ptp_netc.c 22 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/*
 * NXP NETC Timer driver
 * Copyright 2023 NXP
 * Copyright (C) 2023 Wei Fang <wei.fang@nxp.com>
 */
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/pci.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/fsl/netc_prb_ierb.h>
#include <linux/fsl/ptp_netc.h>

#define NETC_TMR_CTRL			0x0080
#define  TMR_CTRL_CK_SEL		GENMASK(1, 0)
#define  TMR_CTRL_TE			BIT(2)
#define  TMR_COMP_MODE			BIT(15)
#define  TMR_CTRL_TCLK_PERIOD		GENMASK(25, 16)
#define  TMR_CTRL_FS			BIT(28)
#define  TMR_ALARM1P			BIT(31)

#define NETC_TMR_TEVENT			0x0084
#define  TMR_TEVNET_PPEN(a)		BIT(7 - (a))
#define  TMR_TEVENT_PPEN_ALL		GENMASK(7, 5)
#define  TMR_TEVENT_ALM1EN		BIT(16)
#define  TMR_TEVENT_ALM2EN		BIT(17)
#define  TMR_TEVENT_ETS1_THREN		BIT(20)
#define  TMR_TEVENT_ETS2_THREN		BIT(21)
#define  TMR_TEVENT_ETS1EN		BIT(24)
#define  TMR_TEVENT_ETS2EN		BIT(25)
#define  TMR_TEVENT_ETS1_OVEN		BIT(28)
#define  TMR_TEVENT_ETS2_OVEN		BIT(29)

#define NETC_TMR_TEMASK			0x0088
#define NETC_TMR_STAT			0x0094
#define NETC_TMR_CNT_L			0x0098
#define NETC_TMR_CNT_H			0x009c
#define NETC_TMR_ADD			0x00a0
#define NETC_TMR_ACC			0x00a4
#define NETC_TMR_PRSC			0x00a8
#define NETC_TMR_ECTRL			0x00ac
#define NETC_TMR_OFF_L			0x00b0
#define NETC_TMR_OFF_H			0x00b4

/* a = 0 or 1, a = 0 indicates TMR_ALARM1, a = 1 indicates TMR_ALARM2 */
#define NETC_TMR_ALARM_L(a)		(0x00b8 + (a) * 8)
#define NETC_TMR_ALARM_H(a)		(0x00bc + (a) * 8)

#define NETC_TMR_ALARM_CTRL		0x00cc
#define  ALARM_CTRL_PW(a)		(GENMASK(4, 0) << (a) * 8)
#define  ALARM_CTRL_PG(a)		(BIT(7) << (a) * 8)

/* a = 0, 1, 2. a = 0 indicates TMR_FIPER1, a = 1 indicates TMR_FIPER2,
 * a = 2 indicates TMR_FIPER3.
 */
#define NETC_TMR_FIPER(a)		(0x00d0 + (a) * 4)

#define NETC_TMR_FIPER_CTRL		0x00dc
#define  FIPER_CTRL_PW(a)		(GENMASK(4, 0) << (a) * 8)
#define  FIPER_CTRL_PG(a)		(BIT(6) << (a) * 8)
#define  FIPER_CTRL_DIS(a)		(BIT(7) << (a) * 8)

#define NETC_TMR_ETTS1_L		0x00e0
#define NETC_TMR_ETTS1_H		0x00e4
#define NETC_TMR_ETTS2_L		0x00e8
#define NETC_TMR_ETTS2_H		0x00ec
#define NETC_TMR_PARAM			0x00f8

#define NETC_TMR_REGS_BAR		0
#define NETC_TMR_FIPER_NUM		3
#define NETC_TMR_DEFAULT_PRSC		2
#define NETC_TMR_DEFAULT_ALARM		0xffffffffffffffffULL
#define NETC_TMR_DEFAULT_FIPER		0xffffffff
#define NETC_TMR_PRSC_OCK_MAX		0xfffe

/* 1588 timer reference clock source select */
#define NETC_TMR_CCM_TIMER1		0 /* enet_timer1_clk_root, from CCM */
#define NETC_TMR_SYSTEM_CLK		1 /* enet_clk_root/2, from CCM */
#define NETC_TMR_EXT_OSC		2 /* tmr_1588_clk, from IO pins */

#define NETC_TMR_SYSCLK_RATE		333333333UL
#define NETC_TMR_SYSCLK_PERIOD_INT	3
#define NETC_TMR_SYSCLK_PERIOD_FRAC	0xd

#define NETC_TMR_FIPER_PW		0x1f

struct netc_timer {
	void __iomem *base;
	struct device *dev;
	struct pci_dev *pci_dev;
	int irq;
	char irq_name[64];
	spinlock_t lock; /* protect regs */

	struct ptp_clock *clock;
	struct ptp_clock_info caps;
	int phc_index;
	u32 clk_select;
	u32 clk_freq;
	u32 period_int;
	/* fractional part of clock period * BIT(32) */
	u32 period_frac;
	/* High 32 bits are the integer part, low 32 bits
	 * are the fractional part
	 */
	u64 base_period;
	u32 oclk_prsc; /* must be an even value */
	u32 fiper[NETC_TMR_FIPER_NUM];
};

static inline u32 netc_timer_read(void __iomem *reg)
{
	return ioread32(reg);
}

static inline void netc_timer_write(void __iomem *reg, u32 val)
{
	iowrite32(val, reg);
}

#define netc_timer_read_reg(p, o)	netc_timer_read((p)->base + (o))
#define netc_timer_write_reg(p, o, v)	netc_timer_write((p)->base + (o), v)

static u64 netc_timer_cnt_read(struct netc_timer *priv)
{
	u32 tmr_cnt_l, tmr_cnt_h;
	u64 ns;

	/* The user must read the TMR_CNC_L register first to get
	 * correct 64-bit TMR_CNT_H/L counter values.
	 */
	tmr_cnt_l = netc_timer_read_reg(priv, NETC_TMR_CNT_L);
	tmr_cnt_h = netc_timer_read_reg(priv, NETC_TMR_CNT_H);
	ns = (((u64)tmr_cnt_h) << 32) | tmr_cnt_l;

	return ns;
}

static void netc_timer_cnt_write(struct netc_timer *priv, u64 ns)
{
	u32 tmr_cnt_h = upper_32_bits(ns);
	u32 tmr_cnt_l = lower_32_bits(ns);

	/* The user must write to TMR_CNT_L register first. */
	netc_timer_write_reg(priv, NETC_TMR_CNT_L, tmr_cnt_l);
	netc_timer_write_reg(priv, NETC_TMR_CNT_H, tmr_cnt_h);
}

static void netc_timer_alarm_write(struct netc_timer *priv,
				   u64 alarm, int index)
{
	u32 alarm_h = upper_32_bits(alarm);
	u32 alarm_l = lower_32_bits(alarm);

	netc_timer_write_reg(priv, NETC_TMR_ALARM_L(index), alarm_l);
	netc_timer_write_reg(priv, NETC_TMR_ALARM_H(index), alarm_h);
}

static void netc_timer_set_oclk_prsc(struct netc_timer *priv, u32 oclk_prsc)
{
	if (oclk_prsc < NETC_TMR_PRSC_OCK_MAX) {
		if (oclk_prsc % 2 != 0)
			oclk_prsc++;
	} else {
		oclk_prsc = NETC_TMR_PRSC_OCK_MAX;
	}
	priv->oclk_prsc = oclk_prsc;

	if (oclk_prsc == netc_timer_read_reg(priv, NETC_TMR_PRSC))
		return;

	netc_timer_write_reg(priv, NETC_TMR_PRSC, priv->oclk_prsc);
}

static u32 netc_timer_calculate_fiper_pulse_width(struct netc_timer *priv,
						  u32 fiper)
{
	u32 oclk_prsc = NETC_TMR_DEFAULT_PRSC;
	u64 pw;

	/* Set the FIPER pulse width to half FIPER interval by default.
	 * pulse_width = (fiper / 2) / TMR_GCLK_period,
	 * TMR_GCLK_period = NSEC_PER_SEC / TMR_GCLK_freq,
	 * TMR_GCLK_freq = (clk_freq / oclk_prsc) MHz,
	 * so pulse_width = fiper * clk_freq / (2 * NSEC_PER_SEC * oclk_prsc).
	 *
	 * The oclk_prsc value needs to be an even number, so here we use its
	 * default value NETC_TMR_DEFAULT_PRSC to calculate the pw. If pw
	 * exceeds the maximum value, then update the oclk_prsc.
	 */
	pw = (u64)fiper * priv->clk_freq;
	/* 2 * NSEC_PER_SEC * oclk_prsc = 4000000000UL */
	pw = div_u64(pw, 4000000000UL);

	/* The FIPER_PW field only has 5 bits, need to update oclk_prsc */
	if (pw > NETC_TMR_FIPER_PW) {
		oclk_prsc = div_u64(pw, NETC_TMR_FIPER_PW) * oclk_prsc;
		pw = NETC_TMR_FIPER_PW;
	}
	netc_timer_set_oclk_prsc(priv, oclk_prsc);

	return pw;
}

static void netc_timer_adjust_period(struct netc_timer *priv, u64 period)
{
	u32 period_frac = lower_32_bits(period);
	u32 period_int = upper_32_bits(period);
	u32 tmr_ctrl, old_tmr_ctrl;

	guard(spinlock_irqsave)(&priv->lock);
	old_tmr_ctrl = netc_timer_read_reg(priv, NETC_TMR_CTRL);
	tmr_ctrl = u32_replace_bits(old_tmr_ctrl, period_int,
				    TMR_CTRL_TCLK_PERIOD);
	if (tmr_ctrl != old_tmr_ctrl)
		netc_timer_write_reg(priv, NETC_TMR_CTRL, tmr_ctrl);

	netc_timer_write_reg(priv, NETC_TMR_ADD, period_frac);
}

static irqreturn_t netc_timer_isr(int irq, void *data)
{
	struct netc_timer *priv = data;
	struct ptp_clock_event event;
	u32 tmr_event, tmr_emask;
	unsigned long flags;

	spin_lock_irqsave(&priv->lock, flags);

	tmr_event = netc_timer_read_reg(priv, NETC_TMR_TEVENT);
	tmr_emask = netc_timer_read_reg(priv, NETC_TMR_TEMASK);

	/* Clear interrupts status */
	netc_timer_write_reg(priv, NETC_TMR_TEVENT, tmr_event);

	tmr_event &= tmr_emask;
	if (tmr_event & TMR_TEVENT_PPEN_ALL) {
		event.type = PTP_CLOCK_PPS;
		ptp_clock_event(priv->clock, &event);
	}

	if (tmr_event & TMR_TEVENT_ALM1EN) {
		tmr_emask &= ~TMR_TEVENT_ALM1EN;

		netc_timer_write_reg(priv, NETC_TMR_TEMASK, tmr_emask);
		netc_timer_alarm_write(priv, NETC_TMR_DEFAULT_ALARM, 0);
	}

	spin_unlock_irqrestore(&priv->lock, flags);

	return IRQ_HANDLED;
}

static int netc_timer_get_clk_config(struct netc_timer *priv)
{
	struct device_node *node = priv->dev->of_node;
	u32 clk_cfg[3];
	int err;

	err = of_property_read_u32_array(node, "fsl,clk-cfg", clk_cfg,
					 ARRAY_SIZE(clk_cfg));
	if (!err) {
		priv->clk_freq = clk_cfg[0];
		priv->period_int = clk_cfg[1];
		priv->period_frac = clk_cfg[2];
		priv->base_period = ((u64)priv->period_int << 32) |
				    priv->period_frac;

		return 0;
	}

	priv->clk_freq = NETC_TMR_SYSCLK_RATE;
	priv->period_int = NETC_TMR_SYSCLK_PERIOD_INT;
	priv->period_frac = NETC_TMR_SYSCLK_PERIOD_FRAC;
	priv->base_period = ((u64)priv->period_int << 32) | priv->period_frac;

	return 0;
}

/* ppm: parts per million, ppb: parts per billion */
static int netc_timer_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
	struct netc_timer *priv = container_of(ptp, struct netc_timer, caps);
	u64 new_period;

	if (!scaled_ppm)
		return 0;

	new_period = adjust_by_scaled_ppm(priv->base_period, scaled_ppm);
	netc_timer_adjust_period(priv, new_period);

	return 0;
}

static int netc_timer_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
	struct netc_timer *priv;
	unsigned long flags;
	u64 ns, adj_ns;

	priv = container_of(ptp, struct netc_timer, caps);
	adj_ns = abs(delta);

	spin_lock_irqsave(&priv->lock, flags);

	ns = netc_timer_cnt_read(priv);
	if (delta < 0)
		ns -= adj_ns;
	else
		ns += adj_ns;

	netc_timer_cnt_write(priv, ns);

	spin_unlock_irqrestore(&priv->lock, flags);

	return 0;
}

static int netc_timer_gettimex64(struct ptp_clock_info *ptp,
				 struct timespec64 *ts,
				 struct ptp_system_timestamp *sts)
{
	struct netc_timer *priv;
	unsigned long flags;
	u64 ns;

	priv = container_of(ptp, struct netc_timer, caps);

	spin_lock_irqsave(&priv->lock, flags);

	ptp_read_system_prets(sts);
	ns = netc_timer_cnt_read(priv);
	ptp_read_system_postts(sts);

	spin_unlock_irqrestore(&priv->lock, flags);

	*ts = ns_to_timespec64(ns);

	return 0;
}

static int netc_timer_settime64(struct ptp_clock_info *ptp,
				const struct timespec64 *ts)
{
	struct netc_timer *priv;
	unsigned long flags;
	u64 ns;

	priv = container_of(ptp, struct netc_timer, caps);
	ns = timespec64_to_ns(ts);

	spin_lock_irqsave(&priv->lock, flags);

	netc_timer_cnt_write(priv, ns);

	spin_unlock_irqrestore(&priv->lock, flags);

	return 0;
}

static int netc_timer_enable_pps(struct netc_timer *priv,
				 struct ptp_clock_request *rq, int on)
{
	u32 tmr_emask, fiper, fiper_ctrl, fiper_pw;
	unsigned long flags;

	spin_lock_irqsave(&priv->lock, flags);

	tmr_emask = netc_timer_read_reg(priv, NETC_TMR_TEMASK);
	fiper_ctrl = netc_timer_read_reg(priv, NETC_TMR_FIPER_CTRL);

	if (on) {
		fiper = div_u64(NSEC_PER_SEC, priv->period_int) - 1;
		fiper = fiper * priv->period_int;
		fiper_pw = netc_timer_calculate_fiper_pulse_width(priv, fiper);
		fiper_ctrl &= ~(FIPER_CTRL_DIS(0) | FIPER_CTRL_PW(0));
		fiper_ctrl |= fiper_pw & FIPER_CTRL_PW(0);
		tmr_emask |= TMR_TEVNET_PPEN(0);
	} else {
		fiper = NETC_TMR_DEFAULT_FIPER;
		tmr_emask &= ~TMR_TEVNET_PPEN(0);
		fiper_ctrl |= FIPER_CTRL_DIS(0);
	}

	netc_timer_write_reg(priv, NETC_TMR_TEMASK, tmr_emask);
	netc_timer_write_reg(priv, NETC_TMR_FIPER(0), fiper);
	netc_timer_write_reg(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl);

	spin_unlock_irqrestore(&priv->lock, flags);

	return 0;
}

static int net_timer_enable_perout(struct netc_timer *priv,
				   struct ptp_clock_request *rq, int on)
{
	u32 tmr_emask, tmr_ctrl, fiper, fiper_ctrl;
	struct timespec64 period, stime;
	u64 alarm, period_ns, cur_time;
	u32 channel, fiper_pw;
	unsigned long flags;

	if (rq->perout.flags)
		return -EOPNOTSUPP;

	channel = rq->perout.index;
	if (channel >= NETC_TMR_FIPER_NUM)
		return -EINVAL;

	spin_lock_irqsave(&priv->lock, flags);

	tmr_ctrl = netc_timer_read_reg(priv, NETC_TMR_CTRL);
	tmr_emask = netc_timer_read_reg(priv, NETC_TMR_TEMASK);
	fiper_ctrl = netc_timer_read_reg(priv, NETC_TMR_FIPER_CTRL);
	if (!on) {
		tmr_emask &= ~(TMR_TEVNET_PPEN(channel) |
			     TMR_TEVENT_ALM1EN);
		tmr_ctrl &= ~TMR_CTRL_FS;
		alarm = NETC_TMR_DEFAULT_ALARM;
		fiper = NETC_TMR_DEFAULT_FIPER;
		fiper_ctrl |= FIPER_CTRL_DIS(channel);
	} else {
		period.tv_sec = rq->perout.period.sec;
		period.tv_nsec = rq->perout.period.nsec;
		period_ns = timespec64_to_ns(&period);
		stime.tv_sec = rq->perout.start.sec;
		stime.tv_nsec = rq->perout.start.nsec;

		tmr_emask |= TMR_TEVNET_PPEN(channel) | TMR_TEVENT_ALM1EN;
		tmr_ctrl |= TMR_CTRL_FS;
		tmr_ctrl &= ~TMR_ALARM1P;

		/* fiper is set to desired FIPER interval in ns - TCLK_PERIOD
		 * and should be an integer multiple of TCLK_PERIOD.
		 */
		fiper = div_u64(period_ns, priv->period_int) - 1;
		fiper = fiper * priv->period_int;
		fiper_pw = netc_timer_calculate_fiper_pulse_width(priv, fiper);
		if (fiper_pw == 0) {
			dev_err(priv->dev, "The setting period is too small!\n");
			spin_unlock_irqrestore(&priv->lock, flags);

			return -EINVAL;
		}

		fiper_ctrl &= ~(FIPER_CTRL_DIS(channel) | FIPER_CTRL_PW(channel));
		fiper_ctrl |= (fiper_pw << 8 * channel) & FIPER_CTRL_PW(channel);

		/* alarm must be an integer multiple of TCLK_PERIOD in order
		 * to get correct result. In addtion, In FS mode the alarm
		 * trigger is used as an indication to the fiper start down
		 * counting. Only TMR_ALARM1 supports this mode.
		 */
		alarm = timespec64_to_ns(&stime);
		cur_time = netc_timer_cnt_read(priv);
		if (cur_time >= alarm) {
			dev_err(priv->dev, "Start time must greater than current time!\n");
			spin_unlock_irqrestore(&priv->lock, flags);

			return -EINVAL;
		}

		alarm = div_u64(alarm, priv->period_int);
		alarm = alarm * priv->period_int;
	}

	netc_timer_write_reg(priv, NETC_TMR_CTRL, tmr_ctrl);
	netc_timer_write_reg(priv, NETC_TMR_TEMASK, tmr_emask);
	netc_timer_write_reg(priv, NETC_TMR_FIPER(channel), fiper);
	netc_timer_alarm_write(priv, alarm, 0);
	netc_timer_write_reg(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl);

	spin_unlock_irqrestore(&priv->lock, flags);

	return 0;
}

static int netc_timer_enable(struct ptp_clock_info *ptp,
			     struct ptp_clock_request *rq, int on)
{
	struct netc_timer *priv;

	priv = container_of(ptp, struct netc_timer, caps);

	switch (rq->type) {
	case PTP_CLK_REQ_PEROUT:
		return net_timer_enable_perout(priv, rq, on);
	case PTP_CLK_REQ_PPS:
		return netc_timer_enable_pps(priv, rq, on);
	case PTP_CLK_REQ_EXTTS:
		/* TODO */
	default:
		return -EOPNOTSUPP;
	}
}

static const struct ptp_clock_info netc_timer_ptp_caps = {
	.owner		= THIS_MODULE,
	.name		= "NETC Timer PTP clock",
	.max_adj	= 500000000,
	.n_alarm	= 2,
	.n_ext_ts	= 2,
	.n_per_out	= 3,
	.n_pins		= 0,
	.pps		= 1,
	.adjfine	= netc_timer_adjfine,
	.adjtime	= netc_timer_adjtime,
	.gettimex64	= netc_timer_gettimex64,
	.settime64	= netc_timer_settime64,
	.enable		= netc_timer_enable,
};

int netc_timer_get_phc_index(int domain, unsigned int bus, unsigned int devfn)
{
	struct pci_dev *timer_pdev;
	struct netc_timer *priv;

	timer_pdev = pci_get_domain_bus_and_slot(domain, bus, devfn);
	if (!timer_pdev)
		return -EINVAL;

	priv = pci_get_drvdata(timer_pdev);
	if (!priv)
		return -EINVAL;

	return priv->phc_index;
}
EXPORT_SYMBOL_GPL(netc_timer_get_phc_index);

static int netc_timer_init(struct netc_timer *priv)
{
	struct device_node *node = priv->dev->of_node;
	u32 tmr_ctrl, alarm_ctrl, fiper_ctrl;
	struct timespec64 now;
	unsigned long flags;
	int i, err;
	u64 ns;

	priv->caps = netc_timer_ptp_caps;
	priv->oclk_prsc = NETC_TMR_DEFAULT_PRSC;

	if (of_property_read_u32(node, "fsl,clk-select", &priv->clk_select))
		priv->clk_select = NETC_TMR_SYSTEM_CLK;

	/* Check whether the clock source is valid */
	if (priv->clk_select != NETC_TMR_SYSTEM_CLK &&
	    priv->clk_select != NETC_TMR_CCM_TIMER1 &&
	    priv->clk_select != NETC_TMR_EXT_OSC) {
		dev_err(priv->dev, "Wrong clock source %d\n", priv->clk_select);

		return -EINVAL;
	}

	err = netc_timer_get_clk_config(priv);
	if (err)
		return err;

	alarm_ctrl = ALARM_CTRL_PG(0) | ALARM_CTRL_PG(1);

	spin_lock_init(&priv->lock);
	spin_lock_irqsave(&priv->lock, flags);

	/* Software must enable timer first and the clock selected must be
	 * active, otherwise, the registers which are in the timer clock
	 * domain are not accesdible.
	 */
	tmr_ctrl = (priv->clk_select & TMR_CTRL_CK_SEL) | TMR_CTRL_TE;
	netc_timer_write_reg(priv, NETC_TMR_CTRL, tmr_ctrl);

	/* Output FIPER pulse clock (TMR_GCLK) is generated by dividing the
	 * input clock of Timer by priv->oclk_prsc. For example, if input
	 * clock of Timer is 200MHz, and priv->oclk_prsc is 2, then TMR_GCLK
	 * is 100MHz.
	 */
	netc_timer_write_reg(priv, NETC_TMR_PRSC, priv->oclk_prsc);
	netc_timer_write_reg(priv, NETC_TMR_ALARM_CTRL, alarm_ctrl);
	fiper_ctrl = netc_timer_read_reg(priv, NETC_TMR_FIPER_CTRL);
	for (i = 0; i < NETC_TMR_FIPER_NUM; i++)
		fiper_ctrl |= FIPER_CTRL_DIS(i);
	netc_timer_write_reg(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl);

	ktime_get_real_ts64(&now);
	ns = timespec64_to_ns(&now);
	netc_timer_cnt_write(priv, ns);

	/* Allow atomic writes to TCLK_PERIOD and TMR_ADD,  An update
	 * to TCLK_PERIOD doesn't take effect until TMR_ADD is written.
	 */
	tmr_ctrl |= ((priv->period_int << 16) & TMR_CTRL_TCLK_PERIOD) |
		    TMR_COMP_MODE;
	netc_timer_write_reg(priv, NETC_TMR_CTRL, tmr_ctrl);
	netc_timer_write_reg(priv, NETC_TMR_ADD, priv->period_frac);

	spin_unlock_irqrestore(&priv->lock, flags);

	return 0;
}

static void netc_timer_deinit(struct netc_timer *priv)
{
	unsigned long flags;
	u32 fiper_ctrl;
	int i;

	spin_lock_irqsave(&priv->lock, flags);

	netc_timer_write_reg(priv, NETC_TMR_TEMASK, 0);
	netc_timer_alarm_write(priv, NETC_TMR_DEFAULT_ALARM, 0);
	fiper_ctrl = netc_timer_read_reg(priv, NETC_TMR_FIPER_CTRL);
	for (i = 0; i < NETC_TMR_FIPER_NUM; i++) {
		netc_timer_write_reg(priv, NETC_TMR_FIPER(i),
				     NETC_TMR_DEFAULT_FIPER);
		fiper_ctrl |= FIPER_CTRL_DIS(i);
	}
	netc_timer_write_reg(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl);

	spin_unlock_irqrestore(&priv->lock, flags);
}

static int netc_timer_probe(struct pci_dev *pdev,
			    const struct pci_device_id *id)
{
	struct device *dev = &pdev->dev;
	struct netc_timer *priv;
	int err, len, n;

	err = netc_ierb_get_init_status();
	if (err) {
		if (err != -EPROBE_DEFER)
			dev_err(dev, "Can't get IERB init status: %d\n", err);
		return err;
	}

	err = pci_enable_device_mem(pdev);
	if (err)
		return dev_err_probe(dev, err, "device enable failed\n");

	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
	if (err) {
		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
		goto disable_dev;
	}

	err = pci_request_mem_regions(pdev, KBUILD_MODNAME);
	if (err) {
		dev_err(dev, "pci_request_regions failed err=%d\n", err);
		goto disable_dev;
	}

	pci_set_master(pdev);
	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
	if (!priv) {
		err = -ENOMEM;
		goto release_mem_regions;
	}
	priv->dev = dev;
	priv->pci_dev = pdev;
	priv->phc_index = -1; /* initialize it as an invalid index */

	len = pci_resource_len(pdev, NETC_TMR_REGS_BAR);
	priv->base = ioremap(pci_resource_start(pdev, NETC_TMR_REGS_BAR), len);
	if (!priv->base) {
		err = -ENXIO;
		dev_err(dev, "ioremap() failed\n");
		goto free_priv;
	}

	n = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSIX);
	if (n != 1) {
		err = -EPERM;
		goto unmap_resource;
	}
	priv->irq = pci_irq_vector(pdev, 0);
	snprintf(priv->irq_name, sizeof(priv->irq_name),
		"ptp-netc %s", pci_name(pdev));
	err = request_irq(priv->irq, netc_timer_isr, 0, priv->irq_name, priv);
	if (err) {
		dev_err(dev, "request_irq() failed!\n");
		goto free_irq_vectors;
	}

	err = netc_timer_init(priv);
	if (err) {
		dev_err(dev, "NETC Timer initialization failed\n");
		goto free_irq;
	}

	priv->clock = ptp_clock_register(&priv->caps, priv->dev);
	if (IS_ERR(priv->clock)) {
		err = PTR_ERR(priv->clock);
		goto deinit_timer;
	}

	priv->phc_index = ptp_clock_index(priv->clock);

	pci_set_drvdata(pdev, priv);

	return 0;

deinit_timer:
	netc_timer_deinit(priv);
free_irq:
	free_irq(priv->irq, priv);
free_irq_vectors:
	pci_free_irq_vectors(pdev);
unmap_resource:
	iounmap(priv->base);
free_priv:
	kfree(priv);
release_mem_regions:
	pci_release_mem_regions(pdev);
disable_dev:
	pci_disable_device(pdev);

	return err;
}

static void netc_timer_remove(struct pci_dev *pdev)
{
	struct netc_timer *priv = pci_get_drvdata(pdev);

	netc_timer_deinit(priv);

	ptp_clock_unregister(priv->clock);
	iounmap(priv->base);
	free_irq(priv->irq, priv);

	pci_free_irq_vectors(pdev);
	kfree(priv);

	pci_release_mem_regions(pdev);
	pci_disable_device(pdev);
}

static const struct pci_device_id netc_timer_id_table[] = {
	{ PCI_DEVICE(PCI_VENDOR_ID_NXP2, PCI_DEVICE_ID_NXP2_NETC_TIMER) },
	{ 0, } /* End of table. */
};
MODULE_DEVICE_TABLE(pci, netc_timer_id_table);

static int ptp_netc_shutdown(struct netc_timer *priv)
{
	struct pci_dev *pdev = priv->pci_dev;

	netc_timer_deinit(priv);
	disable_irq(priv->irq);
	irq_set_affinity_hint(priv->irq, NULL);
	free_irq(priv->irq, priv);
	pci_free_irq_vectors(pdev);

	pci_save_state(pdev);
	pci_disable_device(priv->pci_dev);

	return 0;
}

static int ptp_netc_powerup(struct netc_timer *priv)
{
	struct pci_dev *pdev = priv->pci_dev;
	int err, n;

	err = netc_ierb_get_init_status();
	if (err) {
		dev_err(&pdev->dev, "Can't get IERB init status: %d\n", err);
		return err;
	}

	err = pci_enable_device_mem(pdev);
	if (err) {
		dev_err(&pdev->dev, "device enable failed\n");
		return err;
	}
	pci_restore_state(pdev);

	pci_set_master(pdev);

	n = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSIX);
	if (n != 1) {
		err = -EPERM;
		goto disable_dev;
	}
	priv->irq = pci_irq_vector(pdev, 0);
	err = request_irq(priv->irq, netc_timer_isr, 0, priv->irq_name, priv);
	if (err) {
		dev_err(&pdev->dev, "request_irq() failed!\n");
		goto free_irq_vectors;
	}

	err = netc_timer_init(priv);
	if (err) {
		dev_err(&pdev->dev, "NETC Timer initialization failed, err=%d\n", err);
		goto free_irq;
	}

	return 0;

free_irq:
	free_irq(priv->irq, priv);
free_irq_vectors:
	pci_free_irq_vectors(pdev);
disable_dev:
	pci_disable_device(pdev);

	return err;
}

static int ptp_netc_suspend_noirq(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct netc_timer *priv;
	int err;

	priv = pci_get_drvdata(pdev);

	if (netc_ierb_may_wakeonlan())
		return 0;

	err = ptp_netc_shutdown(priv);
	if (err) {
		dev_err(dev, "NETC Timer shutdown failed\n");
		return err;
	}

	return err;
}

static int ptp_netc_resume_noirq(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct netc_timer *priv;
	int err;

	priv = pci_get_drvdata(pdev);

	if (netc_ierb_may_wakeonlan())
		return 0;

	err = ptp_netc_powerup(priv);
	if (err) {
		dev_err(dev, "NETC Timer powerup failed\n");
		kfree(priv);
		return err;
	}

	return err;
}

static const struct dev_pm_ops __maybe_unused ptp_netc_pm_ops = {
	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(ptp_netc_suspend_noirq,
				      ptp_netc_resume_noirq)
};

static struct pci_driver netc_timer_driver = {
	.name = KBUILD_MODNAME,
	.id_table = netc_timer_id_table,
	.probe = netc_timer_probe,
	.remove = netc_timer_remove,
	.driver.pm = &ptp_netc_pm_ops,
};
module_pci_driver(netc_timer_driver);

MODULE_AUTHOR("Wei Fang <wei.fang@nxp.com>");
MODULE_DESCRIPTION("NXP NETC Timer Driver");
MODULE_LICENSE("Dual BSD/GPL");