MIN, policy->cpuinfo.min_freq);
	if (ret < 0) {
		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
		goto free_cpudata1;
	}

	ret = freq_qos_add_request(&policy->constraints, &cpudata->req[1],
				   FREQ_QOS_MAX, policy->cpuinfo.max_freq);
	if (ret < 0) {
		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
		goto free_cpudata2;
	}

	/* Initial processor data capability frequencies */
	cpudata->max_freq = max_freq;
	cpudata->min_freq = min_freq;
	cpudata->max_limit_freq = max_freq;
	cpudata->min_limit_freq = min_freq;
	cpudata->nominal_freq = nominal_freq;
	cpudata->lowest_nonlinear_freq = lowest_nonlinear_freq;

	policy->driver_data = cpudata;

	amd_pstate_boost_init(cpudata);
	if (!current_pstate_driver->adjust_perf)
		current_pstate_driver->adjust_perf = amd_pstate_adjust_perf;

	return 0;

free_cpudata2:
	freq_qos_remove_request(&cpudata->req[0]);
free_cpudata1:
	kfree(cpudata);
	return ret;
}

static int amd_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	struct amd_cpudata *cpudata = policy->driver_data;

	freq_qos_remove_request(&cpudata->req[1]);
	freq_qos_remove_request(&cpudata->req[0]);
	policy->fast_switch_possible = false;
	kfree(cpudata);

	return 0;
}

static int amd_pstate_cpu_resume(struct cpufreq_policy *policy)
{
	int ret;

	ret = amd_pstate_enable(true);
	if (ret)
		pr_err("failed to enable amd-pstate during resume, return %d\n", ret);

	return ret;
}

static int amd_pstate_cpu_suspend(struct cpufreq_policy *policy)
{
	int ret;

	ret = amd_pstate_enable(false);
	if (ret)
		pr_err("failed to disable amd-pstate during suspend, return %d\n", ret);

	return ret;
}

/* Sysfs attributes */

/*
 * This frequency is to indicate the maximum hardware frequency.
 * If boost is not active but supported, the frequency will be larger than the
 * one in cpuinfo.
 */
static ssize_t show_amd_pstate_max_freq(struct cpufreq_policy *policy,
					char *buf)
{
	int max_freq;
	struct amd_cpudata *cpudata = policy->driver_data;

	max_freq = amd_get_max_freq(cpudata);
	if (max_freq < 0)
		return max_freq;

	return sysfs_emit(buf, "%u\n", max_freq);
}

static ssize_t show_amd_pstate_lowest_nonlinear_freq(struct cpufreq_policy *policy,
						     char *buf)
{
	int freq;
	struct amd_cpudata *cpudata = policy->driver_data;

	freq = amd_get_lowest_nonlinear_freq(cpudata);
	if (freq < 0)
		return freq;

	return sysfs_emit(buf, "%u\n", freq);
}

/*
 * In some of ASICs, the highest_perf is not the one in the _CPC table, so we
 * need to expose it to sysfs.
 */
static ssize_t show_amd_pstate_highest_perf(struct cpufreq_policy *policy,
					    char *buf)
{
	u32 perf;
	struct amd_cpudata *cpudata = policy->driver_data;

	perf = READ_ONCE(cpudata->highest_perf);

	return sysfs_emit(buf, "%u\n", perf);
}

static ssize_t show_amd_pstate_hw_prefcore(struct cpufreq_policy *policy,
					   char *buf)
{
	bool hw_prefcore;
	struct amd_cpudata *cpudata = policy->driver_data;

	hw_prefcore = READ_ONCE(cpudata->hw_prefcore);

	return sysfs_emit(buf, "%s\n", str_enabled_disabled(hw_prefcore));
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int offset = 0;
	struct amd_cpudata *cpudata = policy->driver_data;

	if (cpudata->policy == CPUFREQ_POLICY_PERFORMANCE)
		return sysfs_emit_at(buf, offset, "%s\n",
				energy_perf_strings[EPP_INDEX_PERFORMANCE]);

	while (energy_perf_strings[i] != NULL)
		offset += sysfs_emit_at(buf, offset, "%s ", energy_perf_strings[i++]);

	offset += sysfs_emit_at(buf, offset, "\n");

	return offset;
}

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct amd_cpudata *cpudata = policy->driver_data;
	char str_preference[21];
	ssize_t ret;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	ret = match_string(energy_perf_strings, -1, str_preference);
	if (ret < 0)
		return -EINVAL;

	mutex_lock(&amd_pstate_limits_lock);
	ret = amd_pstate_set_energy_pref_index(cpudata, ret);
	mutex_unlock(&amd_pstate_limits_lock);

	return ret ?: count;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct amd_cpudata *cpudata = policy->driver_data;
	int preference;

	preference = amd_pstate_get_energy_pref_index(cpudata);
	if (preference < 0)
		return preference;

	return sysfs_emit(buf, "%s\n", energy_perf_strings[preference]);
}

static void amd_pstate_driver_cleanup(void)
{
	amd_pstate_enable(false);
	cppc_state = AMD_PSTATE_DISABLE;
	current_pstate_driver = NULL;
}

static int amd_pstate_register_driver(int mode)
{
	int ret;

	if (mode == AMD_PSTATE_PASSIVE || mode == AMD_PSTATE_GUIDED)
		current_pstate_driver = &amd_pstate_driver;
	else if (mode == AMD_PSTATE_ACTIVE)
		current_pstate_driver = &amd_pstate_epp_driver;
	else
		return -EINVAL;

	cppc_state = mode;
	ret = cpufreq_register_driver(current_pstate_driver);
	if (ret) {
		amd_pstate_driver_cleanup();
		return ret;
	}
	return 0;
}

static int amd_pstate_unregister_driver(int dummy)
{
	cpufreq_unregister_driver(current_pstate_driver);
	amd_pstate_driver_cleanup();
	return 0;
}

static int amd_pstate_change_mode_without_dvr_change(int mode)
{
	int cpu = 0;

	cppc_state = mode;

	if (boot_cpu_has(X86_FEATURE_CPPC) || cppc_state == AMD_PSTATE_ACTIVE)
		return 0;

	for_each_present_cpu(cpu) {
		cppc_set_auto_sel(cpu, (cppc_state == AMD_PSTATE_PASSIVE) ? 0 : 1);
	}

	return 0;
}

static int amd_pstate_change_driver_mode(int mode)
{
	int ret;

	ret = amd_pstate_unregister_driver(0);
	if (ret)
		return ret;

	ret = amd_pstate_register_driver(mode);
	if (ret)
		return ret;

	return 0;
}

static cppc_mode_transition_fn mode_state_machine[AMD_PSTATE_MAX][AMD_PSTATE_MAX] = {
	[AMD_PSTATE_DISABLE]         = {
		[AMD_PSTATE_DISABLE]     = NULL,
		[AMD_PSTATE_PASSIVE]     = amd_pstate_register_driver,
		[AMD_PSTATE_ACTIVE]      = amd_pstate_register_driver,
		[AMD_PSTATE_GUIDED]      = amd_pstate_register_driver,
	},
	[AMD_PSTATE_PASSIVE]         = {
		[AMD_PSTATE_DISABLE]     = amd_pstate_unregister_driver,
		[AMD_PSTATE_PASSIVE]     = NULL,
		[AMD_PSTATE_ACTIVE]      = amd_pstate_change_driver_mode,
		[AMD_PSTATE_GUIDED]      = amd_pstate_change_mode_without_dvr_change,
	},
	[AMD_PSTATE_ACTIVE]          = {
		[AMD_PSTATE_DISABLE]     = amd_pstate_unregister_driver,
		[AMD_PSTATE_PASSIVE]     = amd_pstate_change_driver_mode,
		[AMD_PSTATE_ACTIVE]      = NULL,
		[AMD_PSTATE_GUIDED]      = amd_pstate_change_driver_mode,
	},
	[AMD_PSTATE_GUIDED]          = {
		[AMD_PSTATE_DISABLE]     = amd_pstate_unregister_driver,
		[AMD_PSTATE_PASSIVE]     = amd_pstate_change_mode_without_dvr_change,
		[AMD_PSTATE_ACTIVE]      = amd_pstate_change_driver_mode,
		[AMD_PSTATE_GUIDED]      = NULL,
	},
};

static ssize_t amd_pstate_show_status(char *buf)
{
	if (!current_pstate_driver)
		return sysfs_emit(buf, "disable\n");

	return sysfs_emit(buf, "%s\n", amd_pstate_mode_string[cppc_state]);
}

static int amd_pstate_update_status(const char *buf, size_t size)
{
	int mode_idx;

	if (size > strlen("passive") || size < strlen("active"))
		return -EINVAL;

	mode_idx = get_mode_idx_from_str(buf, size);

	if (mode_idx < 0 || mode_idx >= AMD_PSTATE_MAX)
		return -EINVAL;

	if (mode_state_machine[cppc_state][mode_idx])
		return mode_state_machine[cppc_state][mode_idx](mode_idx);

	return 0;
}

static ssize_t status_show(struct device *dev,
			   struct device_attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&amd_pstate_driver_lock);
	ret = amd_pstate_show_status(buf);
	mutex_unlock(&amd_pstate_driver_lock);

	return ret;
}

static ssize_t status_store(struct device *a, struct device_attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&amd_pstate_driver_lock);
	ret = amd_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&amd_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

static ssize_t prefcore_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	return sysfs_emit(buf, "%s\n", str_enabled_disabled(amd_pstate_prefcore));
}

cpufreq_freq_attr_ro(amd_pstate_max_freq);
cpufreq_freq_attr_ro(amd_pstate_lowest_nonlinear_freq);

cpufreq_freq_attr_ro(amd_pstate_highest_perf);
cpufreq_freq_attr_ro(amd_pstate_hw_prefcore);
cpufreq_freq_attr_rw(energy_performance_preference);
cpufreq_freq_attr_ro(energy_performance_available_preferences);
static DEVICE_ATTR_RW(status);
static DEVICE_ATTR_RO(prefcore);

static struct freq_attr *amd_pstate_attr[] = {
	&amd_pstate_max_freq,
	&amd_pstate_lowest_nonlinear_freq,
	&amd_pstate_highest_perf,
	&amd_pstate_hw_prefcore,
	NULL,
};

static struct freq_attr *amd_pstate_epp_attr[] = {
	&amd_pstate_max_freq,
	&amd_pstate_lowest_nonlinear_freq,
	&amd_pstate_highest_perf,
	&amd_pstate_hw_prefcore,
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

static struct attribute *pstate_global_attributes[] = {
	&dev_attr_status.attr,
	&dev_attr_prefcore.attr,
	NULL
};

static const struct attribute_group amd_pstate_global_attr_group = {
	.name = "amd_pstate",
	.attrs = pstate_global_attributes,
};

static bool amd_pstate_acpi_pm_profile_server(void)
{
	switch (acpi_gbl_FADT.preferred_profile) {
	case PM_ENTERPRISE_SERVER:
	case PM_SOHO_SERVER:
	case PM_PERFORMANCE_SERVER:
		return true;
	}
	return false;
}

static bool amd_pstate_acpi_pm_profile_undefined(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_UNSPECIFIED)
		return true;
	if (acpi_gbl_FADT.preferred_profile >= NR_PM_PROFILES)
		return true;
	return false;
}

static int amd_pstate_epp_cpu_init(struct cpufreq_policy *policy)
{
	int min_freq, max_freq, nominal_freq, lowest_nonlinear_freq, ret;
	struct amd_cpudata *cpudata;
	struct device *dev;
	u64 value;

	/*
	 * Resetting PERF_CTL_MSR will put the CPU in P0 frequency,
	 * which is ideal for initialization process.
	 */
	amd_perf_ctl_reset(policy->cpu);
	dev = get_cpu_device(policy->cpu);
	if (!dev)
		return -ENODEV;

	cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL);
	if (!cpudata)
		return -ENOMEM;

	cpudata->cpu = policy->cpu;
	cpudata->epp_policy = 0;

	amd_pstate_init_prefcore(cpudata);

	ret = amd_pstate_init_perf(cpudata);
	if (ret)
		goto free_cpudata1;

	min_freq = amd_get_min_freq(cpudata);
	max_freq = amd_get_max_freq(cpudata);
	nominal_freq = amd_get_nominal_freq(cpudata);
	lowest_nonlinear_freq = amd_get_lowest_nonlinear_freq(cpudata);
	if (min_freq < 0 || max_freq < 0 || min_freq > max_freq) {
		dev_err(dev, "min_freq(%d) or max_freq(%d) value is incorrect\n",
				min_freq, max_freq);
		ret = -EINVAL;
		goto free_cpudata1;
	}

	policy->cpuinfo.min_freq = min_freq;
	policy->cpuinfo.max_freq = max_freq;
	/* It will be updated by governor */
	policy->cur = policy->cpuinfo.min_freq;

	/* Initial processor data capability frequencies */
	cpudata->max_freq = max_freq;
	cpudata->min_freq = min_freq;
	cpudata->nominal_freq = nominal_freq;
	cpudata->lowest_nonlinear_freq = lowest_nonlinear_freq;

	policy->driver_data = cpudata;

	cpudata->epp_cached = amd_pstate_get_epp(cpudata, 0);

	policy->min = policy->cpuinfo.min_freq;
	policy->max = policy->cpuinfo.max_freq;

	/*
	 * Set the policy to provide a valid fallback value in case
	 * the default cpufreq governor is neither powersave nor performance.
	 */
	if (amd_pstate_acpi_pm_profile_server() ||
	    amd_pstate_acpi_pm_profile_undefined())
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

	if (boot_cpu_has(X86_FEATURE_CPPC)) {
		ret = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, &value);
		if (ret)
			return ret;
		WRITE_ONCE(cpudata->cppc_req_cached, value);

		ret = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1, &value);
		if (ret)
			return ret;
		WRITE_ONCE(cpudata->cppc_cap1_cached, value);
	}
	amd_pstate_boost_init(cpudata);

	return 0;

free_cpudata1:
	kfree(cpudata);
	return ret;
}

static int amd_pstate_epp_cpu_exit(struct cpufreq_policy *policy)
{
	struct amd_cpudata *cpudata = policy->driver_data;

	if (cpudata) {
		kfree(cpudata);
		policy->driver_data = NULL;
	}

	pr_debug("CPU %d exiting\n", policy->cpu);
	return 0;
}

static void amd_pstate_epp_update_limit(struct cpufreq_policy *policy)
{
	struct amd_cpudata *cpudata = policy->driver_data;
	u32 max_perf, min_perf, min_limit_perf, max_limit_perf;
	u64 value;
	s16 epp;

	max_perf = READ_ONCE(cpudata->highest_perf);
	min_perf = READ_ONCE(cpudata->lowest_perf);
	max_limit_perf = div_u64(policy->max * cpudata->highest_perf, cpudata->max_freq);
	min_limit_perf = div_u64(policy->min * cpudata->highest_perf, cpudata->max_freq);

	WRITE_ONCE(cpudata->max_limit_perf, max_limit_perf);
	WRITE_ONCE(cpudata->min_limit_perf, min_limit_perf);

	max_perf = clamp_t(unsigned long, max_perf, cpudata->min_limit_perf,
			cpudata->max_limit_perf);
	min_perf = clamp_t(unsigned long, min_perf, cpudata->min_limit_perf,
			cpudata->max_limit_perf);
	value = READ_ONCE(cpudata->cppc_req_cached);

	if (cpudata->policy == CPUFREQ_POLICY_PERFORMANCE)
		min_perf = max_perf;

	/* Initial min/max values for CPPC Performance Controls Register */
	value &= ~AMD_CPPC_MIN_PERF(~0L);
	value |= AMD_CPPC_MIN_PERF(min_perf);

	value &= ~AMD_CPPC_MAX_PERF(~0L);
	value |= AMD_CPPC_MAX_PERF(max_perf);

	/* CPPC EPP feature require to set zero to the desire perf bit */
	value &= ~AMD_CPPC_DES_PERF(~0L);
	value |= AMD_CPPC_DES_PERF(0);

	cpudata->epp_policy = cpudata->policy;

	/* Get BIOS pre-defined epp value */
	epp = amd_pstate_get_epp(cpudata, value);
	if (epp < 0) {
		/**
		 * This return value can only be negative for shared_memory
		 * systems where EPP register read/write not supported.
		 */
		return;
	}

	if (cpudata->policy == CPUFREQ_POLICY_PERFORMANCE)
		epp = 0;

	/* Set initial EPP value */
	if (boot_cpu_has(X86_FEATURE_CPPC)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	}

	WRITE_ONCE(cpudata->cppc_req_cached, value);
	amd_pstate_set_epp(cpudata, epp);
}

static int amd_pstate_epp_set_policy(struct cpufreq_policy *policy)
{
	struct amd_cpudata *cpudata = policy->driver_data;

	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

	pr_debug("set_policy: cpuinfo.max %u policy->max %u\n",
				policy->cpuinfo.max_freq, policy->max);

	cpudata->policy = policy->policy;

	amd_pstate_epp_update_limit(policy);

	return 0;
}

static void amd_pstate_epp_reenable(struct amd_cpudata *cpudata)
{
	struct cppc_perf_ctrls perf_ctrls;
	u64 value, max_perf;
	int ret;

	ret = amd_pstate_enable(true);
	if (ret)
		pr_err("failed to enable amd pstate during resume, return %d\n", ret);

	value = READ_ONCE(cpudata->cppc_req_cached);
	max_perf = READ_ONCE(cpudata->highest_perf);

	if (boot_cpu_has(X86_FEATURE_CPPC)) {
		wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
	} else {
		perf_ctrls.max_perf = max_perf;
		perf_ctrls.energy_perf = AMD_CPPC_ENERGY_PERF_PREF(cpudata->epp_cached);
		cppc_set_perf(cpudata->cpu, &perf_ctrls);
	}
}

static int amd_pstate_epp_cpu_online(struct cpufreq_policy *policy)
{
	struct amd_cpudata *cpudata = policy->driver_data;

	pr_debug("AMD CPU Core %d going online\n", cpudata->cpu);

	if (cppc_state == AMD_PSTATE_ACTIVE) {
		amd_pstate_epp_reenable(cpudata);
		cpudata->suspended = false;
	}

	return 0;
}

static void amd_pstate_epp_offline(struct cpufreq_policy *policy)
{
	struct amd_cpudata *cpudata = policy->driver_data;
	struct cppc_perf_ctrls perf_ctrls;
	int min_perf;
	u64 value;

	min_perf = READ_ONCE(cpudata->lowest_perf);
	value = READ_ONCE(cpudata->cppc_req_cached);

	mutex_lock(&amd_pstate_limits_lock);
	if (boot_cpu_has(X86_FEATURE_CPPC)) {
		cpudata->epp_policy = CPUFREQ_POLICY_UNKNOWN;

		/* Set max perf same as min perf */
		value &= ~AMD_CPPC_MAX_PERF(~0L);
		value |= AMD_CPPC_MAX_PERF(min_perf);
		value &= ~AMD_CPPC_MIN_PERF(~0L);
		value |= AMD_CPPC_MIN_PERF(min_perf);
		wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
	} else {
		perf_ctrls.desired_perf = 0;
		perf_ctrls.max_perf = min_perf;
		perf_ctrls.energy_perf = AMD_CPPC_ENERGY_PERF_PREF(HWP_EPP_BALANCE_POWERSAVE);
		cppc_set_perf(cpudata->cpu, &perf_ctrls);
	}
	mutex_unlock(&amd_pstate_limits_lock);
}

static int amd_pstate_epp_cpu_offline(struct cpufreq_policy *policy)
{
	struct amd_cpudata *cpudata = policy->driver_data;

	pr_debug("AMD CPU Core %d going offline\n", cpudata->cpu);

	if (cpudata->suspended)
		return 0;

	if (cppc_state == AMD_PSTATE_ACTIVE)
		amd_pstate_epp_offline(policy);

	return 0;
}

static int amd_pstate_epp_verify_policy(struct cpufreq_policy_data *policy)
{
	cpufreq_verify_within_cpu_limits(policy);
	pr_debug("policy_max =%d, policy_min=%d\n", policy->max, policy->min);
	return 0;
}

static int amd_pstate_epp_suspend(struct cpufreq_policy *policy)
{
	struct amd_cpudata *cpudata = policy->driver_data;
	int ret;

	/* avoid suspending when EPP is not enabled */
	if (cppc_state != AMD_PSTATE_ACTIVE)
		return 0;

	/* set this flag to avoid setting core offline*/
	cpudata->suspended = true;

	/* disable CPPC in lowlevel firmware */
	ret = amd_pstate_enable(false);
	if (ret)
		pr_err("failed to suspend, return %d\n", ret);

	return 0;
}

static int amd_pstate_epp_resume(struct cpufreq_policy *policy)
{
	struct amd_cpudata *cpudata = policy->driver_data;

	if (cpudata->suspended) {
		mutex_lock(&amd_pstate_limits_lock);

		/* enable amd pstate from suspend state*/
		amd_pstate_epp_reenable(cpudata);

		mutex_unlock(&amd_pstate_limits_lock);

		cpudata->suspended = false;
	}

	return 0;
}

static struct cpufreq_driver amd_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
	.verify		= amd_pstate_verify,
	.target		= amd_pstate_target,
	.fast_switch    = amd_pstate_fast_switch,
	.init		= amd_pstate_cpu_init,
	.exit		= amd_pstate_cpu_exit,
	.suspend	= amd_pstate_cpu_suspend,
	.resume		= amd_pstate_cpu_resume,
	.set_boost	= amd_pstate_set_boost,
	.name		= "amd-pstate",
	.attr		= amd_pstate_attr,
};

static struct cpufreq_driver amd_pstate_epp_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= amd_pstate_epp_verify_policy,
	.setpolicy	= amd_pstate_epp_set_policy,
	.init		= amd_pstate_epp_cpu_init,
	.exit		= amd_pstate_epp_cpu_exit,
	.offline	= amd_pstate_epp_cpu_offline,
	.online		= amd_pstate_epp_cpu_online,
	.suspend	= amd_pstate_epp_suspend,
	.resume		= amd_pstate_epp_resume,
	.name		= "amd-pstate-epp",
	.attr		= amd_pstate_epp_attr,
};

static int __init amd_pstate_set_driver(int mode_idx)
{
	if (mode_idx >= AMD_PSTATE_DISABLE && mode_idx < AMD_PSTATE_MAX) {
		cppc_state = mode_idx;
		if (cppc_state == AMD_PSTATE_DISABLE)
			pr_info("driver is explicitly disabled\n");

		if (cppc_state == AMD_PSTATE_ACTIVE)
			current_pstate_driver = &amd_pstate_epp_driver;

		if (cppc_state == AMD_PSTATE_PASSIVE || cppc_state == AMD_PSTATE_GUIDED)
			current_pstate_driver = &amd_pstate_driver;

		return 0;
	}

	return -EINVAL;
}

static int __init amd_pstate_init(void)
{
	struct device *dev_root;
	int ret;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
		return -ENODEV;

	if (!acpi_cpc_valid()) {
		pr_warn_once("the _CPC object is not present in SBIOS or ACPI disabled\n");
		return -ENODEV;
	}

	/* don't keep reloading if cpufreq_driver exists */
	if (cpufreq_get_current_driver())
		return -EEXIST;

	switch (cppc_state) {
	case AMD_PSTATE_UNDEFINED:
		/* Disable on the following configs by default:
		 * 1. Undefined platforms
		 * 2. Server platforms
		 * 3. Shared memory designs
		 */
		if (amd_pstate_acpi_pm_profile_undefined() ||
		    amd_pstate_acpi_pm_profile_server() ||
		    !boot_cpu_has(X86_FEATURE_CPPC)) {
			pr_info("driver load is disabled, boot with specific mode to enable this\n");
			return -ENODEV;
		}
		ret = amd_pstate_set_driver(CONFIG_X86_AMD_PSTATE_DEFAULT_MODE);
		if (ret)
			return ret;
		break;
	case AMD_PSTATE_DISABLE:
		return -ENODEV;
	case AMD_PSTATE_PASSIVE:
	case AMD_PSTATE_ACTIVE:
	case AMD_PSTATE_GUIDED:
		break;
	default:
		return -EINVAL;
	}

	/* capability check */
	if (boot_cpu_has(X86_FEATURE_CPPC)) {
		pr_debug("AMD CPPC MSR based functionality is supported\n");
		if (cppc_state != AMD_PSTATE_ACTIVE)
			current_pstate_driver->adjust_perf = amd_pstate_adjust_perf;
	} else {
		pr_debug("AMD CPPC shared memory based functionality is supported\n");
		static_call_update(amd_pstate_enable, cppc_enable);
		static_call_update(amd_pstate_init_perf, cppc_init_perf);
		static_call_update(amd_pstate_update_perf, cppc_update_perf);
	}

	/* enable amd pstate feature */
	ret = amd_pstate_enable(true);
	if (ret) {
		pr_err("failed to enable with return %d\n", ret);
		return ret;
	}

	ret = cpufreq_register_driver(current_pstate_driver);
	if (ret)
		pr_err("failed to register with return %d\n", ret);

	dev_root = bus_get_dev_root(&cpu_subsys);
	if (dev_root) {
		ret = sysfs_create_group(&dev_root->kobj, &amd_pstate_global_attr_group);
		put_device(dev_root);
		if (ret) {
			pr_err("sysfs attribute export failed with error %d.\n", ret);
			goto global_attr_free;
		}
	}

	return ret;

global_attr_free:
	cpufreq_unregister_driver(current_pstate_driver);
	return ret;
}
device_initcall(amd_pstate_init);

static int __init amd_pstate_param(char *str)
{
	size_t size;
	int mode_idx;

	if (!str)
		return -EINVAL;

	size = strlen(str);
	mode_idx = get_mode_idx_from_str(str, size);

	return amd_pstate_set_driver(mode_idx);
}

static int __init amd_prefcore_param(char *str)
{
	if (!strcmp(str, "disable"))
		amd_pstate_prefcore = false;

	return 0;
}

early_param("amd_pstate", amd_pstate_param);
early_param("amd_prefcore", amd_prefcore_param);

MODULE_AUTHOR("Huang Rui <ray.huang@amd.com>");
MODULE_DESCRIPTION("AMD Processor P-state Frequency Driver");