iw_rdma.c 24.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
/*
 * Copyright (c) 2006 Oracle.  All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/ratelimit.h>

#include "rds.h"
#include "iw.h"


/*
 * This is stored as mr->r_trans_private.
 */
struct rds_iw_mr {
	struct rds_iw_device	*device;
	struct rds_iw_mr_pool	*pool;
	struct rdma_cm_id	*cm_id;

	struct ib_mr	*mr;
	struct ib_fast_reg_page_list *page_list;

	struct rds_iw_mapping	mapping;
	unsigned char		remap_count;
};

/*
 * Our own little MR pool
 */
struct rds_iw_mr_pool {
	struct rds_iw_device	*device;		/* back ptr to the device that owns us */

	struct mutex		flush_lock;		/* serialize fmr invalidate */
	struct work_struct	flush_worker;		/* flush worker */

	spinlock_t		list_lock;		/* protect variables below */
	atomic_t		item_count;		/* total # of MRs */
	atomic_t		dirty_count;		/* # dirty of MRs */
	struct list_head	dirty_list;		/* dirty mappings */
	struct list_head	clean_list;		/* unused & unamapped MRs */
	atomic_t		free_pinned;		/* memory pinned by free MRs */
	unsigned long		max_message_size;	/* in pages */
	unsigned long		max_items;
	unsigned long		max_items_soft;
	unsigned long		max_free_pinned;
	int			max_pages;
};

static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
			  struct rds_iw_mr *ibmr,
			  struct scatterlist *sg, unsigned int nents);
static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
			struct list_head *unmap_list,
			struct list_head *kill_list,
			int *unpinned);
static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);

static int rds_iw_get_device(struct sockaddr_in *src, struct sockaddr_in *dst,
			     struct rds_iw_device **rds_iwdev,
			     struct rdma_cm_id **cm_id)
{
	struct rds_iw_device *iwdev;
	struct rds_iw_cm_id *i_cm_id;

	*rds_iwdev = NULL;
	*cm_id = NULL;

	list_for_each_entry(iwdev, &rds_iw_devices, list) {
		spin_lock_irq(&iwdev->spinlock);
		list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
			struct sockaddr_in *src_addr, *dst_addr;

			src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
			dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;

			rdsdebug("local ipaddr = %x port %d, "
				 "remote ipaddr = %x port %d"
				 "..looking for %x port %d, "
				 "remote ipaddr = %x port %d\n",
				src_addr->sin_addr.s_addr,
				src_addr->sin_port,
				dst_addr->sin_addr.s_addr,
				dst_addr->sin_port,
				src->sin_addr.s_addr,
				src->sin_port,
				dst->sin_addr.s_addr,
				dst->sin_port);
#ifdef WORKING_TUPLE_DETECTION
			if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr &&
			    src_addr->sin_port == src->sin_port &&
			    dst_addr->sin_addr.s_addr == dst->sin_addr.s_addr &&
			    dst_addr->sin_port == dst->sin_port) {
#else
			/* FIXME - needs to compare the local and remote
			 * ipaddr/port tuple, but the ipaddr is the only
			 * available information in the rds_sock (as the rest are
			 * zero'ed.  It doesn't appear to be properly populated
			 * during connection setup...
			 */
			if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr) {
#endif
				spin_unlock_irq(&iwdev->spinlock);
				*rds_iwdev = iwdev;
				*cm_id = i_cm_id->cm_id;
				return 0;
			}
		}
		spin_unlock_irq(&iwdev->spinlock);
	}

	return 1;
}

static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
{
	struct rds_iw_cm_id *i_cm_id;

	i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
	if (!i_cm_id)
		return -ENOMEM;

	i_cm_id->cm_id = cm_id;

	spin_lock_irq(&rds_iwdev->spinlock);
	list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
	spin_unlock_irq(&rds_iwdev->spinlock);

	return 0;
}

static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
				struct rdma_cm_id *cm_id)
{
	struct rds_iw_cm_id *i_cm_id;

	spin_lock_irq(&rds_iwdev->spinlock);
	list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
		if (i_cm_id->cm_id == cm_id) {
			list_del(&i_cm_id->list);
			kfree(i_cm_id);
			break;
		}
	}
	spin_unlock_irq(&rds_iwdev->spinlock);
}


int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
{
	struct sockaddr_in *src_addr, *dst_addr;
	struct rds_iw_device *rds_iwdev_old;
	struct rdma_cm_id *pcm_id;
	int rc;

	src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
	dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;

	rc = rds_iw_get_device(src_addr, dst_addr, &rds_iwdev_old, &pcm_id);
	if (rc)
		rds_iw_remove_cm_id(rds_iwdev, cm_id);

	return rds_iw_add_cm_id(rds_iwdev, cm_id);
}

void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
{
	struct rds_iw_connection *ic = conn->c_transport_data;

	/* conn was previously on the nodev_conns_list */
	spin_lock_irq(&iw_nodev_conns_lock);
	BUG_ON(list_empty(&iw_nodev_conns));
	BUG_ON(list_empty(&ic->iw_node));
	list_del(&ic->iw_node);

	spin_lock(&rds_iwdev->spinlock);
	list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
	spin_unlock(&rds_iwdev->spinlock);
	spin_unlock_irq(&iw_nodev_conns_lock);

	ic->rds_iwdev = rds_iwdev;
}

void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
{
	struct rds_iw_connection *ic = conn->c_transport_data;

	/* place conn on nodev_conns_list */
	spin_lock(&iw_nodev_conns_lock);

	spin_lock_irq(&rds_iwdev->spinlock);
	BUG_ON(list_empty(&ic->iw_node));
	list_del(&ic->iw_node);
	spin_unlock_irq(&rds_iwdev->spinlock);

	list_add_tail(&ic->iw_node, &iw_nodev_conns);

	spin_unlock(&iw_nodev_conns_lock);

	rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
	ic->rds_iwdev = NULL;
}

void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
{
	struct rds_iw_connection *ic, *_ic;
	LIST_HEAD(tmp_list);

	/* avoid calling conn_destroy with irqs off */
	spin_lock_irq(list_lock);
	list_splice(list, &tmp_list);
	INIT_LIST_HEAD(list);
	spin_unlock_irq(list_lock);

	list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
		rds_conn_destroy(ic->conn);
}

static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
		struct scatterlist *list, unsigned int sg_len)
{
	sg->list = list;
	sg->len = sg_len;
	sg->dma_len = 0;
	sg->dma_npages = 0;
	sg->bytes = 0;
}

static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
			struct rds_iw_scatterlist *sg)
{
	struct ib_device *dev = rds_iwdev->dev;
	u64 *dma_pages = NULL;
	int i, j, ret;

	WARN_ON(sg->dma_len);

	sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
	if (unlikely(!sg->dma_len)) {
		printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
		return ERR_PTR(-EBUSY);
	}

	sg->bytes = 0;
	sg->dma_npages = 0;

	ret = -EINVAL;
	for (i = 0; i < sg->dma_len; ++i) {
		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
		u64 end_addr;

		sg->bytes += dma_len;

		end_addr = dma_addr + dma_len;
		if (dma_addr & PAGE_MASK) {
			if (i > 0)
				goto out_unmap;
			dma_addr &= ~PAGE_MASK;
		}
		if (end_addr & PAGE_MASK) {
			if (i < sg->dma_len - 1)
				goto out_unmap;
			end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
		}

		sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
	}

	/* Now gather the dma addrs into one list */
	if (sg->dma_npages > fastreg_message_size)
		goto out_unmap;

	dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
	if (!dma_pages) {
		ret = -ENOMEM;
		goto out_unmap;
	}

	for (i = j = 0; i < sg->dma_len; ++i) {
		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
		u64 end_addr;

		end_addr = dma_addr + dma_len;
		dma_addr &= ~PAGE_MASK;
		for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
			dma_pages[j++] = dma_addr;
		BUG_ON(j > sg->dma_npages);
	}

	return dma_pages;

out_unmap:
	ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
	sg->dma_len = 0;
	kfree(dma_pages);
	return ERR_PTR(ret);
}


struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
{
	struct rds_iw_mr_pool *pool;

	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool) {
		printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
		return ERR_PTR(-ENOMEM);
	}

	pool->device = rds_iwdev;
	INIT_LIST_HEAD(&pool->dirty_list);
	INIT_LIST_HEAD(&pool->clean_list);
	mutex_init(&pool->flush_lock);
	spin_lock_init(&pool->list_lock);
	INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);

	pool->max_message_size = fastreg_message_size;
	pool->max_items = fastreg_pool_size;
	pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
	pool->max_pages = fastreg_message_size;

	/* We never allow more than max_items MRs to be allocated.
	 * When we exceed more than max_items_soft, we start freeing
	 * items more aggressively.
	 * Make sure that max_items > max_items_soft > max_items / 2
	 */
	pool->max_items_soft = pool->max_items * 3 / 4;

	return pool;
}

void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
{
	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;

	iinfo->rdma_mr_max = pool->max_items;
	iinfo->rdma_mr_size = pool->max_pages;
}

void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
{
	flush_workqueue(rds_wq);
	rds_iw_flush_mr_pool(pool, 1);
	BUG_ON(atomic_read(&pool->item_count));
	BUG_ON(atomic_read(&pool->free_pinned));
	kfree(pool);
}

static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
{
	struct rds_iw_mr *ibmr = NULL;
	unsigned long flags;

	spin_lock_irqsave(&pool->list_lock, flags);
	if (!list_empty(&pool->clean_list)) {
		ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
		list_del_init(&ibmr->mapping.m_list);
	}
	spin_unlock_irqrestore(&pool->list_lock, flags);

	return ibmr;
}

static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
{
	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
	struct rds_iw_mr *ibmr = NULL;
	int err = 0, iter = 0;

	while (1) {
		ibmr = rds_iw_reuse_fmr(pool);
		if (ibmr)
			return ibmr;

		/* No clean MRs - now we have the choice of either
		 * allocating a fresh MR up to the limit imposed by the
		 * driver, or flush any dirty unused MRs.
		 * We try to avoid stalling in the send path if possible,
		 * so we allocate as long as we're allowed to.
		 *
		 * We're fussy with enforcing the FMR limit, though. If the driver
		 * tells us we can't use more than N fmrs, we shouldn't start
		 * arguing with it */
		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
			break;

		atomic_dec(&pool->item_count);

		if (++iter > 2) {
			rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
			return ERR_PTR(-EAGAIN);
		}

		/* We do have some empty MRs. Flush them out. */
		rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
		rds_iw_flush_mr_pool(pool, 0);
	}

	ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
	if (!ibmr) {
		err = -ENOMEM;
		goto out_no_cigar;
	}

	spin_lock_init(&ibmr->mapping.m_lock);
	INIT_LIST_HEAD(&ibmr->mapping.m_list);
	ibmr->mapping.m_mr = ibmr;

	err = rds_iw_init_fastreg(pool, ibmr);
	if (err)
		goto out_no_cigar;

	rds_iw_stats_inc(s_iw_rdma_mr_alloc);
	return ibmr;

out_no_cigar:
	if (ibmr) {
		rds_iw_destroy_fastreg(pool, ibmr);
		kfree(ibmr);
	}
	atomic_dec(&pool->item_count);
	return ERR_PTR(err);
}

void rds_iw_sync_mr(void *trans_private, int direction)
{
	struct rds_iw_mr *ibmr = trans_private;
	struct rds_iw_device *rds_iwdev = ibmr->device;

	switch (direction) {
	case DMA_FROM_DEVICE:
		ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
		break;
	case DMA_TO_DEVICE:
		ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
		break;
	}
}

/*
 * Flush our pool of MRs.
 * At a minimum, all currently unused MRs are unmapped.
 * If the number of MRs allocated exceeds the limit, we also try
 * to free as many MRs as needed to get back to this limit.
 */
static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
{
	struct rds_iw_mr *ibmr, *next;
	LIST_HEAD(unmap_list);
	LIST_HEAD(kill_list);
	unsigned long flags;
	unsigned int nfreed = 0, ncleaned = 0, unpinned = 0;
	int ret = 0;

	rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);

	mutex_lock(&pool->flush_lock);

	spin_lock_irqsave(&pool->list_lock, flags);
	/* Get the list of all mappings to be destroyed */
	list_splice_init(&pool->dirty_list, &unmap_list);
	if (free_all)
		list_splice_init(&pool->clean_list, &kill_list);
	spin_unlock_irqrestore(&pool->list_lock, flags);

	/* Batched invalidate of dirty MRs.
	 * For FMR based MRs, the mappings on the unmap list are
	 * actually members of an ibmr (ibmr->mapping). They either
	 * migrate to the kill_list, or have been cleaned and should be
	 * moved to the clean_list.
	 * For fastregs, they will be dynamically allocated, and
	 * will be destroyed by the unmap function.
	 */
	if (!list_empty(&unmap_list)) {
		ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list,
						     &kill_list, &unpinned);
		/* If we've been asked to destroy all MRs, move those
		 * that were simply cleaned to the kill list */
		if (free_all)
			list_splice_init(&unmap_list, &kill_list);
	}

	/* Destroy any MRs that are past their best before date */
	list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
		rds_iw_stats_inc(s_iw_rdma_mr_free);
		list_del(&ibmr->mapping.m_list);
		rds_iw_destroy_fastreg(pool, ibmr);
		kfree(ibmr);
		nfreed++;
	}

	/* Anything that remains are laundered ibmrs, which we can add
	 * back to the clean list. */
	if (!list_empty(&unmap_list)) {
		spin_lock_irqsave(&pool->list_lock, flags);
		list_splice(&unmap_list, &pool->clean_list);
		spin_unlock_irqrestore(&pool->list_lock, flags);
	}

	atomic_sub(unpinned, &pool->free_pinned);
	atomic_sub(ncleaned, &pool->dirty_count);
	atomic_sub(nfreed, &pool->item_count);

	mutex_unlock(&pool->flush_lock);
	return ret;
}

static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
{
	struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);

	rds_iw_flush_mr_pool(pool, 0);
}

void rds_iw_free_mr(void *trans_private, int invalidate)
{
	struct rds_iw_mr *ibmr = trans_private;
	struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;

	rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
	if (!pool)
		return;

	/* Return it to the pool's free list */
	rds_iw_free_fastreg(pool, ibmr);

	/* If we've pinned too many pages, request a flush */
	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
	    atomic_read(&pool->dirty_count) >= pool->max_items / 10)
		queue_work(rds_wq, &pool->flush_worker);

	if (invalidate) {
		if (likely(!in_interrupt())) {
			rds_iw_flush_mr_pool(pool, 0);
		} else {
			/* We get here if the user created a MR marked
			 * as use_once and invalidate at the same time. */
			queue_work(rds_wq, &pool->flush_worker);
		}
	}
}

void rds_iw_flush_mrs(void)
{
	struct rds_iw_device *rds_iwdev;

	list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
		struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;

		if (pool)
			rds_iw_flush_mr_pool(pool, 0);
	}
}

void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
		    struct rds_sock *rs, u32 *key_ret)
{
	struct rds_iw_device *rds_iwdev;
	struct rds_iw_mr *ibmr = NULL;
	struct rdma_cm_id *cm_id;
	struct sockaddr_in src = {
		.sin_addr.s_addr = rs->rs_bound_addr,
		.sin_port = rs->rs_bound_port,
	};
	struct sockaddr_in dst = {
		.sin_addr.s_addr = rs->rs_conn_addr,
		.sin_port = rs->rs_conn_port,
	};
	int ret;

	ret = rds_iw_get_device(&src, &dst, &rds_iwdev, &cm_id);
	if (ret || !cm_id) {
		ret = -ENODEV;
		goto out;
	}

	if (!rds_iwdev->mr_pool) {
		ret = -ENODEV;
		goto out;
	}

	ibmr = rds_iw_alloc_mr(rds_iwdev);
	if (IS_ERR(ibmr))
		return ibmr;

	ibmr->cm_id = cm_id;
	ibmr->device = rds_iwdev;

	ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
	if (ret == 0)
		*key_ret = ibmr->mr->rkey;
	else
		printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);

out:
	if (ret) {
		if (ibmr)
			rds_iw_free_mr(ibmr, 0);
		ibmr = ERR_PTR(ret);
	}
	return ibmr;
}

/*
 * iWARP fastreg handling
 *
 * The life cycle of a fastreg registration is a bit different from
 * FMRs.
 * The idea behind fastreg is to have one MR, to which we bind different
 * mappings over time. To avoid stalling on the expensive map and invalidate
 * operations, these operations are pipelined on the same send queue on
 * which we want to send the message containing the r_key.
 *
 * This creates a bit of a problem for us, as we do not have the destination
 * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
 * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit
 * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
 * before queuing the SEND. When completions for these arrive, they are
 * dispatched to the MR has a bit set showing that RDMa can be performed.
 *
 * There is another interesting aspect that's related to invalidation.
 * The application can request that a mapping is invalidated in FREE_MR.
 * The expectation there is that this invalidation step includes ALL
 * PREVIOUSLY FREED MRs.
 */
static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
				struct rds_iw_mr *ibmr)
{
	struct rds_iw_device *rds_iwdev = pool->device;
	struct ib_fast_reg_page_list *page_list = NULL;
	struct ib_mr *mr;
	int err;

	mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
	if (IS_ERR(mr)) {
		err = PTR_ERR(mr);

		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
		return err;
	}

	/* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
	 * is not filled in.
	 */
	page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
	if (IS_ERR(page_list)) {
		err = PTR_ERR(page_list);

		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
		ib_dereg_mr(mr);
		return err;
	}

	ibmr->page_list = page_list;
	ibmr->mr = mr;
	return 0;
}

static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
{
	struct rds_iw_mr *ibmr = mapping->m_mr;
	struct ib_send_wr f_wr, *failed_wr;
	int ret;

	/*
	 * Perform a WR for the fast_reg_mr. Each individual page
	 * in the sg list is added to the fast reg page list and placed
	 * inside the fast_reg_mr WR.  The key used is a rolling 8bit
	 * counter, which should guarantee uniqueness.
	 */
	ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
	mapping->m_rkey = ibmr->mr->rkey;

	memset(&f_wr, 0, sizeof(f_wr));
	f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
	f_wr.opcode = IB_WR_FAST_REG_MR;
	f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
	f_wr.wr.fast_reg.rkey = mapping->m_rkey;
	f_wr.wr.fast_reg.page_list = ibmr->page_list;
	f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
	f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
	f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
				IB_ACCESS_REMOTE_READ |
				IB_ACCESS_REMOTE_WRITE;
	f_wr.wr.fast_reg.iova_start = 0;
	f_wr.send_flags = IB_SEND_SIGNALED;

	failed_wr = &f_wr;
	ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
	BUG_ON(failed_wr != &f_wr);
	if (ret)
		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
			__func__, __LINE__, ret);
	return ret;
}

static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
{
	struct ib_send_wr s_wr, *failed_wr;
	int ret = 0;

	if (!ibmr->cm_id->qp || !ibmr->mr)
		goto out;

	memset(&s_wr, 0, sizeof(s_wr));
	s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
	s_wr.opcode = IB_WR_LOCAL_INV;
	s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
	s_wr.send_flags = IB_SEND_SIGNALED;

	failed_wr = &s_wr;
	ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
	if (ret) {
		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
			__func__, __LINE__, ret);
		goto out;
	}
out:
	return ret;
}

static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
			struct rds_iw_mr *ibmr,
			struct scatterlist *sg,
			unsigned int sg_len)
{
	struct rds_iw_device *rds_iwdev = pool->device;
	struct rds_iw_mapping *mapping = &ibmr->mapping;
	u64 *dma_pages;
	int i, ret = 0;

	rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);

	dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
	if (IS_ERR(dma_pages)) {
		ret = PTR_ERR(dma_pages);
		dma_pages = NULL;
		goto out;
	}

	if (mapping->m_sg.dma_len > pool->max_message_size) {
		ret = -EMSGSIZE;
		goto out;
	}

	for (i = 0; i < mapping->m_sg.dma_npages; ++i)
		ibmr->page_list->page_list[i] = dma_pages[i];

	ret = rds_iw_rdma_build_fastreg(mapping);
	if (ret)
		goto out;

	rds_iw_stats_inc(s_iw_rdma_mr_used);

out:
	kfree(dma_pages);

	return ret;
}

/*
 * "Free" a fastreg MR.
 */
static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
		struct rds_iw_mr *ibmr)
{
	unsigned long flags;
	int ret;

	if (!ibmr->mapping.m_sg.dma_len)
		return;

	ret = rds_iw_rdma_fastreg_inv(ibmr);
	if (ret)
		return;

	/* Try to post the LOCAL_INV WR to the queue. */
	spin_lock_irqsave(&pool->list_lock, flags);

	list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
	atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
	atomic_inc(&pool->dirty_count);

	spin_unlock_irqrestore(&pool->list_lock, flags);
}

static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
				struct list_head *unmap_list,
				struct list_head *kill_list,
				int *unpinned)
{
	struct rds_iw_mapping *mapping, *next;
	unsigned int ncleaned = 0;
	LIST_HEAD(laundered);

	/* Batched invalidation of fastreg MRs.
	 * Why do we do it this way, even though we could pipeline unmap
	 * and remap? The reason is the application semantics - when the
	 * application requests an invalidation of MRs, it expects all
	 * previously released R_Keys to become invalid.
	 *
	 * If we implement MR reuse naively, we risk memory corruption
	 * (this has actually been observed). So the default behavior
	 * requires that a MR goes through an explicit unmap operation before
	 * we can reuse it again.
	 *
	 * We could probably improve on this a little, by allowing immediate
	 * reuse of a MR on the same socket (eg you could add small
	 * cache of unused MRs to strct rds_socket - GET_MR could grab one
	 * of these without requiring an explicit invalidate).
	 */
	while (!list_empty(unmap_list)) {
		unsigned long flags;

		spin_lock_irqsave(&pool->list_lock, flags);
		list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
			*unpinned += mapping->m_sg.len;
			list_move(&mapping->m_list, &laundered);
			ncleaned++;
		}
		spin_unlock_irqrestore(&pool->list_lock, flags);
	}

	/* Move all laundered mappings back to the unmap list.
	 * We do not kill any WRs right now - it doesn't seem the
	 * fastreg API has a max_remap limit. */
	list_splice_init(&laundered, unmap_list);

	return ncleaned;
}

static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
		struct rds_iw_mr *ibmr)
{
	if (ibmr->page_list)
		ib_free_fast_reg_page_list(ibmr->page_list);
	if (ibmr->mr)
		ib_dereg_mr(ibmr->mr);
}