page_tables.c 35.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
/*P:700
 * The pagetable code, on the other hand, still shows the scars of
 * previous encounters.  It's functional, and as neat as it can be in the
 * circumstances, but be wary, for these things are subtle and break easily.
 * The Guest provides a virtual to physical mapping, but we can neither trust
 * it nor use it: we verify and convert it here then point the CPU to the
 * converted Guest pages when running the Guest.
:*/

/* Copyright (C) Rusty Russell IBM Corporation 2006.
 * GPL v2 and any later version */
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/random.h>
#include <linux/percpu.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include "lg.h"

/*M:008
 * We hold reference to pages, which prevents them from being swapped.
 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
 * to swap out.  If we had this, and a shrinker callback to trim PTE pages, we
 * could probably consider launching Guests as non-root.
:*/

/*H:300
 * The Page Table Code
 *
 * We use two-level page tables for the Guest, or three-level with PAE.  If
 * you're not entirely comfortable with virtual addresses, physical addresses
 * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
 * Table Handling" (with diagrams!).
 *
 * The Guest keeps page tables, but we maintain the actual ones here: these are
 * called "shadow" page tables.  Which is a very Guest-centric name: these are
 * the real page tables the CPU uses, although we keep them up to date to
 * reflect the Guest's.  (See what I mean about weird naming?  Since when do
 * shadows reflect anything?)
 *
 * Anyway, this is the most complicated part of the Host code.  There are seven
 * parts to this:
 *  (i) Looking up a page table entry when the Guest faults,
 *  (ii) Making sure the Guest stack is mapped,
 *  (iii) Setting up a page table entry when the Guest tells us one has changed,
 *  (iv) Switching page tables,
 *  (v) Flushing (throwing away) page tables,
 *  (vi) Mapping the Switcher when the Guest is about to run,
 *  (vii) Setting up the page tables initially.
:*/

/*
 * The Switcher uses the complete top PTE page.  That's 1024 PTE entries (4MB)
 * or 512 PTE entries with PAE (2MB).
 */
#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)

/*
 * For PAE we need the PMD index as well. We use the last 2MB, so we
 * will need the last pmd entry of the last pmd page.
 */
#ifdef CONFIG_X86_PAE
#define SWITCHER_PMD_INDEX 	(PTRS_PER_PMD - 1)
#define RESERVE_MEM 		2U
#define CHECK_GPGD_MASK		_PAGE_PRESENT
#else
#define RESERVE_MEM 		4U
#define CHECK_GPGD_MASK		_PAGE_TABLE
#endif

/*
 * We actually need a separate PTE page for each CPU.  Remember that after the
 * Switcher code itself comes two pages for each CPU, and we don't want this
 * CPU's guest to see the pages of any other CPU.
 */
static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)

/*H:320
 * The page table code is curly enough to need helper functions to keep it
 * clear and clean.  The kernel itself provides many of them; one advantage
 * of insisting that the Guest and Host use the same CONFIG_PAE setting.
 *
 * There are two functions which return pointers to the shadow (aka "real")
 * page tables.
 *
 * spgd_addr() takes the virtual address and returns a pointer to the top-level
 * page directory entry (PGD) for that address.  Since we keep track of several
 * page tables, the "i" argument tells us which one we're interested in (it's
 * usually the current one).
 */
static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
{
	unsigned int index = pgd_index(vaddr);

#ifndef CONFIG_X86_PAE
	/* We kill any Guest trying to touch the Switcher addresses. */
	if (index >= SWITCHER_PGD_INDEX) {
		kill_guest(cpu, "attempt to access switcher pages");
		index = 0;
	}
#endif
	/* Return a pointer index'th pgd entry for the i'th page table. */
	return &cpu->lg->pgdirs[i].pgdir[index];
}

#ifdef CONFIG_X86_PAE
/*
 * This routine then takes the PGD entry given above, which contains the
 * address of the PMD page.  It then returns a pointer to the PMD entry for the
 * given address.
 */
static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
{
	unsigned int index = pmd_index(vaddr);
	pmd_t *page;

	/* We kill any Guest trying to touch the Switcher addresses. */
	if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
					index >= SWITCHER_PMD_INDEX) {
		kill_guest(cpu, "attempt to access switcher pages");
		index = 0;
	}

	/* You should never call this if the PGD entry wasn't valid */
	BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
	page = __va(pgd_pfn(spgd) << PAGE_SHIFT);

	return &page[index];
}
#endif

/*
 * This routine then takes the page directory entry returned above, which
 * contains the address of the page table entry (PTE) page.  It then returns a
 * pointer to the PTE entry for the given address.
 */
static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
{
#ifdef CONFIG_X86_PAE
	pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
	pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);

	/* You should never call this if the PMD entry wasn't valid */
	BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
#else
	pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
	/* You should never call this if the PGD entry wasn't valid */
	BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
#endif

	return &page[pte_index(vaddr)];
}

/*
 * These functions are just like the above, except they access the Guest
 * page tables.  Hence they return a Guest address.
 */
static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
{
	unsigned int index = vaddr >> (PGDIR_SHIFT);
	return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
}

#ifdef CONFIG_X86_PAE
/* Follow the PGD to the PMD. */
static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
{
	unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
	BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
	return gpage + pmd_index(vaddr) * sizeof(pmd_t);
}

/* Follow the PMD to the PTE. */
static unsigned long gpte_addr(struct lg_cpu *cpu,
			       pmd_t gpmd, unsigned long vaddr)
{
	unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;

	BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
	return gpage + pte_index(vaddr) * sizeof(pte_t);
}
#else
/* Follow the PGD to the PTE (no mid-level for !PAE). */
static unsigned long gpte_addr(struct lg_cpu *cpu,
				pgd_t gpgd, unsigned long vaddr)
{
	unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;

	BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
	return gpage + pte_index(vaddr) * sizeof(pte_t);
}
#endif
/*:*/

/*M:007
 * get_pfn is slow: we could probably try to grab batches of pages here as
 * an optimization (ie. pre-faulting).
:*/

/*H:350
 * This routine takes a page number given by the Guest and converts it to
 * an actual, physical page number.  It can fail for several reasons: the
 * virtual address might not be mapped by the Launcher, the write flag is set
 * and the page is read-only, or the write flag was set and the page was
 * shared so had to be copied, but we ran out of memory.
 *
 * This holds a reference to the page, so release_pte() is careful to put that
 * back.
 */
static unsigned long get_pfn(unsigned long virtpfn, int write)
{
	struct page *page;

	/* gup me one page at this address please! */
	if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
		return page_to_pfn(page);

	/* This value indicates failure. */
	return -1UL;
}

/*H:340
 * Converting a Guest page table entry to a shadow (ie. real) page table
 * entry can be a little tricky.  The flags are (almost) the same, but the
 * Guest PTE contains a virtual page number: the CPU needs the real page
 * number.
 */
static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
{
	unsigned long pfn, base, flags;

	/*
	 * The Guest sets the global flag, because it thinks that it is using
	 * PGE.  We only told it to use PGE so it would tell us whether it was
	 * flushing a kernel mapping or a userspace mapping.  We don't actually
	 * use the global bit, so throw it away.
	 */
	flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);

	/* The Guest's pages are offset inside the Launcher. */
	base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;

	/*
	 * We need a temporary "unsigned long" variable to hold the answer from
	 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
	 * fit in spte.pfn.  get_pfn() finds the real physical number of the
	 * page, given the virtual number.
	 */
	pfn = get_pfn(base + pte_pfn(gpte), write);
	if (pfn == -1UL) {
		kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
		/*
		 * When we destroy the Guest, we'll go through the shadow page
		 * tables and release_pte() them.  Make sure we don't think
		 * this one is valid!
		 */
		flags = 0;
	}
	/* Now we assemble our shadow PTE from the page number and flags. */
	return pfn_pte(pfn, __pgprot(flags));
}

/*H:460 And to complete the chain, release_pte() looks like this: */
static void release_pte(pte_t pte)
{
	/*
	 * Remember that get_user_pages_fast() took a reference to the page, in
	 * get_pfn()?  We have to put it back now.
	 */
	if (pte_flags(pte) & _PAGE_PRESENT)
		put_page(pte_page(pte));
}
/*:*/

static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
{
	if ((pte_flags(gpte) & _PAGE_PSE) ||
	    pte_pfn(gpte) >= cpu->lg->pfn_limit)
		kill_guest(cpu, "bad page table entry");
}

static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
{
	if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
	   (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
		kill_guest(cpu, "bad page directory entry");
}

#ifdef CONFIG_X86_PAE
static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
{
	if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
	   (pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
		kill_guest(cpu, "bad page middle directory entry");
}
#endif

/*H:330
 * (i) Looking up a page table entry when the Guest faults.
 *
 * We saw this call in run_guest(): when we see a page fault in the Guest, we
 * come here.  That's because we only set up the shadow page tables lazily as
 * they're needed, so we get page faults all the time and quietly fix them up
 * and return to the Guest without it knowing.
 *
 * If we fixed up the fault (ie. we mapped the address), this routine returns
 * true.  Otherwise, it was a real fault and we need to tell the Guest.
 */
bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
{
	pgd_t gpgd;
	pgd_t *spgd;
	unsigned long gpte_ptr;
	pte_t gpte;
	pte_t *spte;

	/* Mid level for PAE. */
#ifdef CONFIG_X86_PAE
	pmd_t *spmd;
	pmd_t gpmd;
#endif

	/* First step: get the top-level Guest page table entry. */
	if (unlikely(cpu->linear_pages)) {
		/* Faking up a linear mapping. */
		gpgd = __pgd(CHECK_GPGD_MASK);
	} else {
		gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
		/* Toplevel not present?  We can't map it in. */
		if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
			return false;
	}

	/* Now look at the matching shadow entry. */
	spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
	if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
		/* No shadow entry: allocate a new shadow PTE page. */
		unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
		/*
		 * This is not really the Guest's fault, but killing it is
		 * simple for this corner case.
		 */
		if (!ptepage) {
			kill_guest(cpu, "out of memory allocating pte page");
			return false;
		}
		/* We check that the Guest pgd is OK. */
		check_gpgd(cpu, gpgd);
		/*
		 * And we copy the flags to the shadow PGD entry.  The page
		 * number in the shadow PGD is the page we just allocated.
		 */
		set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
	}

#ifdef CONFIG_X86_PAE
	if (unlikely(cpu->linear_pages)) {
		/* Faking up a linear mapping. */
		gpmd = __pmd(_PAGE_TABLE);
	} else {
		gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
		/* Middle level not present?  We can't map it in. */
		if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
			return false;
	}

	/* Now look at the matching shadow entry. */
	spmd = spmd_addr(cpu, *spgd, vaddr);

	if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
		/* No shadow entry: allocate a new shadow PTE page. */
		unsigned long ptepage = get_zeroed_page(GFP_KERNEL);

		/*
		 * This is not really the Guest's fault, but killing it is
		 * simple for this corner case.
		 */
		if (!ptepage) {
			kill_guest(cpu, "out of memory allocating pte page");
			return false;
		}

		/* We check that the Guest pmd is OK. */
		check_gpmd(cpu, gpmd);

		/*
		 * And we copy the flags to the shadow PMD entry.  The page
		 * number in the shadow PMD is the page we just allocated.
		 */
		set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
	}

	/*
	 * OK, now we look at the lower level in the Guest page table: keep its
	 * address, because we might update it later.
	 */
	gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
#else
	/*
	 * OK, now we look at the lower level in the Guest page table: keep its
	 * address, because we might update it later.
	 */
	gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
#endif

	if (unlikely(cpu->linear_pages)) {
		/* Linear?  Make up a PTE which points to same page. */
		gpte = __pte((vaddr & PAGE_MASK) | _PAGE_RW | _PAGE_PRESENT);
	} else {
		/* Read the actual PTE value. */
		gpte = lgread(cpu, gpte_ptr, pte_t);
	}

	/* If this page isn't in the Guest page tables, we can't page it in. */
	if (!(pte_flags(gpte) & _PAGE_PRESENT))
		return false;

	/*
	 * Check they're not trying to write to a page the Guest wants
	 * read-only (bit 2 of errcode == write).
	 */
	if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
		return false;

	/* User access to a kernel-only page? (bit 3 == user access) */
	if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
		return false;

	/*
	 * Check that the Guest PTE flags are OK, and the page number is below
	 * the pfn_limit (ie. not mapping the Launcher binary).
	 */
	check_gpte(cpu, gpte);

	/* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
	gpte = pte_mkyoung(gpte);
	if (errcode & 2)
		gpte = pte_mkdirty(gpte);

	/* Get the pointer to the shadow PTE entry we're going to set. */
	spte = spte_addr(cpu, *spgd, vaddr);

	/*
	 * If there was a valid shadow PTE entry here before, we release it.
	 * This can happen with a write to a previously read-only entry.
	 */
	release_pte(*spte);

	/*
	 * If this is a write, we insist that the Guest page is writable (the
	 * final arg to gpte_to_spte()).
	 */
	if (pte_dirty(gpte))
		*spte = gpte_to_spte(cpu, gpte, 1);
	else
		/*
		 * If this is a read, don't set the "writable" bit in the page
		 * table entry, even if the Guest says it's writable.  That way
		 * we will come back here when a write does actually occur, so
		 * we can update the Guest's _PAGE_DIRTY flag.
		 */
		set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));

	/*
	 * Finally, we write the Guest PTE entry back: we've set the
	 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
	 */
	if (likely(!cpu->linear_pages))
		lgwrite(cpu, gpte_ptr, pte_t, gpte);

	/*
	 * The fault is fixed, the page table is populated, the mapping
	 * manipulated, the result returned and the code complete.  A small
	 * delay and a trace of alliteration are the only indications the Guest
	 * has that a page fault occurred at all.
	 */
	return true;
}

/*H:360
 * (ii) Making sure the Guest stack is mapped.
 *
 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
 * we've seen that logic is quite long, and usually the stack pages are already
 * mapped, so it's overkill.
 *
 * This is a quick version which answers the question: is this virtual address
 * mapped by the shadow page tables, and is it writable?
 */
static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
{
	pgd_t *spgd;
	unsigned long flags;

#ifdef CONFIG_X86_PAE
	pmd_t *spmd;
#endif
	/* Look at the current top level entry: is it present? */
	spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
	if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
		return false;

#ifdef CONFIG_X86_PAE
	spmd = spmd_addr(cpu, *spgd, vaddr);
	if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
		return false;
#endif

	/*
	 * Check the flags on the pte entry itself: it must be present and
	 * writable.
	 */
	flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));

	return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
}

/*
 * So, when pin_stack_pages() asks us to pin a page, we check if it's already
 * in the page tables, and if not, we call demand_page() with error code 2
 * (meaning "write").
 */
void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
{
	if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
		kill_guest(cpu, "bad stack page %#lx", vaddr);
}
/*:*/

#ifdef CONFIG_X86_PAE
static void release_pmd(pmd_t *spmd)
{
	/* If the entry's not present, there's nothing to release. */
	if (pmd_flags(*spmd) & _PAGE_PRESENT) {
		unsigned int i;
		pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
		/* For each entry in the page, we might need to release it. */
		for (i = 0; i < PTRS_PER_PTE; i++)
			release_pte(ptepage[i]);
		/* Now we can free the page of PTEs */
		free_page((long)ptepage);
		/* And zero out the PMD entry so we never release it twice. */
		set_pmd(spmd, __pmd(0));
	}
}

static void release_pgd(pgd_t *spgd)
{
	/* If the entry's not present, there's nothing to release. */
	if (pgd_flags(*spgd) & _PAGE_PRESENT) {
		unsigned int i;
		pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);

		for (i = 0; i < PTRS_PER_PMD; i++)
			release_pmd(&pmdpage[i]);

		/* Now we can free the page of PMDs */
		free_page((long)pmdpage);
		/* And zero out the PGD entry so we never release it twice. */
		set_pgd(spgd, __pgd(0));
	}
}

#else /* !CONFIG_X86_PAE */
/*H:450
 * If we chase down the release_pgd() code, the non-PAE version looks like
 * this.  The PAE version is almost identical, but instead of calling
 * release_pte it calls release_pmd(), which looks much like this.
 */
static void release_pgd(pgd_t *spgd)
{
	/* If the entry's not present, there's nothing to release. */
	if (pgd_flags(*spgd) & _PAGE_PRESENT) {
		unsigned int i;
		/*
		 * Converting the pfn to find the actual PTE page is easy: turn
		 * the page number into a physical address, then convert to a
		 * virtual address (easy for kernel pages like this one).
		 */
		pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
		/* For each entry in the page, we might need to release it. */
		for (i = 0; i < PTRS_PER_PTE; i++)
			release_pte(ptepage[i]);
		/* Now we can free the page of PTEs */
		free_page((long)ptepage);
		/* And zero out the PGD entry so we never release it twice. */
		*spgd = __pgd(0);
	}
}
#endif

/*H:445
 * We saw flush_user_mappings() twice: once from the flush_user_mappings()
 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
 * It simply releases every PTE page from 0 up to the Guest's kernel address.
 */
static void flush_user_mappings(struct lguest *lg, int idx)
{
	unsigned int i;
	/* Release every pgd entry up to the kernel's address. */
	for (i = 0; i < pgd_index(lg->kernel_address); i++)
		release_pgd(lg->pgdirs[idx].pgdir + i);
}

/*H:440
 * (v) Flushing (throwing away) page tables,
 *
 * The Guest has a hypercall to throw away the page tables: it's used when a
 * large number of mappings have been changed.
 */
void guest_pagetable_flush_user(struct lg_cpu *cpu)
{
	/* Drop the userspace part of the current page table. */
	flush_user_mappings(cpu->lg, cpu->cpu_pgd);
}
/*:*/

/* We walk down the guest page tables to get a guest-physical address */
unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
{
	pgd_t gpgd;
	pte_t gpte;
#ifdef CONFIG_X86_PAE
	pmd_t gpmd;
#endif

	/* Still not set up?  Just map 1:1. */
	if (unlikely(cpu->linear_pages))
		return vaddr;

	/* First step: get the top-level Guest page table entry. */
	gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
	/* Toplevel not present?  We can't map it in. */
	if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
		kill_guest(cpu, "Bad address %#lx", vaddr);
		return -1UL;
	}

#ifdef CONFIG_X86_PAE
	gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
	if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
		kill_guest(cpu, "Bad address %#lx", vaddr);
	gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
#else
	gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
#endif
	if (!(pte_flags(gpte) & _PAGE_PRESENT))
		kill_guest(cpu, "Bad address %#lx", vaddr);

	return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
}

/*
 * We keep several page tables.  This is a simple routine to find the page
 * table (if any) corresponding to this top-level address the Guest has given
 * us.
 */
static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
{
	unsigned int i;
	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
		if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
			break;
	return i;
}

/*H:435
 * And this is us, creating the new page directory.  If we really do
 * allocate a new one (and so the kernel parts are not there), we set
 * blank_pgdir.
 */
static unsigned int new_pgdir(struct lg_cpu *cpu,
			      unsigned long gpgdir,
			      int *blank_pgdir)
{
	unsigned int next;
#ifdef CONFIG_X86_PAE
	pmd_t *pmd_table;
#endif

	/*
	 * We pick one entry at random to throw out.  Choosing the Least
	 * Recently Used might be better, but this is easy.
	 */
	next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
	/* If it's never been allocated at all before, try now. */
	if (!cpu->lg->pgdirs[next].pgdir) {
		cpu->lg->pgdirs[next].pgdir =
					(pgd_t *)get_zeroed_page(GFP_KERNEL);
		/* If the allocation fails, just keep using the one we have */
		if (!cpu->lg->pgdirs[next].pgdir)
			next = cpu->cpu_pgd;
		else {
#ifdef CONFIG_X86_PAE
			/*
			 * In PAE mode, allocate a pmd page and populate the
			 * last pgd entry.
			 */
			pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
			if (!pmd_table) {
				free_page((long)cpu->lg->pgdirs[next].pgdir);
				set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
				next = cpu->cpu_pgd;
			} else {
				set_pgd(cpu->lg->pgdirs[next].pgdir +
					SWITCHER_PGD_INDEX,
					__pgd(__pa(pmd_table) | _PAGE_PRESENT));
				/*
				 * This is a blank page, so there are no kernel
				 * mappings: caller must map the stack!
				 */
				*blank_pgdir = 1;
			}
#else
			*blank_pgdir = 1;
#endif
		}
	}
	/* Record which Guest toplevel this shadows. */
	cpu->lg->pgdirs[next].gpgdir = gpgdir;
	/* Release all the non-kernel mappings. */
	flush_user_mappings(cpu->lg, next);

	return next;
}

/*H:470
 * Finally, a routine which throws away everything: all PGD entries in all
 * the shadow page tables, including the Guest's kernel mappings.  This is used
 * when we destroy the Guest.
 */
static void release_all_pagetables(struct lguest *lg)
{
	unsigned int i, j;

	/* Every shadow pagetable this Guest has */
	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
		if (lg->pgdirs[i].pgdir) {
#ifdef CONFIG_X86_PAE
			pgd_t *spgd;
			pmd_t *pmdpage;
			unsigned int k;

			/* Get the last pmd page. */
			spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
			pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);

			/*
			 * And release the pmd entries of that pmd page,
			 * except for the switcher pmd.
			 */
			for (k = 0; k < SWITCHER_PMD_INDEX; k++)
				release_pmd(&pmdpage[k]);
#endif
			/* Every PGD entry except the Switcher at the top */
			for (j = 0; j < SWITCHER_PGD_INDEX; j++)
				release_pgd(lg->pgdirs[i].pgdir + j);
		}
}

/*
 * We also throw away everything when a Guest tells us it's changed a kernel
 * mapping.  Since kernel mappings are in every page table, it's easiest to
 * throw them all away.  This traps the Guest in amber for a while as
 * everything faults back in, but it's rare.
 */
void guest_pagetable_clear_all(struct lg_cpu *cpu)
{
	release_all_pagetables(cpu->lg);
	/* We need the Guest kernel stack mapped again. */
	pin_stack_pages(cpu);
}

/*H:430
 * (iv) Switching page tables
 *
 * Now we've seen all the page table setting and manipulation, let's see
 * what happens when the Guest changes page tables (ie. changes the top-level
 * pgdir).  This occurs on almost every context switch.
 */
void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
{
	int newpgdir, repin = 0;

	/*
	 * The very first time they call this, we're actually running without
	 * any page tables; we've been making it up.  Throw them away now.
	 */
	if (unlikely(cpu->linear_pages)) {
		release_all_pagetables(cpu->lg);
		cpu->linear_pages = false;
		/* Force allocation of a new pgdir. */
		newpgdir = ARRAY_SIZE(cpu->lg->pgdirs);
	} else {
		/* Look to see if we have this one already. */
		newpgdir = find_pgdir(cpu->lg, pgtable);
	}

	/*
	 * If not, we allocate or mug an existing one: if it's a fresh one,
	 * repin gets set to 1.
	 */
	if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
		newpgdir = new_pgdir(cpu, pgtable, &repin);
	/* Change the current pgd index to the new one. */
	cpu->cpu_pgd = newpgdir;
	/* If it was completely blank, we map in the Guest kernel stack */
	if (repin)
		pin_stack_pages(cpu);
}
/*:*/

/*M:009
 * Since we throw away all mappings when a kernel mapping changes, our
 * performance sucks for guests using highmem.  In fact, a guest with
 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
 * usually slower than a Guest with less memory.
 *
 * This, of course, cannot be fixed.  It would take some kind of... well, I
 * don't know, but the term "puissant code-fu" comes to mind.
:*/

/*H:420
 * This is the routine which actually sets the page table entry for then
 * "idx"'th shadow page table.
 *
 * Normally, we can just throw out the old entry and replace it with 0: if they
 * use it demand_page() will put the new entry in.  We need to do this anyway:
 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
 * is read from, and _PAGE_DIRTY when it's written to.
 *
 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
 * these bits on PTEs immediately anyway.  This is done to save the CPU from
 * having to update them, but it helps us the same way: if they set
 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
 */
static void do_set_pte(struct lg_cpu *cpu, int idx,
		       unsigned long vaddr, pte_t gpte)
{
	/* Look up the matching shadow page directory entry. */
	pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
#ifdef CONFIG_X86_PAE
	pmd_t *spmd;
#endif

	/* If the top level isn't present, there's no entry to update. */
	if (pgd_flags(*spgd) & _PAGE_PRESENT) {
#ifdef CONFIG_X86_PAE
		spmd = spmd_addr(cpu, *spgd, vaddr);
		if (pmd_flags(*spmd) & _PAGE_PRESENT) {
#endif
			/* Otherwise, start by releasing the existing entry. */
			pte_t *spte = spte_addr(cpu, *spgd, vaddr);
			release_pte(*spte);

			/*
			 * If they're setting this entry as dirty or accessed,
			 * we might as well put that entry they've given us in
			 * now.  This shaves 10% off a copy-on-write
			 * micro-benchmark.
			 */
			if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
				check_gpte(cpu, gpte);
				set_pte(spte,
					gpte_to_spte(cpu, gpte,
						pte_flags(gpte) & _PAGE_DIRTY));
			} else {
				/*
				 * Otherwise kill it and we can demand_page()
				 * it in later.
				 */
				set_pte(spte, __pte(0));
			}
#ifdef CONFIG_X86_PAE
		}
#endif
	}
}

/*H:410
 * Updating a PTE entry is a little trickier.
 *
 * We keep track of several different page tables (the Guest uses one for each
 * process, so it makes sense to cache at least a few).  Each of these have
 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
 * all processes.  So when the page table above that address changes, we update
 * all the page tables, not just the current one.  This is rare.
 *
 * The benefit is that when we have to track a new page table, we can keep all
 * the kernel mappings.  This speeds up context switch immensely.
 */
void guest_set_pte(struct lg_cpu *cpu,
		   unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
{
	/*
	 * Kernel mappings must be changed on all top levels.  Slow, but doesn't
	 * happen often.
	 */
	if (vaddr >= cpu->lg->kernel_address) {
		unsigned int i;
		for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
			if (cpu->lg->pgdirs[i].pgdir)
				do_set_pte(cpu, i, vaddr, gpte);
	} else {
		/* Is this page table one we have a shadow for? */
		int pgdir = find_pgdir(cpu->lg, gpgdir);
		if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
			/* If so, do the update. */
			do_set_pte(cpu, pgdir, vaddr, gpte);
	}
}

/*H:400
 * (iii) Setting up a page table entry when the Guest tells us one has changed.
 *
 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
 * with the other side of page tables while we're here: what happens when the
 * Guest asks for a page table to be updated?
 *
 * We already saw that demand_page() will fill in the shadow page tables when
 * needed, so we can simply remove shadow page table entries whenever the Guest
 * tells us they've changed.  When the Guest tries to use the new entry it will
 * fault and demand_page() will fix it up.
 *
 * So with that in mind here's our code to update a (top-level) PGD entry:
 */
void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
{
	int pgdir;

	if (idx >= SWITCHER_PGD_INDEX)
		return;

	/* If they're talking about a page table we have a shadow for... */
	pgdir = find_pgdir(lg, gpgdir);
	if (pgdir < ARRAY_SIZE(lg->pgdirs))
		/* ... throw it away. */
		release_pgd(lg->pgdirs[pgdir].pgdir + idx);
}

#ifdef CONFIG_X86_PAE
/* For setting a mid-level, we just throw everything away.  It's easy. */
void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
{
	guest_pagetable_clear_all(&lg->cpus[0]);
}
#endif

/*H:500
 * (vii) Setting up the page tables initially.
 *
 * When a Guest is first created, set initialize a shadow page table which
 * we will populate on future faults.  The Guest doesn't have any actual
 * pagetables yet, so we set linear_pages to tell demand_page() to fake it
 * for the moment.
 */
int init_guest_pagetable(struct lguest *lg)
{
	struct lg_cpu *cpu = &lg->cpus[0];
	int allocated = 0;

	/* lg (and lg->cpus[]) starts zeroed: this allocates a new pgdir */
	cpu->cpu_pgd = new_pgdir(cpu, 0, &allocated);
	if (!allocated)
		return -ENOMEM;

	/* We start with a linear mapping until the initialize. */
	cpu->linear_pages = true;
	return 0;
}

/*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
void page_table_guest_data_init(struct lg_cpu *cpu)
{
	/* We get the kernel address: above this is all kernel memory. */
	if (get_user(cpu->lg->kernel_address,
		&cpu->lg->lguest_data->kernel_address)
		/*
		 * We tell the Guest that it can't use the top 2 or 4 MB
		 * of virtual addresses used by the Switcher.
		 */
		|| put_user(RESERVE_MEM * 1024 * 1024,
			    &cpu->lg->lguest_data->reserve_mem)) {
		kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
		return;
	}

	/*
	 * In flush_user_mappings() we loop from 0 to
	 * "pgd_index(lg->kernel_address)".  This assumes it won't hit the
	 * Switcher mappings, so check that now.
	 */
#ifdef CONFIG_X86_PAE
	if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
		pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
#else
	if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
#endif
		kill_guest(cpu, "bad kernel address %#lx",
				 cpu->lg->kernel_address);
}

/* When a Guest dies, our cleanup is fairly simple. */
void free_guest_pagetable(struct lguest *lg)
{
	unsigned int i;

	/* Throw away all page table pages. */
	release_all_pagetables(lg);
	/* Now free the top levels: free_page() can handle 0 just fine. */
	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
		free_page((long)lg->pgdirs[i].pgdir);
}

/*H:480
 * (vi) Mapping the Switcher when the Guest is about to run.
 *
 * The Switcher and the two pages for this CPU need to be visible in the
 * Guest (and not the pages for other CPUs).  We have the appropriate PTE pages
 * for each CPU already set up, we just need to hook them in now we know which
 * Guest is about to run on this CPU.
 */
void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
{
	pte_t *switcher_pte_page = __this_cpu_read(switcher_pte_pages);
	pte_t regs_pte;

#ifdef CONFIG_X86_PAE
	pmd_t switcher_pmd;
	pmd_t *pmd_table;

	switcher_pmd = pfn_pmd(__pa(switcher_pte_page) >> PAGE_SHIFT,
			       PAGE_KERNEL_EXEC);

	/* Figure out where the pmd page is, by reading the PGD, and converting
	 * it to a virtual address. */
	pmd_table = __va(pgd_pfn(cpu->lg->
			pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
								<< PAGE_SHIFT);
	/* Now write it into the shadow page table. */
	set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
#else
	pgd_t switcher_pgd;

	/*
	 * Make the last PGD entry for this Guest point to the Switcher's PTE
	 * page for this CPU (with appropriate flags).
	 */
	switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);

	cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;

#endif
	/*
	 * We also change the Switcher PTE page.  When we're running the Guest,
	 * we want the Guest's "regs" page to appear where the first Switcher
	 * page for this CPU is.  This is an optimization: when the Switcher
	 * saves the Guest registers, it saves them into the first page of this
	 * CPU's "struct lguest_pages": if we make sure the Guest's register
	 * page is already mapped there, we don't have to copy them out
	 * again.
	 */
	regs_pte = pfn_pte(__pa(cpu->regs_page) >> PAGE_SHIFT, PAGE_KERNEL);
	set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], regs_pte);
}
/*:*/

static void free_switcher_pte_pages(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
		free_page((long)switcher_pte_page(i));
}

/*H:520
 * Setting up the Switcher PTE page for given CPU is fairly easy, given
 * the CPU number and the "struct page"s for the Switcher code itself.
 *
 * Currently the Switcher is less than a page long, so "pages" is always 1.
 */
static __init void populate_switcher_pte_page(unsigned int cpu,
					      struct page *switcher_page[],
					      unsigned int pages)
{
	unsigned int i;
	pte_t *pte = switcher_pte_page(cpu);

	/* The first entries are easy: they map the Switcher code. */
	for (i = 0; i < pages; i++) {
		set_pte(&pte[i], mk_pte(switcher_page[i],
				__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
	}

	/* The only other thing we map is this CPU's pair of pages. */
	i = pages + cpu*2;

	/* First page (Guest registers) is writable from the Guest */
	set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
			 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));

	/*
	 * The second page contains the "struct lguest_ro_state", and is
	 * read-only.
	 */
	set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
			   __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
}

/*
 * We've made it through the page table code.  Perhaps our tired brains are
 * still processing the details, or perhaps we're simply glad it's over.
 *
 * If nothing else, note that all this complexity in juggling shadow page tables
 * in sync with the Guest's page tables is for one reason: for most Guests this
 * page table dance determines how bad performance will be.  This is why Xen
 * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
 * have implemented shadow page table support directly into hardware.
 *
 * There is just one file remaining in the Host.
 */

/*H:510
 * At boot or module load time, init_pagetables() allocates and populates
 * the Switcher PTE page for each CPU.
 */
__init int init_pagetables(struct page **switcher_page, unsigned int pages)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
		if (!switcher_pte_page(i)) {
			free_switcher_pte_pages();
			return -ENOMEM;
		}
		populate_switcher_pte_page(i, switcher_page, pages);
	}
	return 0;
}
/*:*/

/* Cleaning up simply involves freeing the PTE page for each CPU. */
void free_pagetables(void)
{
	free_switcher_pte_pages();
}