preempt.h 12 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_PREEMPT_H
#define __LINUX_PREEMPT_H

/*
 * include/linux/preempt.h - macros for accessing and manipulating
 * preempt_count (used for kernel preemption, interrupt count, etc.)
 */

#include <linux/linkage.h>
#include <linux/list.h>

/*
 * We put the hardirq and softirq counter into the preemption
 * counter. The bitmask has the following meaning:
 *
 * - bits 0-7 are the preemption count (max preemption depth: 256)
 * - bits 8-15 are the softirq count (max # of softirqs: 256)
 *
 * The hardirq count could in theory be the same as the number of
 * interrupts in the system, but we run all interrupt handlers with
 * interrupts disabled, so we cannot have nesting interrupts. Though
 * there are a few palaeontologic drivers which reenable interrupts in
 * the handler, so we need more than one bit here.
 *
 *         PREEMPT_MASK:	0x000000ff
 *         SOFTIRQ_MASK:	0x0000ff00
 *         HARDIRQ_MASK:	0x000f0000
 *             NMI_MASK:	0x00f00000
 * PREEMPT_NEED_RESCHED:	0x80000000
 */
#define PREEMPT_BITS	8
#define SOFTIRQ_BITS	8
#define HARDIRQ_BITS	4
#define NMI_BITS	4

#define PREEMPT_SHIFT	0
#define SOFTIRQ_SHIFT	(PREEMPT_SHIFT + PREEMPT_BITS)
#define HARDIRQ_SHIFT	(SOFTIRQ_SHIFT + SOFTIRQ_BITS)
#define NMI_SHIFT	(HARDIRQ_SHIFT + HARDIRQ_BITS)

#define __IRQ_MASK(x)	((1UL << (x))-1)

#define PREEMPT_MASK	(__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT)
#define SOFTIRQ_MASK	(__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT)
#define HARDIRQ_MASK	(__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT)
#define NMI_MASK	(__IRQ_MASK(NMI_BITS)     << NMI_SHIFT)

#define PREEMPT_OFFSET	(1UL << PREEMPT_SHIFT)
#define SOFTIRQ_OFFSET	(1UL << SOFTIRQ_SHIFT)
#define HARDIRQ_OFFSET	(1UL << HARDIRQ_SHIFT)
#define NMI_OFFSET	(1UL << NMI_SHIFT)

#define SOFTIRQ_DISABLE_OFFSET	(2 * SOFTIRQ_OFFSET)

#define PREEMPT_DISABLED	(PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)

/*
 * Disable preemption until the scheduler is running -- use an unconditional
 * value so that it also works on !PREEMPT_COUNT kernels.
 *
 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
 */
#define INIT_PREEMPT_COUNT	PREEMPT_OFFSET

/*
 * Initial preempt_count value; reflects the preempt_count schedule invariant
 * which states that during context switches:
 *
 *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
 *
 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
 * Note: See finish_task_switch().
 */
#define FORK_PREEMPT_COUNT	(2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)

/* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */
#include <asm/preempt.h>

#define nmi_count()	(preempt_count() & NMI_MASK)
#define hardirq_count()	(preempt_count() & HARDIRQ_MASK)
#ifdef CONFIG_PREEMPT_RT
# define softirq_count()	(current->softirq_disable_cnt & SOFTIRQ_MASK)
#else
# define softirq_count()	(preempt_count() & SOFTIRQ_MASK)
#endif
#define irq_count()	(nmi_count() | hardirq_count() | softirq_count())

/*
 * Macros to retrieve the current execution context:
 *
 * in_nmi()		- We're in NMI context
 * in_hardirq()		- We're in hard IRQ context
 * in_serving_softirq()	- We're in softirq context
 * in_task()		- We're in task context
 */
#define in_nmi()		(nmi_count())
#define in_hardirq()		(hardirq_count())
#define in_serving_softirq()	(softirq_count() & SOFTIRQ_OFFSET)
#define in_task()		(!(in_nmi() | in_hardirq() | in_serving_softirq()))

/*
 * The following macros are deprecated and should not be used in new code:
 * in_irq()       - Obsolete version of in_hardirq()
 * in_softirq()   - We have BH disabled, or are processing softirqs
 * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled
 */
#define in_irq()		(hardirq_count())
#define in_softirq()		(softirq_count())
#define in_interrupt()		(irq_count())

/*
 * The preempt_count offset after preempt_disable();
 */
#if defined(CONFIG_PREEMPT_COUNT)
# define PREEMPT_DISABLE_OFFSET	PREEMPT_OFFSET
#else
# define PREEMPT_DISABLE_OFFSET	0
#endif

/*
 * The preempt_count offset after spin_lock()
 */
#if !defined(CONFIG_PREEMPT_RT)
#define PREEMPT_LOCK_OFFSET	PREEMPT_DISABLE_OFFSET
#else
#define PREEMPT_LOCK_OFFSET	0
#endif

/*
 * The preempt_count offset needed for things like:
 *
 *  spin_lock_bh()
 *
 * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and
 * softirqs, such that unlock sequences of:
 *
 *  spin_unlock();
 *  local_bh_enable();
 *
 * Work as expected.
 */
#define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET)

/*
 * Are we running in atomic context?  WARNING: this macro cannot
 * always detect atomic context; in particular, it cannot know about
 * held spinlocks in non-preemptible kernels.  Thus it should not be
 * used in the general case to determine whether sleeping is possible.
 * Do not use in_atomic() in driver code.
 */
#define in_atomic()	(preempt_count() != 0)

/*
 * Check whether we were atomic before we did preempt_disable():
 * (used by the scheduler)
 */
#define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET)

#if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
extern void preempt_count_add(int val);
extern void preempt_count_sub(int val);
#define preempt_count_dec_and_test() \
	({ preempt_count_sub(1); should_resched(0); })
#else
#define preempt_count_add(val)	__preempt_count_add(val)
#define preempt_count_sub(val)	__preempt_count_sub(val)
#define preempt_count_dec_and_test() __preempt_count_dec_and_test()
#endif

#define __preempt_count_inc() __preempt_count_add(1)
#define __preempt_count_dec() __preempt_count_sub(1)

#define preempt_count_inc() preempt_count_add(1)
#define preempt_count_dec() preempt_count_sub(1)

#ifdef CONFIG_PREEMPT_COUNT

#define preempt_disable() \
do { \
	preempt_count_inc(); \
	barrier(); \
} while (0)

#define sched_preempt_enable_no_resched() \
do { \
	barrier(); \
	preempt_count_dec(); \
} while (0)

#define preempt_enable_no_resched() sched_preempt_enable_no_resched()

#define preemptible()	(preempt_count() == 0 && !irqs_disabled())

#ifdef CONFIG_PREEMPTION
#define preempt_enable() \
do { \
	barrier(); \
	if (unlikely(preempt_count_dec_and_test())) \
		__preempt_schedule(); \
} while (0)

#define preempt_enable_notrace() \
do { \
	barrier(); \
	if (unlikely(__preempt_count_dec_and_test())) \
		__preempt_schedule_notrace(); \
} while (0)

#define preempt_check_resched() \
do { \
	if (should_resched(0)) \
		__preempt_schedule(); \
} while (0)

#else /* !CONFIG_PREEMPTION */
#define preempt_enable() \
do { \
	barrier(); \
	preempt_count_dec(); \
} while (0)

#define preempt_enable_notrace() \
do { \
	barrier(); \
	__preempt_count_dec(); \
} while (0)

#define preempt_check_resched() do { } while (0)
#endif /* CONFIG_PREEMPTION */

#define preempt_disable_notrace() \
do { \
	__preempt_count_inc(); \
	barrier(); \
} while (0)

#define preempt_enable_no_resched_notrace() \
do { \
	barrier(); \
	__preempt_count_dec(); \
} while (0)

#else /* !CONFIG_PREEMPT_COUNT */

/*
 * Even if we don't have any preemption, we need preempt disable/enable
 * to be barriers, so that we don't have things like get_user/put_user
 * that can cause faults and scheduling migrate into our preempt-protected
 * region.
 */
#define preempt_disable()			barrier()
#define sched_preempt_enable_no_resched()	barrier()
#define preempt_enable_no_resched()		barrier()
#define preempt_enable()			barrier()
#define preempt_check_resched()			do { } while (0)

#define preempt_disable_notrace()		barrier()
#define preempt_enable_no_resched_notrace()	barrier()
#define preempt_enable_notrace()		barrier()
#define preemptible()				0

#endif /* CONFIG_PREEMPT_COUNT */

#ifdef MODULE
/*
 * Modules have no business playing preemption tricks.
 */
#undef sched_preempt_enable_no_resched
#undef preempt_enable_no_resched
#undef preempt_enable_no_resched_notrace
#undef preempt_check_resched
#endif

#define preempt_set_need_resched() \
do { \
	set_preempt_need_resched(); \
} while (0)
#define preempt_fold_need_resched() \
do { \
	if (tif_need_resched()) \
		set_preempt_need_resched(); \
} while (0)

#ifdef CONFIG_PREEMPT_NOTIFIERS

struct preempt_notifier;

/**
 * preempt_ops - notifiers called when a task is preempted and rescheduled
 * @sched_in: we're about to be rescheduled:
 *    notifier: struct preempt_notifier for the task being scheduled
 *    cpu:  cpu we're scheduled on
 * @sched_out: we've just been preempted
 *    notifier: struct preempt_notifier for the task being preempted
 *    next: the task that's kicking us out
 *
 * Please note that sched_in and out are called under different
 * contexts.  sched_out is called with rq lock held and irq disabled
 * while sched_in is called without rq lock and irq enabled.  This
 * difference is intentional and depended upon by its users.
 */
struct preempt_ops {
	void (*sched_in)(struct preempt_notifier *notifier, int cpu);
	void (*sched_out)(struct preempt_notifier *notifier,
			  struct task_struct *next);
};

/**
 * preempt_notifier - key for installing preemption notifiers
 * @link: internal use
 * @ops: defines the notifier functions to be called
 *
 * Usually used in conjunction with container_of().
 */
struct preempt_notifier {
	struct hlist_node link;
	struct preempt_ops *ops;
};

void preempt_notifier_inc(void);
void preempt_notifier_dec(void);
void preempt_notifier_register(struct preempt_notifier *notifier);
void preempt_notifier_unregister(struct preempt_notifier *notifier);

static inline void preempt_notifier_init(struct preempt_notifier *notifier,
				     struct preempt_ops *ops)
{
	INIT_HLIST_NODE(&notifier->link);
	notifier->ops = ops;
}

#endif

#ifdef CONFIG_SMP

/*
 * Migrate-Disable and why it is undesired.
 *
 * When a preempted task becomes elegible to run under the ideal model (IOW it
 * becomes one of the M highest priority tasks), it might still have to wait
 * for the preemptee's migrate_disable() section to complete. Thereby suffering
 * a reduction in bandwidth in the exact duration of the migrate_disable()
 * section.
 *
 * Per this argument, the change from preempt_disable() to migrate_disable()
 * gets us:
 *
 * - a higher priority tasks gains reduced wake-up latency; with preempt_disable()
 *   it would have had to wait for the lower priority task.
 *
 * - a lower priority tasks; which under preempt_disable() could've instantly
 *   migrated away when another CPU becomes available, is now constrained
 *   by the ability to push the higher priority task away, which might itself be
 *   in a migrate_disable() section, reducing it's available bandwidth.
 *
 * IOW it trades latency / moves the interference term, but it stays in the
 * system, and as long as it remains unbounded, the system is not fully
 * deterministic.
 *
 *
 * The reason we have it anyway.
 *
 * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a
 * number of primitives into becoming preemptible, they would also allow
 * migration. This turns out to break a bunch of per-cpu usage. To this end,
 * all these primitives employ migirate_disable() to restore this implicit
 * assumption.
 *
 * This is a 'temporary' work-around at best. The correct solution is getting
 * rid of the above assumptions and reworking the code to employ explicit
 * per-cpu locking or short preempt-disable regions.
 *
 * The end goal must be to get rid of migrate_disable(), alternatively we need
 * a schedulability theory that does not depend on abritrary migration.
 *
 *
 * Notes on the implementation.
 *
 * The implementation is particularly tricky since existing code patterns
 * dictate neither migrate_disable() nor migrate_enable() is allowed to block.
 * This means that it cannot use cpus_read_lock() to serialize against hotplug,
 * nor can it easily migrate itself into a pending affinity mask change on
 * migrate_enable().
 *
 *
 * Note: even non-work-conserving schedulers like semi-partitioned depends on
 *       migration, so migrate_disable() is not only a problem for
 *       work-conserving schedulers.
 *
 */
extern void migrate_disable(void);
extern void migrate_enable(void);

#else

static inline void migrate_disable(void) { }
static inline void migrate_enable(void) { }

#endif /* CONFIG_SMP */

#endif /* __LINUX_PREEMPT_H */