swap.c 35.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
/*
 * linux/kernel/power/swap.c
 *
 * This file provides functions for reading the suspend image from
 * and writing it to a swap partition.
 *
 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
 *
 * This file is released under the GPLv2.
 *
 */

#include <linux/module.h>
#include <linux/file.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/genhd.h>
#include <linux/device.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/pm.h>
#include <linux/slab.h>
#include <linux/lzo.h>
#include <linux/vmalloc.h>
#include <linux/cpumask.h>
#include <linux/atomic.h>
#include <linux/kthread.h>
#include <linux/crc32.h>
#include <linux/ktime.h>

#include "power.h"

#define HIBERNATE_SIG	"S1SUSPEND"

/*
 *	The swap map is a data structure used for keeping track of each page
 *	written to a swap partition.  It consists of many swap_map_page
 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
 *	These structures are stored on the swap and linked together with the
 *	help of the .next_swap member.
 *
 *	The swap map is created during suspend.  The swap map pages are
 *	allocated and populated one at a time, so we only need one memory
 *	page to set up the entire structure.
 *
 *	During resume we pick up all swap_map_page structures into a list.
 */

#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)

/*
 * Number of free pages that are not high.
 */
static inline unsigned long low_free_pages(void)
{
	return nr_free_pages() - nr_free_highpages();
}

/*
 * Number of pages required to be kept free while writing the image. Always
 * half of all available low pages before the writing starts.
 */
static inline unsigned long reqd_free_pages(void)
{
	return low_free_pages() / 2;
}

struct swap_map_page {
	sector_t entries[MAP_PAGE_ENTRIES];
	sector_t next_swap;
};

struct swap_map_page_list {
	struct swap_map_page *map;
	struct swap_map_page_list *next;
};

/**
 *	The swap_map_handle structure is used for handling swap in
 *	a file-alike way
 */

struct swap_map_handle {
	struct swap_map_page *cur;
	struct swap_map_page_list *maps;
	sector_t cur_swap;
	sector_t first_sector;
	unsigned int k;
	unsigned long reqd_free_pages;
	u32 crc32;
};

struct swsusp_header {
	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
	              sizeof(u32)];
	u32	crc32;
	sector_t image;
	unsigned int flags;	/* Flags to pass to the "boot" kernel */
	char	orig_sig[10];
	char	sig[10];
} __packed;

static struct swsusp_header *swsusp_header;

/**
 *	The following functions are used for tracing the allocated
 *	swap pages, so that they can be freed in case of an error.
 */

struct swsusp_extent {
	struct rb_node node;
	unsigned long start;
	unsigned long end;
};

static struct rb_root swsusp_extents = RB_ROOT;

static int swsusp_extents_insert(unsigned long swap_offset)
{
	struct rb_node **new = &(swsusp_extents.rb_node);
	struct rb_node *parent = NULL;
	struct swsusp_extent *ext;

	/* Figure out where to put the new node */
	while (*new) {
		ext = rb_entry(*new, struct swsusp_extent, node);
		parent = *new;
		if (swap_offset < ext->start) {
			/* Try to merge */
			if (swap_offset == ext->start - 1) {
				ext->start--;
				return 0;
			}
			new = &((*new)->rb_left);
		} else if (swap_offset > ext->end) {
			/* Try to merge */
			if (swap_offset == ext->end + 1) {
				ext->end++;
				return 0;
			}
			new = &((*new)->rb_right);
		} else {
			/* It already is in the tree */
			return -EINVAL;
		}
	}
	/* Add the new node and rebalance the tree. */
	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
	if (!ext)
		return -ENOMEM;

	ext->start = swap_offset;
	ext->end = swap_offset;
	rb_link_node(&ext->node, parent, new);
	rb_insert_color(&ext->node, &swsusp_extents);
	return 0;
}

/**
 *	alloc_swapdev_block - allocate a swap page and register that it has
 *	been allocated, so that it can be freed in case of an error.
 */

sector_t alloc_swapdev_block(int swap)
{
	unsigned long offset;

	offset = swp_offset(get_swap_page_of_type(swap));
	if (offset) {
		if (swsusp_extents_insert(offset))
			swap_free(swp_entry(swap, offset));
		else
			return swapdev_block(swap, offset);
	}
	return 0;
}

/**
 *	free_all_swap_pages - free swap pages allocated for saving image data.
 *	It also frees the extents used to register which swap entries had been
 *	allocated.
 */

void free_all_swap_pages(int swap)
{
	struct rb_node *node;

	while ((node = swsusp_extents.rb_node)) {
		struct swsusp_extent *ext;
		unsigned long offset;

		ext = container_of(node, struct swsusp_extent, node);
		rb_erase(node, &swsusp_extents);
		for (offset = ext->start; offset <= ext->end; offset++)
			swap_free(swp_entry(swap, offset));

		kfree(ext);
	}
}

int swsusp_swap_in_use(void)
{
	return (swsusp_extents.rb_node != NULL);
}

/*
 * General things
 */

static unsigned short root_swap = 0xffff;
struct block_device *hib_resume_bdev;

/*
 * Saving part
 */

static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
{
	int error;

	hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
		swsusp_header->image = handle->first_sector;
		swsusp_header->flags = flags;
		if (flags & SF_CRC32_MODE)
			swsusp_header->crc32 = handle->crc32;
		error = hib_bio_write_page(swsusp_resume_block,
					swsusp_header, NULL);
	} else {
		printk(KERN_ERR "PM: Swap header not found!\n");
		error = -ENODEV;
	}
	return error;
}

/**
 *	swsusp_swap_check - check if the resume device is a swap device
 *	and get its index (if so)
 *
 *	This is called before saving image
 */
static int swsusp_swap_check(void)
{
	int res;

	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
			&hib_resume_bdev);
	if (res < 0)
		return res;

	root_swap = res;
	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
	if (res)
		return res;

	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
	if (res < 0)
		blkdev_put(hib_resume_bdev, FMODE_WRITE);

	return res;
}

/**
 *	write_page - Write one page to given swap location.
 *	@buf:		Address we're writing.
 *	@offset:	Offset of the swap page we're writing to.
 *	@bio_chain:	Link the next write BIO here
 */

static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
{
	void *src;
	int ret;

	if (!offset)
		return -ENOSPC;

	if (bio_chain) {
		src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN |
		                              __GFP_NORETRY);
		if (src) {
			copy_page(src, buf);
		} else {
			ret = hib_wait_on_bio_chain(bio_chain); /* Free pages */
			if (ret)
				return ret;
			src = (void *)__get_free_page(__GFP_WAIT |
			                              __GFP_NOWARN |
			                              __GFP_NORETRY);
			if (src) {
				copy_page(src, buf);
			} else {
				WARN_ON_ONCE(1);
				bio_chain = NULL;	/* Go synchronous */
				src = buf;
			}
		}
	} else {
		src = buf;
	}
	return hib_bio_write_page(offset, src, bio_chain);
}

static void release_swap_writer(struct swap_map_handle *handle)
{
	if (handle->cur)
		free_page((unsigned long)handle->cur);
	handle->cur = NULL;
}

static int get_swap_writer(struct swap_map_handle *handle)
{
	int ret;

	ret = swsusp_swap_check();
	if (ret) {
		if (ret != -ENOSPC)
			printk(KERN_ERR "PM: Cannot find swap device, try "
					"swapon -a.\n");
		return ret;
	}
	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
	if (!handle->cur) {
		ret = -ENOMEM;
		goto err_close;
	}
	handle->cur_swap = alloc_swapdev_block(root_swap);
	if (!handle->cur_swap) {
		ret = -ENOSPC;
		goto err_rel;
	}
	handle->k = 0;
	handle->reqd_free_pages = reqd_free_pages();
	handle->first_sector = handle->cur_swap;
	return 0;
err_rel:
	release_swap_writer(handle);
err_close:
	swsusp_close(FMODE_WRITE);
	return ret;
}

static int swap_write_page(struct swap_map_handle *handle, void *buf,
				struct bio **bio_chain)
{
	int error = 0;
	sector_t offset;

	if (!handle->cur)
		return -EINVAL;
	offset = alloc_swapdev_block(root_swap);
	error = write_page(buf, offset, bio_chain);
	if (error)
		return error;
	handle->cur->entries[handle->k++] = offset;
	if (handle->k >= MAP_PAGE_ENTRIES) {
		offset = alloc_swapdev_block(root_swap);
		if (!offset)
			return -ENOSPC;
		handle->cur->next_swap = offset;
		error = write_page(handle->cur, handle->cur_swap, bio_chain);
		if (error)
			goto out;
		clear_page(handle->cur);
		handle->cur_swap = offset;
		handle->k = 0;

		if (bio_chain && low_free_pages() <= handle->reqd_free_pages) {
			error = hib_wait_on_bio_chain(bio_chain);
			if (error)
				goto out;
			/*
			 * Recalculate the number of required free pages, to
			 * make sure we never take more than half.
			 */
			handle->reqd_free_pages = reqd_free_pages();
		}
	}
 out:
	return error;
}

static int flush_swap_writer(struct swap_map_handle *handle)
{
	if (handle->cur && handle->cur_swap)
		return write_page(handle->cur, handle->cur_swap, NULL);
	else
		return -EINVAL;
}

static int swap_writer_finish(struct swap_map_handle *handle,
		unsigned int flags, int error)
{
	if (!error) {
		flush_swap_writer(handle);
		printk(KERN_INFO "PM: S");
		error = mark_swapfiles(handle, flags);
		printk("|\n");
	}

	if (error)
		free_all_swap_pages(root_swap);
	release_swap_writer(handle);
	swsusp_close(FMODE_WRITE);

	return error;
}

/* We need to remember how much compressed data we need to read. */
#define LZO_HEADER	sizeof(size_t)

/* Number of pages/bytes we'll compress at one time. */
#define LZO_UNC_PAGES	32
#define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)

/* Number of pages/bytes we need for compressed data (worst case). */
#define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
			             LZO_HEADER, PAGE_SIZE)
#define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)

/* Maximum number of threads for compression/decompression. */
#define LZO_THREADS	3

/* Minimum/maximum number of pages for read buffering. */
#define LZO_MIN_RD_PAGES	1024
#define LZO_MAX_RD_PAGES	8192


/**
 *	save_image - save the suspend image data
 */

static int save_image(struct swap_map_handle *handle,
                      struct snapshot_handle *snapshot,
                      unsigned int nr_to_write)
{
	unsigned int m;
	int ret;
	int nr_pages;
	int err2;
	struct bio *bio;
	ktime_t start;
	ktime_t stop;

	printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
		nr_to_write);
	m = nr_to_write / 10;
	if (!m)
		m = 1;
	nr_pages = 0;
	bio = NULL;
	start = ktime_get();
	while (1) {
		ret = snapshot_read_next(snapshot);
		if (ret <= 0)
			break;
		ret = swap_write_page(handle, data_of(*snapshot), &bio);
		if (ret)
			break;
		if (!(nr_pages % m))
			printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
			       nr_pages / m * 10);
		nr_pages++;
	}
	err2 = hib_wait_on_bio_chain(&bio);
	stop = ktime_get();
	if (!ret)
		ret = err2;
	if (!ret)
		printk(KERN_INFO "PM: Image saving done.\n");
	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
	return ret;
}

/**
 * Structure used for CRC32.
 */
struct crc_data {
	struct task_struct *thr;                  /* thread */
	atomic_t ready;                           /* ready to start flag */
	atomic_t stop;                            /* ready to stop flag */
	unsigned run_threads;                     /* nr current threads */
	wait_queue_head_t go;                     /* start crc update */
	wait_queue_head_t done;                   /* crc update done */
	u32 *crc32;                               /* points to handle's crc32 */
	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
};

/**
 * CRC32 update function that runs in its own thread.
 */
static int crc32_threadfn(void *data)
{
	struct crc_data *d = data;
	unsigned i;

	while (1) {
		wait_event(d->go, atomic_read(&d->ready) ||
		                  kthread_should_stop());
		if (kthread_should_stop()) {
			d->thr = NULL;
			atomic_set(&d->stop, 1);
			wake_up(&d->done);
			break;
		}
		atomic_set(&d->ready, 0);

		for (i = 0; i < d->run_threads; i++)
			*d->crc32 = crc32_le(*d->crc32,
			                     d->unc[i], *d->unc_len[i]);
		atomic_set(&d->stop, 1);
		wake_up(&d->done);
	}
	return 0;
}
/**
 * Structure used for LZO data compression.
 */
struct cmp_data {
	struct task_struct *thr;                  /* thread */
	atomic_t ready;                           /* ready to start flag */
	atomic_t stop;                            /* ready to stop flag */
	int ret;                                  /* return code */
	wait_queue_head_t go;                     /* start compression */
	wait_queue_head_t done;                   /* compression done */
	size_t unc_len;                           /* uncompressed length */
	size_t cmp_len;                           /* compressed length */
	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
};

/**
 * Compression function that runs in its own thread.
 */
static int lzo_compress_threadfn(void *data)
{
	struct cmp_data *d = data;

	while (1) {
		wait_event(d->go, atomic_read(&d->ready) ||
		                  kthread_should_stop());
		if (kthread_should_stop()) {
			d->thr = NULL;
			d->ret = -1;
			atomic_set(&d->stop, 1);
			wake_up(&d->done);
			break;
		}
		atomic_set(&d->ready, 0);

		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
		                          d->cmp + LZO_HEADER, &d->cmp_len,
		                          d->wrk);
		atomic_set(&d->stop, 1);
		wake_up(&d->done);
	}
	return 0;
}

/**
 * save_image_lzo - Save the suspend image data compressed with LZO.
 * @handle: Swap map handle to use for saving the image.
 * @snapshot: Image to read data from.
 * @nr_to_write: Number of pages to save.
 */
static int save_image_lzo(struct swap_map_handle *handle,
                          struct snapshot_handle *snapshot,
                          unsigned int nr_to_write)
{
	unsigned int m;
	int ret = 0;
	int nr_pages;
	int err2;
	struct bio *bio;
	ktime_t start;
	ktime_t stop;
	size_t off;
	unsigned thr, run_threads, nr_threads;
	unsigned char *page = NULL;
	struct cmp_data *data = NULL;
	struct crc_data *crc = NULL;

	/*
	 * We'll limit the number of threads for compression to limit memory
	 * footprint.
	 */
	nr_threads = num_online_cpus() - 1;
	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);

	page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
	if (!page) {
		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
		ret = -ENOMEM;
		goto out_clean;
	}

	data = vmalloc(sizeof(*data) * nr_threads);
	if (!data) {
		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
		ret = -ENOMEM;
		goto out_clean;
	}
	for (thr = 0; thr < nr_threads; thr++)
		memset(&data[thr], 0, offsetof(struct cmp_data, go));

	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
	if (!crc) {
		printk(KERN_ERR "PM: Failed to allocate crc\n");
		ret = -ENOMEM;
		goto out_clean;
	}
	memset(crc, 0, offsetof(struct crc_data, go));

	/*
	 * Start the compression threads.
	 */
	for (thr = 0; thr < nr_threads; thr++) {
		init_waitqueue_head(&data[thr].go);
		init_waitqueue_head(&data[thr].done);

		data[thr].thr = kthread_run(lzo_compress_threadfn,
		                            &data[thr],
		                            "image_compress/%u", thr);
		if (IS_ERR(data[thr].thr)) {
			data[thr].thr = NULL;
			printk(KERN_ERR
			       "PM: Cannot start compression threads\n");
			ret = -ENOMEM;
			goto out_clean;
		}
	}

	/*
	 * Start the CRC32 thread.
	 */
	init_waitqueue_head(&crc->go);
	init_waitqueue_head(&crc->done);

	handle->crc32 = 0;
	crc->crc32 = &handle->crc32;
	for (thr = 0; thr < nr_threads; thr++) {
		crc->unc[thr] = data[thr].unc;
		crc->unc_len[thr] = &data[thr].unc_len;
	}

	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
	if (IS_ERR(crc->thr)) {
		crc->thr = NULL;
		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
		ret = -ENOMEM;
		goto out_clean;
	}

	/*
	 * Adjust the number of required free pages after all allocations have
	 * been done. We don't want to run out of pages when writing.
	 */
	handle->reqd_free_pages = reqd_free_pages();

	printk(KERN_INFO
		"PM: Using %u thread(s) for compression.\n"
		"PM: Compressing and saving image data (%u pages)...\n",
		nr_threads, nr_to_write);
	m = nr_to_write / 10;
	if (!m)
		m = 1;
	nr_pages = 0;
	bio = NULL;
	start = ktime_get();
	for (;;) {
		for (thr = 0; thr < nr_threads; thr++) {
			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
				ret = snapshot_read_next(snapshot);
				if (ret < 0)
					goto out_finish;

				if (!ret)
					break;

				memcpy(data[thr].unc + off,
				       data_of(*snapshot), PAGE_SIZE);

				if (!(nr_pages % m))
					printk(KERN_INFO
					       "PM: Image saving progress: "
					       "%3d%%\n",
				               nr_pages / m * 10);
				nr_pages++;
			}
			if (!off)
				break;

			data[thr].unc_len = off;

			atomic_set(&data[thr].ready, 1);
			wake_up(&data[thr].go);
		}

		if (!thr)
			break;

		crc->run_threads = thr;
		atomic_set(&crc->ready, 1);
		wake_up(&crc->go);

		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
			wait_event(data[thr].done,
			           atomic_read(&data[thr].stop));
			atomic_set(&data[thr].stop, 0);

			ret = data[thr].ret;

			if (ret < 0) {
				printk(KERN_ERR "PM: LZO compression failed\n");
				goto out_finish;
			}

			if (unlikely(!data[thr].cmp_len ||
			             data[thr].cmp_len >
			             lzo1x_worst_compress(data[thr].unc_len))) {
				printk(KERN_ERR
				       "PM: Invalid LZO compressed length\n");
				ret = -1;
				goto out_finish;
			}

			*(size_t *)data[thr].cmp = data[thr].cmp_len;

			/*
			 * Given we are writing one page at a time to disk, we
			 * copy that much from the buffer, although the last
			 * bit will likely be smaller than full page. This is
			 * OK - we saved the length of the compressed data, so
			 * any garbage at the end will be discarded when we
			 * read it.
			 */
			for (off = 0;
			     off < LZO_HEADER + data[thr].cmp_len;
			     off += PAGE_SIZE) {
				memcpy(page, data[thr].cmp + off, PAGE_SIZE);

				ret = swap_write_page(handle, page, &bio);
				if (ret)
					goto out_finish;
			}
		}

		wait_event(crc->done, atomic_read(&crc->stop));
		atomic_set(&crc->stop, 0);
	}

out_finish:
	err2 = hib_wait_on_bio_chain(&bio);
	stop = ktime_get();
	if (!ret)
		ret = err2;
	if (!ret)
		printk(KERN_INFO "PM: Image saving done.\n");
	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
out_clean:
	if (crc) {
		if (crc->thr)
			kthread_stop(crc->thr);
		kfree(crc);
	}
	if (data) {
		for (thr = 0; thr < nr_threads; thr++)
			if (data[thr].thr)
				kthread_stop(data[thr].thr);
		vfree(data);
	}
	if (page) free_page((unsigned long)page);

	return ret;
}

/**
 *	enough_swap - Make sure we have enough swap to save the image.
 *
 *	Returns TRUE or FALSE after checking the total amount of swap
 *	space avaiable from the resume partition.
 */

static int enough_swap(unsigned int nr_pages, unsigned int flags)
{
	unsigned int free_swap = count_swap_pages(root_swap, 1);
	unsigned int required;

	pr_debug("PM: Free swap pages: %u\n", free_swap);

	required = PAGES_FOR_IO + nr_pages;
	return free_swap > required;
}

/**
 *	swsusp_write - Write entire image and metadata.
 *	@flags: flags to pass to the "boot" kernel in the image header
 *
 *	It is important _NOT_ to umount filesystems at this point. We want
 *	them synced (in case something goes wrong) but we DO not want to mark
 *	filesystem clean: it is not. (And it does not matter, if we resume
 *	correctly, we'll mark system clean, anyway.)
 */

int swsusp_write(unsigned int flags)
{
	struct swap_map_handle handle;
	struct snapshot_handle snapshot;
	struct swsusp_info *header;
	unsigned long pages;
	int error;

	pages = snapshot_get_image_size();
	error = get_swap_writer(&handle);
	if (error) {
		printk(KERN_ERR "PM: Cannot get swap writer\n");
		return error;
	}
	if (flags & SF_NOCOMPRESS_MODE) {
		if (!enough_swap(pages, flags)) {
			printk(KERN_ERR "PM: Not enough free swap\n");
			error = -ENOSPC;
			goto out_finish;
		}
	}
	memset(&snapshot, 0, sizeof(struct snapshot_handle));
	error = snapshot_read_next(&snapshot);
	if (error < PAGE_SIZE) {
		if (error >= 0)
			error = -EFAULT;

		goto out_finish;
	}
	header = (struct swsusp_info *)data_of(snapshot);
	error = swap_write_page(&handle, header, NULL);
	if (!error) {
		error = (flags & SF_NOCOMPRESS_MODE) ?
			save_image(&handle, &snapshot, pages - 1) :
			save_image_lzo(&handle, &snapshot, pages - 1);
	}
out_finish:
	error = swap_writer_finish(&handle, flags, error);
	return error;
}

/**
 *	The following functions allow us to read data using a swap map
 *	in a file-alike way
 */

static void release_swap_reader(struct swap_map_handle *handle)
{
	struct swap_map_page_list *tmp;

	while (handle->maps) {
		if (handle->maps->map)
			free_page((unsigned long)handle->maps->map);
		tmp = handle->maps;
		handle->maps = handle->maps->next;
		kfree(tmp);
	}
	handle->cur = NULL;
}

static int get_swap_reader(struct swap_map_handle *handle,
		unsigned int *flags_p)
{
	int error;
	struct swap_map_page_list *tmp, *last;
	sector_t offset;

	*flags_p = swsusp_header->flags;

	if (!swsusp_header->image) /* how can this happen? */
		return -EINVAL;

	handle->cur = NULL;
	last = handle->maps = NULL;
	offset = swsusp_header->image;
	while (offset) {
		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
		if (!tmp) {
			release_swap_reader(handle);
			return -ENOMEM;
		}
		memset(tmp, 0, sizeof(*tmp));
		if (!handle->maps)
			handle->maps = tmp;
		if (last)
			last->next = tmp;
		last = tmp;

		tmp->map = (struct swap_map_page *)
		           __get_free_page(__GFP_WAIT | __GFP_HIGH);
		if (!tmp->map) {
			release_swap_reader(handle);
			return -ENOMEM;
		}

		error = hib_bio_read_page(offset, tmp->map, NULL);
		if (error) {
			release_swap_reader(handle);
			return error;
		}
		offset = tmp->map->next_swap;
	}
	handle->k = 0;
	handle->cur = handle->maps->map;
	return 0;
}

static int swap_read_page(struct swap_map_handle *handle, void *buf,
				struct bio **bio_chain)
{
	sector_t offset;
	int error;
	struct swap_map_page_list *tmp;

	if (!handle->cur)
		return -EINVAL;
	offset = handle->cur->entries[handle->k];
	if (!offset)
		return -EFAULT;
	error = hib_bio_read_page(offset, buf, bio_chain);
	if (error)
		return error;
	if (++handle->k >= MAP_PAGE_ENTRIES) {
		handle->k = 0;
		free_page((unsigned long)handle->maps->map);
		tmp = handle->maps;
		handle->maps = handle->maps->next;
		kfree(tmp);
		if (!handle->maps)
			release_swap_reader(handle);
		else
			handle->cur = handle->maps->map;
	}
	return error;
}

static int swap_reader_finish(struct swap_map_handle *handle)
{
	release_swap_reader(handle);

	return 0;
}

/**
 *	load_image - load the image using the swap map handle
 *	@handle and the snapshot handle @snapshot
 *	(assume there are @nr_pages pages to load)
 */

static int load_image(struct swap_map_handle *handle,
                      struct snapshot_handle *snapshot,
                      unsigned int nr_to_read)
{
	unsigned int m;
	int ret = 0;
	ktime_t start;
	ktime_t stop;
	struct bio *bio;
	int err2;
	unsigned nr_pages;

	printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
		nr_to_read);
	m = nr_to_read / 10;
	if (!m)
		m = 1;
	nr_pages = 0;
	bio = NULL;
	start = ktime_get();
	for ( ; ; ) {
		ret = snapshot_write_next(snapshot);
		if (ret <= 0)
			break;
		ret = swap_read_page(handle, data_of(*snapshot), &bio);
		if (ret)
			break;
		if (snapshot->sync_read)
			ret = hib_wait_on_bio_chain(&bio);
		if (ret)
			break;
		if (!(nr_pages % m))
			printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
			       nr_pages / m * 10);
		nr_pages++;
	}
	err2 = hib_wait_on_bio_chain(&bio);
	stop = ktime_get();
	if (!ret)
		ret = err2;
	if (!ret) {
		printk(KERN_INFO "PM: Image loading done.\n");
		snapshot_write_finalize(snapshot);
		if (!snapshot_image_loaded(snapshot))
			ret = -ENODATA;
	}
	swsusp_show_speed(start, stop, nr_to_read, "Read");
	return ret;
}

/**
 * Structure used for LZO data decompression.
 */
struct dec_data {
	struct task_struct *thr;                  /* thread */
	atomic_t ready;                           /* ready to start flag */
	atomic_t stop;                            /* ready to stop flag */
	int ret;                                  /* return code */
	wait_queue_head_t go;                     /* start decompression */
	wait_queue_head_t done;                   /* decompression done */
	size_t unc_len;                           /* uncompressed length */
	size_t cmp_len;                           /* compressed length */
	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
};

/**
 * Deompression function that runs in its own thread.
 */
static int lzo_decompress_threadfn(void *data)
{
	struct dec_data *d = data;

	while (1) {
		wait_event(d->go, atomic_read(&d->ready) ||
		                  kthread_should_stop());
		if (kthread_should_stop()) {
			d->thr = NULL;
			d->ret = -1;
			atomic_set(&d->stop, 1);
			wake_up(&d->done);
			break;
		}
		atomic_set(&d->ready, 0);

		d->unc_len = LZO_UNC_SIZE;
		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
		                               d->unc, &d->unc_len);
		atomic_set(&d->stop, 1);
		wake_up(&d->done);
	}
	return 0;
}

/**
 * load_image_lzo - Load compressed image data and decompress them with LZO.
 * @handle: Swap map handle to use for loading data.
 * @snapshot: Image to copy uncompressed data into.
 * @nr_to_read: Number of pages to load.
 */
static int load_image_lzo(struct swap_map_handle *handle,
                          struct snapshot_handle *snapshot,
                          unsigned int nr_to_read)
{
	unsigned int m;
	int ret = 0;
	int eof = 0;
	struct bio *bio;
	ktime_t start;
	ktime_t stop;
	unsigned nr_pages;
	size_t off;
	unsigned i, thr, run_threads, nr_threads;
	unsigned ring = 0, pg = 0, ring_size = 0,
	         have = 0, want, need, asked = 0;
	unsigned long read_pages = 0;
	unsigned char **page = NULL;
	struct dec_data *data = NULL;
	struct crc_data *crc = NULL;

	/*
	 * We'll limit the number of threads for decompression to limit memory
	 * footprint.
	 */
	nr_threads = num_online_cpus() - 1;
	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);

	page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
	if (!page) {
		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
		ret = -ENOMEM;
		goto out_clean;
	}

	data = vmalloc(sizeof(*data) * nr_threads);
	if (!data) {
		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
		ret = -ENOMEM;
		goto out_clean;
	}
	for (thr = 0; thr < nr_threads; thr++)
		memset(&data[thr], 0, offsetof(struct dec_data, go));

	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
	if (!crc) {
		printk(KERN_ERR "PM: Failed to allocate crc\n");
		ret = -ENOMEM;
		goto out_clean;
	}
	memset(crc, 0, offsetof(struct crc_data, go));

	/*
	 * Start the decompression threads.
	 */
	for (thr = 0; thr < nr_threads; thr++) {
		init_waitqueue_head(&data[thr].go);
		init_waitqueue_head(&data[thr].done);

		data[thr].thr = kthread_run(lzo_decompress_threadfn,
		                            &data[thr],
		                            "image_decompress/%u", thr);
		if (IS_ERR(data[thr].thr)) {
			data[thr].thr = NULL;
			printk(KERN_ERR
			       "PM: Cannot start decompression threads\n");
			ret = -ENOMEM;
			goto out_clean;
		}
	}

	/*
	 * Start the CRC32 thread.
	 */
	init_waitqueue_head(&crc->go);
	init_waitqueue_head(&crc->done);

	handle->crc32 = 0;
	crc->crc32 = &handle->crc32;
	for (thr = 0; thr < nr_threads; thr++) {
		crc->unc[thr] = data[thr].unc;
		crc->unc_len[thr] = &data[thr].unc_len;
	}

	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
	if (IS_ERR(crc->thr)) {
		crc->thr = NULL;
		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
		ret = -ENOMEM;
		goto out_clean;
	}

	/*
	 * Set the number of pages for read buffering.
	 * This is complete guesswork, because we'll only know the real
	 * picture once prepare_image() is called, which is much later on
	 * during the image load phase. We'll assume the worst case and
	 * say that none of the image pages are from high memory.
	 */
	if (low_free_pages() > snapshot_get_image_size())
		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);

	for (i = 0; i < read_pages; i++) {
		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
		                                  __GFP_WAIT | __GFP_HIGH :
		                                  __GFP_WAIT | __GFP_NOWARN |
		                                  __GFP_NORETRY);

		if (!page[i]) {
			if (i < LZO_CMP_PAGES) {
				ring_size = i;
				printk(KERN_ERR
				       "PM: Failed to allocate LZO pages\n");
				ret = -ENOMEM;
				goto out_clean;
			} else {
				break;
			}
		}
	}
	want = ring_size = i;

	printk(KERN_INFO
		"PM: Using %u thread(s) for decompression.\n"
		"PM: Loading and decompressing image data (%u pages)...\n",
		nr_threads, nr_to_read);
	m = nr_to_read / 10;
	if (!m)
		m = 1;
	nr_pages = 0;
	bio = NULL;
	start = ktime_get();

	ret = snapshot_write_next(snapshot);
	if (ret <= 0)
		goto out_finish;

	for(;;) {
		for (i = 0; !eof && i < want; i++) {
			ret = swap_read_page(handle, page[ring], &bio);
			if (ret) {
				/*
				 * On real read error, finish. On end of data,
				 * set EOF flag and just exit the read loop.
				 */
				if (handle->cur &&
				    handle->cur->entries[handle->k]) {
					goto out_finish;
				} else {
					eof = 1;
					break;
				}
			}
			if (++ring >= ring_size)
				ring = 0;
		}
		asked += i;
		want -= i;

		/*
		 * We are out of data, wait for some more.
		 */
		if (!have) {
			if (!asked)
				break;

			ret = hib_wait_on_bio_chain(&bio);
			if (ret)
				goto out_finish;
			have += asked;
			asked = 0;
			if (eof)
				eof = 2;
		}

		if (crc->run_threads) {
			wait_event(crc->done, atomic_read(&crc->stop));
			atomic_set(&crc->stop, 0);
			crc->run_threads = 0;
		}

		for (thr = 0; have && thr < nr_threads; thr++) {
			data[thr].cmp_len = *(size_t *)page[pg];
			if (unlikely(!data[thr].cmp_len ||
			             data[thr].cmp_len >
			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
				printk(KERN_ERR
				       "PM: Invalid LZO compressed length\n");
				ret = -1;
				goto out_finish;
			}

			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
			                    PAGE_SIZE);
			if (need > have) {
				if (eof > 1) {
					ret = -1;
					goto out_finish;
				}
				break;
			}

			for (off = 0;
			     off < LZO_HEADER + data[thr].cmp_len;
			     off += PAGE_SIZE) {
				memcpy(data[thr].cmp + off,
				       page[pg], PAGE_SIZE);
				have--;
				want++;
				if (++pg >= ring_size)
					pg = 0;
			}

			atomic_set(&data[thr].ready, 1);
			wake_up(&data[thr].go);
		}

		/*
		 * Wait for more data while we are decompressing.
		 */
		if (have < LZO_CMP_PAGES && asked) {
			ret = hib_wait_on_bio_chain(&bio);
			if (ret)
				goto out_finish;
			have += asked;
			asked = 0;
			if (eof)
				eof = 2;
		}

		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
			wait_event(data[thr].done,
			           atomic_read(&data[thr].stop));
			atomic_set(&data[thr].stop, 0);

			ret = data[thr].ret;

			if (ret < 0) {
				printk(KERN_ERR
				       "PM: LZO decompression failed\n");
				goto out_finish;
			}

			if (unlikely(!data[thr].unc_len ||
			             data[thr].unc_len > LZO_UNC_SIZE ||
			             data[thr].unc_len & (PAGE_SIZE - 1))) {
				printk(KERN_ERR
				       "PM: Invalid LZO uncompressed length\n");
				ret = -1;
				goto out_finish;
			}

			for (off = 0;
			     off < data[thr].unc_len; off += PAGE_SIZE) {
				memcpy(data_of(*snapshot),
				       data[thr].unc + off, PAGE_SIZE);

				if (!(nr_pages % m))
					printk(KERN_INFO
					       "PM: Image loading progress: "
					       "%3d%%\n",
					       nr_pages / m * 10);
				nr_pages++;

				ret = snapshot_write_next(snapshot);
				if (ret <= 0) {
					crc->run_threads = thr + 1;
					atomic_set(&crc->ready, 1);
					wake_up(&crc->go);
					goto out_finish;
				}
			}
		}

		crc->run_threads = thr;
		atomic_set(&crc->ready, 1);
		wake_up(&crc->go);
	}

out_finish:
	if (crc->run_threads) {
		wait_event(crc->done, atomic_read(&crc->stop));
		atomic_set(&crc->stop, 0);
	}
	stop = ktime_get();
	if (!ret) {
		printk(KERN_INFO "PM: Image loading done.\n");
		snapshot_write_finalize(snapshot);
		if (!snapshot_image_loaded(snapshot))
			ret = -ENODATA;
		if (!ret) {
			if (swsusp_header->flags & SF_CRC32_MODE) {
				if(handle->crc32 != swsusp_header->crc32) {
					printk(KERN_ERR
					       "PM: Invalid image CRC32!\n");
					ret = -ENODATA;
				}
			}
		}
	}
	swsusp_show_speed(start, stop, nr_to_read, "Read");
out_clean:
	for (i = 0; i < ring_size; i++)
		free_page((unsigned long)page[i]);
	if (crc) {
		if (crc->thr)
			kthread_stop(crc->thr);
		kfree(crc);
	}
	if (data) {
		for (thr = 0; thr < nr_threads; thr++)
			if (data[thr].thr)
				kthread_stop(data[thr].thr);
		vfree(data);
	}
	vfree(page);

	return ret;
}

/**
 *	swsusp_read - read the hibernation image.
 *	@flags_p: flags passed by the "frozen" kernel in the image header should
 *		  be written into this memory location
 */

int swsusp_read(unsigned int *flags_p)
{
	int error;
	struct swap_map_handle handle;
	struct snapshot_handle snapshot;
	struct swsusp_info *header;

	memset(&snapshot, 0, sizeof(struct snapshot_handle));
	error = snapshot_write_next(&snapshot);
	if (error < PAGE_SIZE)
		return error < 0 ? error : -EFAULT;
	header = (struct swsusp_info *)data_of(snapshot);
	error = get_swap_reader(&handle, flags_p);
	if (error)
		goto end;
	if (!error)
		error = swap_read_page(&handle, header, NULL);
	if (!error) {
		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
			load_image(&handle, &snapshot, header->pages - 1) :
			load_image_lzo(&handle, &snapshot, header->pages - 1);
	}
	swap_reader_finish(&handle);
end:
	if (!error)
		pr_debug("PM: Image successfully loaded\n");
	else
		pr_debug("PM: Error %d resuming\n", error);
	return error;
}

/**
 *      swsusp_check - Check for swsusp signature in the resume device
 */

int swsusp_check(void)
{
	int error;

	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
					    FMODE_READ, NULL);
	if (!IS_ERR(hib_resume_bdev)) {
		set_blocksize(hib_resume_bdev, PAGE_SIZE);
		clear_page(swsusp_header);
		error = hib_bio_read_page(swsusp_resume_block,
					swsusp_header, NULL);
		if (error)
			goto put;

		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
			/* Reset swap signature now */
			error = hib_bio_write_page(swsusp_resume_block,
						swsusp_header, NULL);
		} else {
			error = -EINVAL;
		}

put:
		if (error)
			blkdev_put(hib_resume_bdev, FMODE_READ);
		else
			pr_debug("PM: Image signature found, resuming\n");
	} else {
		error = PTR_ERR(hib_resume_bdev);
	}

	if (error)
		pr_debug("PM: Image not found (code %d)\n", error);

	return error;
}

/**
 *	swsusp_close - close swap device.
 */

void swsusp_close(fmode_t mode)
{
	if (IS_ERR(hib_resume_bdev)) {
		pr_debug("PM: Image device not initialised\n");
		return;
	}

	blkdev_put(hib_resume_bdev, mode);
}

/**
 *      swsusp_unmark - Unmark swsusp signature in the resume device
 */

#ifdef CONFIG_SUSPEND
int swsusp_unmark(void)
{
	int error;

	hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
		error = hib_bio_write_page(swsusp_resume_block,
					swsusp_header, NULL);
	} else {
		printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
		error = -ENODEV;
	}

	/*
	 * We just returned from suspend, we don't need the image any more.
	 */
	free_all_swap_pages(root_swap);

	return error;
}
#endif

static int swsusp_header_init(void)
{
	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
	if (!swsusp_header)
		panic("Could not allocate memory for swsusp_header\n");
	return 0;
}

core_initcall(swsusp_header_init);