blk.h 7.5 KB

#include <linux/idr.h>

/* Amount of time in which a process may batch requests */
#define BLK_BATCH_TIME	(HZ/50UL)

/* Number of requests a "batching" process may submit */
#define BLK_BATCH_REQ	32

extern struct kmem_cache *blk_requestq_cachep;
extern struct kobj_type blk_queue_ktype;
extern struct ida blk_queue_ida;

static inline void __blk_get_queue(struct request_queue *q)

void init_request_from_bio(struct request *req, struct bio *bio);
void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
			struct bio *bio);
int blk_rq_append_bio(struct request_queue *q, struct request *rq,
		      struct bio *bio);
void blk_drain_queue(struct request_queue *q, bool drain_all);
void blk_dequeue_request(struct request *rq);
void __blk_queue_free_tags(struct request_queue *q);
bool __blk_end_bidi_request(struct request *rq, int error,
			    unsigned int nr_bytes, unsigned int bidi_bytes);

void blk_rq_timed_out_timer(unsigned long data);
void blk_delete_timer(struct request *);
void blk_add_timer(struct request *);
void __generic_unplug_device(struct request_queue *);

 * Internal atomic flags for request handling
enum rq_atomic_flags {

 * EH timer and IO completion will both attempt to 'grab' the request, make
 * sure that only one of them succeeds
static inline int blk_mark_rq_complete(struct request *rq)
	return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);

static inline void blk_clear_rq_complete(struct request *rq)
	clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);

 * Internal elevator interface
#define ELV_ON_HASH(rq)		(!hlist_unhashed(&(rq)->hash))

void blk_insert_flush(struct request *rq);
void blk_abort_flushes(struct request_queue *q);

static inline struct request *__elv_next_request(struct request_queue *q)
	struct request *rq;

	while (1) {
		if (!list_empty(&q->queue_head)) {
			rq = list_entry_rq(q->;
			return rq;

		 * Flush request is running and flush request isn't queueable
		 * in the drive, we can hold the queue till flush request is
		 * finished. Even we don't do this, driver can't dispatch next
		 * requests and will requeue them. And this can improve
		 * throughput too. For example, we have request flush1, write1,
		 * flush 2. flush1 is dispatched, then queue is hold, write1
		 * isn't inserted to queue. After flush1 is finished, flush2
		 * will be dispatched. Since disk cache is already clean,
		 * flush2 will be finished very soon, so looks like flush2 is
		 * folded to flush1.
		 * Since the queue is hold, a flag is set to indicate the queue
		 * should be restarted later. Please see flush_end_io() for
		 * details.
		if (q->flush_pending_idx != q->flush_running_idx &&
				!queue_flush_queueable(q)) {
			q->flush_queue_delayed = 1;
			return NULL;
		if (unlikely(blk_queue_dead(q)) ||
		    !q->elevator->type->ops.elevator_dispatch_fn(q, 0))
			return NULL;

static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
	struct elevator_queue *e = q->elevator;

	if (e->type->ops.elevator_activate_req_fn)
		e->type->ops.elevator_activate_req_fn(q, rq);

static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
	struct elevator_queue *e = q->elevator;

	if (e->type->ops.elevator_deactivate_req_fn)
		e->type->ops.elevator_deactivate_req_fn(q, rq);

int blk_should_fake_timeout(struct request_queue *);
ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
ssize_t part_timeout_store(struct device *, struct device_attribute *,
				const char *, size_t);
static inline int blk_should_fake_timeout(struct request_queue *q)
	return 0;

int ll_back_merge_fn(struct request_queue *q, struct request *req,
		     struct bio *bio);
int ll_front_merge_fn(struct request_queue *q, struct request *req, 
		      struct bio *bio);
int attempt_back_merge(struct request_queue *q, struct request *rq);
int attempt_front_merge(struct request_queue *q, struct request *rq);
int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
				struct request *next);
void blk_recalc_rq_segments(struct request *rq);
void blk_rq_set_mixed_merge(struct request *rq);

void blk_queue_congestion_threshold(struct request_queue *q);

int blk_dev_init(void);

void elv_quiesce_start(struct request_queue *q);
void elv_quiesce_end(struct request_queue *q);

 * Return the threshold (number of used requests) at which the queue is
 * considered to be congested.  It include a little hysteresis to keep the
 * context switch rate down.
static inline int queue_congestion_on_threshold(struct request_queue *q)
	return q->nr_congestion_on;

 * The threshold at which a queue is considered to be uncongested
static inline int queue_congestion_off_threshold(struct request_queue *q)
	return q->nr_congestion_off;

static inline int blk_cpu_to_group(int cpu)
	int group = NR_CPUS;
	const struct cpumask *mask = cpu_coregroup_mask(cpu);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_SMT)
	group = cpumask_first(topology_thread_cpumask(cpu));
	return cpu;
	if (likely(group < NR_CPUS))
		return group;
	return cpu;

 * Contribute to IO statistics IFF:
 *	a) it's attached to a gendisk, and
 *	b) the queue had IO stats enabled when this request was started, and
 *	c) it's a file system request or a discard request
static inline int blk_do_io_stat(struct request *rq)
	return rq->rq_disk &&
	       (rq->cmd_flags & REQ_IO_STAT) &&
	       (rq->cmd_type == REQ_TYPE_FS ||
	        (rq->cmd_flags & REQ_DISCARD));

 * Internal io_context interface
void get_io_context(struct io_context *ioc);
struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
struct io_cq *ioc_create_icq(struct request_queue *q, gfp_t gfp_mask);
void ioc_clear_queue(struct request_queue *q);

void create_io_context_slowpath(struct task_struct *task, gfp_t gfp_mask,
				int node);

 * create_io_context - try to create task->io_context
 * @task: target task
 * @gfp_mask: allocation mask
 * @node: allocation node
 * If @task->io_context is %NULL, allocate a new io_context and install it.
 * Returns the current @task->io_context which may be %NULL if allocation
 * failed.
 * Note that this function can't be called with IRQ disabled because
 * task_lock which protects @task->io_context is IRQ-unsafe.
static inline struct io_context *create_io_context(struct task_struct *task,
						   gfp_t gfp_mask, int node)
	if (unlikely(!task->io_context))
		create_io_context_slowpath(task, gfp_mask, node);
	return task->io_context;

 * Internal throttling interface
extern bool blk_throtl_bio(struct request_queue *q, struct bio *bio);
extern void blk_throtl_drain(struct request_queue *q);
extern int blk_throtl_init(struct request_queue *q);
extern void blk_throtl_exit(struct request_queue *q);
extern void blk_throtl_release(struct request_queue *q);
static inline bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
	return false;
static inline void blk_throtl_drain(struct request_queue *q) { }
static inline int blk_throtl_init(struct request_queue *q) { return 0; }
static inline void blk_throtl_exit(struct request_queue *q) { }
static inline void blk_throtl_release(struct request_queue *q) { }

#endif /* BLK_INTERNAL_H */