page.c 25.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
/* Cache page management and data I/O routines
 *
 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#define FSCACHE_DEBUG_LEVEL PAGE
#include <linux/module.h>
#include <linux/fscache-cache.h>
#include <linux/buffer_head.h>
#include <linux/pagevec.h>
#include <linux/slab.h>
#include "internal.h"

/*
 * check to see if a page is being written to the cache
 */
bool __fscache_check_page_write(struct fscache_cookie *cookie, struct page *page)
{
	void *val;

	rcu_read_lock();
	val = radix_tree_lookup(&cookie->stores, page->index);
	rcu_read_unlock();

	return val != NULL;
}
EXPORT_SYMBOL(__fscache_check_page_write);

/*
 * wait for a page to finish being written to the cache
 */
void __fscache_wait_on_page_write(struct fscache_cookie *cookie, struct page *page)
{
	wait_queue_head_t *wq = bit_waitqueue(&cookie->flags, 0);

	wait_event(*wq, !__fscache_check_page_write(cookie, page));
}
EXPORT_SYMBOL(__fscache_wait_on_page_write);

/*
 * decide whether a page can be released, possibly by cancelling a store to it
 * - we're allowed to sleep if __GFP_WAIT is flagged
 */
bool __fscache_maybe_release_page(struct fscache_cookie *cookie,
				  struct page *page,
				  gfp_t gfp)
{
	struct page *xpage;
	void *val;

	_enter("%p,%p,%x", cookie, page, gfp);

	rcu_read_lock();
	val = radix_tree_lookup(&cookie->stores, page->index);
	if (!val) {
		rcu_read_unlock();
		fscache_stat(&fscache_n_store_vmscan_not_storing);
		__fscache_uncache_page(cookie, page);
		return true;
	}

	/* see if the page is actually undergoing storage - if so we can't get
	 * rid of it till the cache has finished with it */
	if (radix_tree_tag_get(&cookie->stores, page->index,
			       FSCACHE_COOKIE_STORING_TAG)) {
		rcu_read_unlock();
		goto page_busy;
	}

	/* the page is pending storage, so we attempt to cancel the store and
	 * discard the store request so that the page can be reclaimed */
	spin_lock(&cookie->stores_lock);
	rcu_read_unlock();

	if (radix_tree_tag_get(&cookie->stores, page->index,
			       FSCACHE_COOKIE_STORING_TAG)) {
		/* the page started to undergo storage whilst we were looking,
		 * so now we can only wait or return */
		spin_unlock(&cookie->stores_lock);
		goto page_busy;
	}

	xpage = radix_tree_delete(&cookie->stores, page->index);
	spin_unlock(&cookie->stores_lock);

	if (xpage) {
		fscache_stat(&fscache_n_store_vmscan_cancelled);
		fscache_stat(&fscache_n_store_radix_deletes);
		ASSERTCMP(xpage, ==, page);
	} else {
		fscache_stat(&fscache_n_store_vmscan_gone);
	}

	wake_up_bit(&cookie->flags, 0);
	if (xpage)
		page_cache_release(xpage);
	__fscache_uncache_page(cookie, page);
	return true;

page_busy:
	/* we might want to wait here, but that could deadlock the allocator as
	 * the work threads writing to the cache may all end up sleeping
	 * on memory allocation */
	fscache_stat(&fscache_n_store_vmscan_busy);
	return false;
}
EXPORT_SYMBOL(__fscache_maybe_release_page);

/*
 * note that a page has finished being written to the cache
 */
static void fscache_end_page_write(struct fscache_object *object,
				   struct page *page)
{
	struct fscache_cookie *cookie;
	struct page *xpage = NULL;

	spin_lock(&object->lock);
	cookie = object->cookie;
	if (cookie) {
		/* delete the page from the tree if it is now no longer
		 * pending */
		spin_lock(&cookie->stores_lock);
		radix_tree_tag_clear(&cookie->stores, page->index,
				     FSCACHE_COOKIE_STORING_TAG);
		if (!radix_tree_tag_get(&cookie->stores, page->index,
					FSCACHE_COOKIE_PENDING_TAG)) {
			fscache_stat(&fscache_n_store_radix_deletes);
			xpage = radix_tree_delete(&cookie->stores, page->index);
		}
		spin_unlock(&cookie->stores_lock);
		wake_up_bit(&cookie->flags, 0);
	}
	spin_unlock(&object->lock);
	if (xpage)
		page_cache_release(xpage);
}

/*
 * actually apply the changed attributes to a cache object
 */
static void fscache_attr_changed_op(struct fscache_operation *op)
{
	struct fscache_object *object = op->object;
	int ret;

	_enter("{OBJ%x OP%x}", object->debug_id, op->debug_id);

	fscache_stat(&fscache_n_attr_changed_calls);

	if (fscache_object_is_active(object)) {
		fscache_stat(&fscache_n_cop_attr_changed);
		ret = object->cache->ops->attr_changed(object);
		fscache_stat_d(&fscache_n_cop_attr_changed);
		if (ret < 0)
			fscache_abort_object(object);
	}

	_leave("");
}

/*
 * notification that the attributes on an object have changed
 */
int __fscache_attr_changed(struct fscache_cookie *cookie)
{
	struct fscache_operation *op;
	struct fscache_object *object;

	_enter("%p", cookie);

	ASSERTCMP(cookie->def->type, !=, FSCACHE_COOKIE_TYPE_INDEX);

	fscache_stat(&fscache_n_attr_changed);

	op = kzalloc(sizeof(*op), GFP_KERNEL);
	if (!op) {
		fscache_stat(&fscache_n_attr_changed_nomem);
		_leave(" = -ENOMEM");
		return -ENOMEM;
	}

	fscache_operation_init(op, fscache_attr_changed_op, NULL);
	op->flags = FSCACHE_OP_ASYNC | (1 << FSCACHE_OP_EXCLUSIVE);

	spin_lock(&cookie->lock);

	if (hlist_empty(&cookie->backing_objects))
		goto nobufs;
	object = hlist_entry(cookie->backing_objects.first,
			     struct fscache_object, cookie_link);

	if (fscache_submit_exclusive_op(object, op) < 0)
		goto nobufs;
	spin_unlock(&cookie->lock);
	fscache_stat(&fscache_n_attr_changed_ok);
	fscache_put_operation(op);
	_leave(" = 0");
	return 0;

nobufs:
	spin_unlock(&cookie->lock);
	kfree(op);
	fscache_stat(&fscache_n_attr_changed_nobufs);
	_leave(" = %d", -ENOBUFS);
	return -ENOBUFS;
}
EXPORT_SYMBOL(__fscache_attr_changed);

/*
 * release a retrieval op reference
 */
static void fscache_release_retrieval_op(struct fscache_operation *_op)
{
	struct fscache_retrieval *op =
		container_of(_op, struct fscache_retrieval, op);

	_enter("{OP%x}", op->op.debug_id);

	fscache_hist(fscache_retrieval_histogram, op->start_time);
	if (op->context)
		fscache_put_context(op->op.object->cookie, op->context);

	_leave("");
}

/*
 * allocate a retrieval op
 */
static struct fscache_retrieval *fscache_alloc_retrieval(
	struct address_space *mapping,
	fscache_rw_complete_t end_io_func,
	void *context)
{
	struct fscache_retrieval *op;

	/* allocate a retrieval operation and attempt to submit it */
	op = kzalloc(sizeof(*op), GFP_NOIO);
	if (!op) {
		fscache_stat(&fscache_n_retrievals_nomem);
		return NULL;
	}

	fscache_operation_init(&op->op, NULL, fscache_release_retrieval_op);
	op->op.flags	= FSCACHE_OP_MYTHREAD | (1 << FSCACHE_OP_WAITING);
	op->mapping	= mapping;
	op->end_io_func	= end_io_func;
	op->context	= context;
	op->start_time	= jiffies;
	INIT_LIST_HEAD(&op->to_do);
	return op;
}

/*
 * wait for a deferred lookup to complete
 */
static int fscache_wait_for_deferred_lookup(struct fscache_cookie *cookie)
{
	unsigned long jif;

	_enter("");

	if (!test_bit(FSCACHE_COOKIE_LOOKING_UP, &cookie->flags)) {
		_leave(" = 0 [imm]");
		return 0;
	}

	fscache_stat(&fscache_n_retrievals_wait);

	jif = jiffies;
	if (wait_on_bit(&cookie->flags, FSCACHE_COOKIE_LOOKING_UP,
			fscache_wait_bit_interruptible,
			TASK_INTERRUPTIBLE) != 0) {
		fscache_stat(&fscache_n_retrievals_intr);
		_leave(" = -ERESTARTSYS");
		return -ERESTARTSYS;
	}

	ASSERT(!test_bit(FSCACHE_COOKIE_LOOKING_UP, &cookie->flags));

	smp_rmb();
	fscache_hist(fscache_retrieval_delay_histogram, jif);
	_leave(" = 0 [dly]");
	return 0;
}

/*
 * wait for an object to become active (or dead)
 */
static int fscache_wait_for_retrieval_activation(struct fscache_object *object,
						 struct fscache_retrieval *op,
						 atomic_t *stat_op_waits,
						 atomic_t *stat_object_dead)
{
	int ret;

	if (!test_bit(FSCACHE_OP_WAITING, &op->op.flags))
		goto check_if_dead;

	_debug(">>> WT");
	fscache_stat(stat_op_waits);
	if (wait_on_bit(&op->op.flags, FSCACHE_OP_WAITING,
			fscache_wait_bit_interruptible,
			TASK_INTERRUPTIBLE) < 0) {
		ret = fscache_cancel_op(&op->op);
		if (ret == 0)
			return -ERESTARTSYS;

		/* it's been removed from the pending queue by another party,
		 * so we should get to run shortly */
		wait_on_bit(&op->op.flags, FSCACHE_OP_WAITING,
			    fscache_wait_bit, TASK_UNINTERRUPTIBLE);
	}
	_debug("<<< GO");

check_if_dead:
	if (unlikely(fscache_object_is_dead(object))) {
		fscache_stat(stat_object_dead);
		return -ENOBUFS;
	}
	return 0;
}

/*
 * read a page from the cache or allocate a block in which to store it
 * - we return:
 *   -ENOMEM	- out of memory, nothing done
 *   -ERESTARTSYS - interrupted
 *   -ENOBUFS	- no backing object available in which to cache the block
 *   -ENODATA	- no data available in the backing object for this block
 *   0		- dispatched a read - it'll call end_io_func() when finished
 */
int __fscache_read_or_alloc_page(struct fscache_cookie *cookie,
				 struct page *page,
				 fscache_rw_complete_t end_io_func,
				 void *context,
				 gfp_t gfp)
{
	struct fscache_retrieval *op;
	struct fscache_object *object;
	int ret;

	_enter("%p,%p,,,", cookie, page);

	fscache_stat(&fscache_n_retrievals);

	if (hlist_empty(&cookie->backing_objects))
		goto nobufs;

	ASSERTCMP(cookie->def->type, !=, FSCACHE_COOKIE_TYPE_INDEX);
	ASSERTCMP(page, !=, NULL);

	if (fscache_wait_for_deferred_lookup(cookie) < 0)
		return -ERESTARTSYS;

	op = fscache_alloc_retrieval(page->mapping, end_io_func, context);
	if (!op) {
		_leave(" = -ENOMEM");
		return -ENOMEM;
	}

	spin_lock(&cookie->lock);

	if (hlist_empty(&cookie->backing_objects))
		goto nobufs_unlock;
	object = hlist_entry(cookie->backing_objects.first,
			     struct fscache_object, cookie_link);

	ASSERTCMP(object->state, >, FSCACHE_OBJECT_LOOKING_UP);

	atomic_inc(&object->n_reads);
	set_bit(FSCACHE_OP_DEC_READ_CNT, &op->op.flags);

	if (fscache_submit_op(object, &op->op) < 0)
		goto nobufs_unlock;
	spin_unlock(&cookie->lock);

	fscache_stat(&fscache_n_retrieval_ops);

	/* pin the netfs read context in case we need to do the actual netfs
	 * read because we've encountered a cache read failure */
	fscache_get_context(object->cookie, op->context);

	/* we wait for the operation to become active, and then process it
	 * *here*, in this thread, and not in the thread pool */
	ret = fscache_wait_for_retrieval_activation(
		object, op,
		__fscache_stat(&fscache_n_retrieval_op_waits),
		__fscache_stat(&fscache_n_retrievals_object_dead));
	if (ret < 0)
		goto error;

	/* ask the cache to honour the operation */
	if (test_bit(FSCACHE_COOKIE_NO_DATA_YET, &object->cookie->flags)) {
		fscache_stat(&fscache_n_cop_allocate_page);
		ret = object->cache->ops->allocate_page(op, page, gfp);
		fscache_stat_d(&fscache_n_cop_allocate_page);
		if (ret == 0)
			ret = -ENODATA;
	} else {
		fscache_stat(&fscache_n_cop_read_or_alloc_page);
		ret = object->cache->ops->read_or_alloc_page(op, page, gfp);
		fscache_stat_d(&fscache_n_cop_read_or_alloc_page);
	}

error:
	if (ret == -ENOMEM)
		fscache_stat(&fscache_n_retrievals_nomem);
	else if (ret == -ERESTARTSYS)
		fscache_stat(&fscache_n_retrievals_intr);
	else if (ret == -ENODATA)
		fscache_stat(&fscache_n_retrievals_nodata);
	else if (ret < 0)
		fscache_stat(&fscache_n_retrievals_nobufs);
	else
		fscache_stat(&fscache_n_retrievals_ok);

	fscache_put_retrieval(op);
	_leave(" = %d", ret);
	return ret;

nobufs_unlock:
	spin_unlock(&cookie->lock);
	kfree(op);
nobufs:
	fscache_stat(&fscache_n_retrievals_nobufs);
	_leave(" = -ENOBUFS");
	return -ENOBUFS;
}
EXPORT_SYMBOL(__fscache_read_or_alloc_page);

/*
 * read a list of page from the cache or allocate a block in which to store
 * them
 * - we return:
 *   -ENOMEM	- out of memory, some pages may be being read
 *   -ERESTARTSYS - interrupted, some pages may be being read
 *   -ENOBUFS	- no backing object or space available in which to cache any
 *                pages not being read
 *   -ENODATA	- no data available in the backing object for some or all of
 *                the pages
 *   0		- dispatched a read on all pages
 *
 * end_io_func() will be called for each page read from the cache as it is
 * finishes being read
 *
 * any pages for which a read is dispatched will be removed from pages and
 * nr_pages
 */
int __fscache_read_or_alloc_pages(struct fscache_cookie *cookie,
				  struct address_space *mapping,
				  struct list_head *pages,
				  unsigned *nr_pages,
				  fscache_rw_complete_t end_io_func,
				  void *context,
				  gfp_t gfp)
{
	struct fscache_retrieval *op;
	struct fscache_object *object;
	int ret;

	_enter("%p,,%d,,,", cookie, *nr_pages);

	fscache_stat(&fscache_n_retrievals);

	if (hlist_empty(&cookie->backing_objects))
		goto nobufs;

	ASSERTCMP(cookie->def->type, !=, FSCACHE_COOKIE_TYPE_INDEX);
	ASSERTCMP(*nr_pages, >, 0);
	ASSERT(!list_empty(pages));

	if (fscache_wait_for_deferred_lookup(cookie) < 0)
		return -ERESTARTSYS;

	op = fscache_alloc_retrieval(mapping, end_io_func, context);
	if (!op)
		return -ENOMEM;

	spin_lock(&cookie->lock);

	if (hlist_empty(&cookie->backing_objects))
		goto nobufs_unlock;
	object = hlist_entry(cookie->backing_objects.first,
			     struct fscache_object, cookie_link);

	atomic_inc(&object->n_reads);
	set_bit(FSCACHE_OP_DEC_READ_CNT, &op->op.flags);

	if (fscache_submit_op(object, &op->op) < 0)
		goto nobufs_unlock;
	spin_unlock(&cookie->lock);

	fscache_stat(&fscache_n_retrieval_ops);

	/* pin the netfs read context in case we need to do the actual netfs
	 * read because we've encountered a cache read failure */
	fscache_get_context(object->cookie, op->context);

	/* we wait for the operation to become active, and then process it
	 * *here*, in this thread, and not in the thread pool */
	ret = fscache_wait_for_retrieval_activation(
		object, op,
		__fscache_stat(&fscache_n_retrieval_op_waits),
		__fscache_stat(&fscache_n_retrievals_object_dead));
	if (ret < 0)
		goto error;

	/* ask the cache to honour the operation */
	if (test_bit(FSCACHE_COOKIE_NO_DATA_YET, &object->cookie->flags)) {
		fscache_stat(&fscache_n_cop_allocate_pages);
		ret = object->cache->ops->allocate_pages(
			op, pages, nr_pages, gfp);
		fscache_stat_d(&fscache_n_cop_allocate_pages);
	} else {
		fscache_stat(&fscache_n_cop_read_or_alloc_pages);
		ret = object->cache->ops->read_or_alloc_pages(
			op, pages, nr_pages, gfp);
		fscache_stat_d(&fscache_n_cop_read_or_alloc_pages);
	}

error:
	if (ret == -ENOMEM)
		fscache_stat(&fscache_n_retrievals_nomem);
	else if (ret == -ERESTARTSYS)
		fscache_stat(&fscache_n_retrievals_intr);
	else if (ret == -ENODATA)
		fscache_stat(&fscache_n_retrievals_nodata);
	else if (ret < 0)
		fscache_stat(&fscache_n_retrievals_nobufs);
	else
		fscache_stat(&fscache_n_retrievals_ok);

	fscache_put_retrieval(op);
	_leave(" = %d", ret);
	return ret;

nobufs_unlock:
	spin_unlock(&cookie->lock);
	kfree(op);
nobufs:
	fscache_stat(&fscache_n_retrievals_nobufs);
	_leave(" = -ENOBUFS");
	return -ENOBUFS;
}
EXPORT_SYMBOL(__fscache_read_or_alloc_pages);

/*
 * allocate a block in the cache on which to store a page
 * - we return:
 *   -ENOMEM	- out of memory, nothing done
 *   -ERESTARTSYS - interrupted
 *   -ENOBUFS	- no backing object available in which to cache the block
 *   0		- block allocated
 */
int __fscache_alloc_page(struct fscache_cookie *cookie,
			 struct page *page,
			 gfp_t gfp)
{
	struct fscache_retrieval *op;
	struct fscache_object *object;
	int ret;

	_enter("%p,%p,,,", cookie, page);

	fscache_stat(&fscache_n_allocs);

	if (hlist_empty(&cookie->backing_objects))
		goto nobufs;

	ASSERTCMP(cookie->def->type, !=, FSCACHE_COOKIE_TYPE_INDEX);
	ASSERTCMP(page, !=, NULL);

	if (fscache_wait_for_deferred_lookup(cookie) < 0)
		return -ERESTARTSYS;

	op = fscache_alloc_retrieval(page->mapping, NULL, NULL);
	if (!op)
		return -ENOMEM;

	spin_lock(&cookie->lock);

	if (hlist_empty(&cookie->backing_objects))
		goto nobufs_unlock;
	object = hlist_entry(cookie->backing_objects.first,
			     struct fscache_object, cookie_link);

	if (fscache_submit_op(object, &op->op) < 0)
		goto nobufs_unlock;
	spin_unlock(&cookie->lock);

	fscache_stat(&fscache_n_alloc_ops);

	ret = fscache_wait_for_retrieval_activation(
		object, op,
		__fscache_stat(&fscache_n_alloc_op_waits),
		__fscache_stat(&fscache_n_allocs_object_dead));
	if (ret < 0)
		goto error;

	/* ask the cache to honour the operation */
	fscache_stat(&fscache_n_cop_allocate_page);
	ret = object->cache->ops->allocate_page(op, page, gfp);
	fscache_stat_d(&fscache_n_cop_allocate_page);

error:
	if (ret == -ERESTARTSYS)
		fscache_stat(&fscache_n_allocs_intr);
	else if (ret < 0)
		fscache_stat(&fscache_n_allocs_nobufs);
	else
		fscache_stat(&fscache_n_allocs_ok);

	fscache_put_retrieval(op);
	_leave(" = %d", ret);
	return ret;

nobufs_unlock:
	spin_unlock(&cookie->lock);
	kfree(op);
nobufs:
	fscache_stat(&fscache_n_allocs_nobufs);
	_leave(" = -ENOBUFS");
	return -ENOBUFS;
}
EXPORT_SYMBOL(__fscache_alloc_page);

/*
 * release a write op reference
 */
static void fscache_release_write_op(struct fscache_operation *_op)
{
	_enter("{OP%x}", _op->debug_id);
}

/*
 * perform the background storage of a page into the cache
 */
static void fscache_write_op(struct fscache_operation *_op)
{
	struct fscache_storage *op =
		container_of(_op, struct fscache_storage, op);
	struct fscache_object *object = op->op.object;
	struct fscache_cookie *cookie;
	struct page *page;
	unsigned n;
	void *results[1];
	int ret;

	_enter("{OP%x,%d}", op->op.debug_id, atomic_read(&op->op.usage));

	spin_lock(&object->lock);
	cookie = object->cookie;

	if (!fscache_object_is_active(object) || !cookie) {
		spin_unlock(&object->lock);
		_leave("");
		return;
	}

	spin_lock(&cookie->stores_lock);

	fscache_stat(&fscache_n_store_calls);

	/* find a page to store */
	page = NULL;
	n = radix_tree_gang_lookup_tag(&cookie->stores, results, 0, 1,
				       FSCACHE_COOKIE_PENDING_TAG);
	if (n != 1)
		goto superseded;
	page = results[0];
	_debug("gang %d [%lx]", n, page->index);
	if (page->index > op->store_limit) {
		fscache_stat(&fscache_n_store_pages_over_limit);
		goto superseded;
	}

	radix_tree_tag_set(&cookie->stores, page->index,
			   FSCACHE_COOKIE_STORING_TAG);
	radix_tree_tag_clear(&cookie->stores, page->index,
			     FSCACHE_COOKIE_PENDING_TAG);

	spin_unlock(&cookie->stores_lock);
	spin_unlock(&object->lock);

	fscache_stat(&fscache_n_store_pages);
	fscache_stat(&fscache_n_cop_write_page);
	ret = object->cache->ops->write_page(op, page);
	fscache_stat_d(&fscache_n_cop_write_page);
	fscache_end_page_write(object, page);
	if (ret < 0) {
		fscache_abort_object(object);
	} else {
		fscache_enqueue_operation(&op->op);
	}

	_leave("");
	return;

superseded:
	/* this writer is going away and there aren't any more things to
	 * write */
	_debug("cease");
	spin_unlock(&cookie->stores_lock);
	clear_bit(FSCACHE_OBJECT_PENDING_WRITE, &object->flags);
	spin_unlock(&object->lock);
	_leave("");
}

/*
 * request a page be stored in the cache
 * - returns:
 *   -ENOMEM	- out of memory, nothing done
 *   -ENOBUFS	- no backing object available in which to cache the page
 *   0		- dispatched a write - it'll call end_io_func() when finished
 *
 * if the cookie still has a backing object at this point, that object can be
 * in one of a few states with respect to storage processing:
 *
 *  (1) negative lookup, object not yet created (FSCACHE_COOKIE_CREATING is
 *      set)
 *
 *	(a) no writes yet (set FSCACHE_COOKIE_PENDING_FILL and queue deferred
 *	    fill op)
 *
 *	(b) writes deferred till post-creation (mark page for writing and
 *	    return immediately)
 *
 *  (2) negative lookup, object created, initial fill being made from netfs
 *      (FSCACHE_COOKIE_INITIAL_FILL is set)
 *
 *	(a) fill point not yet reached this page (mark page for writing and
 *          return)
 *
 *	(b) fill point passed this page (queue op to store this page)
 *
 *  (3) object extant (queue op to store this page)
 *
 * any other state is invalid
 */
int __fscache_write_page(struct fscache_cookie *cookie,
			 struct page *page,
			 gfp_t gfp)
{
	struct fscache_storage *op;
	struct fscache_object *object;
	int ret;

	_enter("%p,%x,", cookie, (u32) page->flags);

	ASSERTCMP(cookie->def->type, !=, FSCACHE_COOKIE_TYPE_INDEX);
	ASSERT(PageFsCache(page));

	fscache_stat(&fscache_n_stores);

	op = kzalloc(sizeof(*op), GFP_NOIO);
	if (!op)
		goto nomem;

	fscache_operation_init(&op->op, fscache_write_op,
			       fscache_release_write_op);
	op->op.flags = FSCACHE_OP_ASYNC | (1 << FSCACHE_OP_WAITING);

	ret = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
	if (ret < 0)
		goto nomem_free;

	ret = -ENOBUFS;
	spin_lock(&cookie->lock);

	if (hlist_empty(&cookie->backing_objects))
		goto nobufs;
	object = hlist_entry(cookie->backing_objects.first,
			     struct fscache_object, cookie_link);
	if (test_bit(FSCACHE_IOERROR, &object->cache->flags))
		goto nobufs;

	/* add the page to the pending-storage radix tree on the backing
	 * object */
	spin_lock(&object->lock);
	spin_lock(&cookie->stores_lock);

	_debug("store limit %llx", (unsigned long long) object->store_limit);

	ret = radix_tree_insert(&cookie->stores, page->index, page);
	if (ret < 0) {
		if (ret == -EEXIST)
			goto already_queued;
		_debug("insert failed %d", ret);
		goto nobufs_unlock_obj;
	}

	radix_tree_tag_set(&cookie->stores, page->index,
			   FSCACHE_COOKIE_PENDING_TAG);
	page_cache_get(page);

	/* we only want one writer at a time, but we do need to queue new
	 * writers after exclusive ops */
	if (test_and_set_bit(FSCACHE_OBJECT_PENDING_WRITE, &object->flags))
		goto already_pending;

	spin_unlock(&cookie->stores_lock);
	spin_unlock(&object->lock);

	op->op.debug_id	= atomic_inc_return(&fscache_op_debug_id);
	op->store_limit = object->store_limit;

	if (fscache_submit_op(object, &op->op) < 0)
		goto submit_failed;

	spin_unlock(&cookie->lock);
	radix_tree_preload_end();
	fscache_stat(&fscache_n_store_ops);
	fscache_stat(&fscache_n_stores_ok);

	/* the work queue now carries its own ref on the object */
	fscache_put_operation(&op->op);
	_leave(" = 0");
	return 0;

already_queued:
	fscache_stat(&fscache_n_stores_again);
already_pending:
	spin_unlock(&cookie->stores_lock);
	spin_unlock(&object->lock);
	spin_unlock(&cookie->lock);
	radix_tree_preload_end();
	kfree(op);
	fscache_stat(&fscache_n_stores_ok);
	_leave(" = 0");
	return 0;

submit_failed:
	spin_lock(&cookie->stores_lock);
	radix_tree_delete(&cookie->stores, page->index);
	spin_unlock(&cookie->stores_lock);
	page_cache_release(page);
	ret = -ENOBUFS;
	goto nobufs;

nobufs_unlock_obj:
	spin_unlock(&cookie->stores_lock);
	spin_unlock(&object->lock);
nobufs:
	spin_unlock(&cookie->lock);
	radix_tree_preload_end();
	kfree(op);
	fscache_stat(&fscache_n_stores_nobufs);
	_leave(" = -ENOBUFS");
	return -ENOBUFS;

nomem_free:
	kfree(op);
nomem:
	fscache_stat(&fscache_n_stores_oom);
	_leave(" = -ENOMEM");
	return -ENOMEM;
}
EXPORT_SYMBOL(__fscache_write_page);

/*
 * remove a page from the cache
 */
void __fscache_uncache_page(struct fscache_cookie *cookie, struct page *page)
{
	struct fscache_object *object;

	_enter(",%p", page);

	ASSERTCMP(cookie->def->type, !=, FSCACHE_COOKIE_TYPE_INDEX);
	ASSERTCMP(page, !=, NULL);

	fscache_stat(&fscache_n_uncaches);

	/* cache withdrawal may beat us to it */
	if (!PageFsCache(page))
		goto done;

	/* get the object */
	spin_lock(&cookie->lock);

	if (hlist_empty(&cookie->backing_objects)) {
		ClearPageFsCache(page);
		goto done_unlock;
	}

	object = hlist_entry(cookie->backing_objects.first,
			     struct fscache_object, cookie_link);

	/* there might now be stuff on disk we could read */
	clear_bit(FSCACHE_COOKIE_NO_DATA_YET, &cookie->flags);

	/* only invoke the cache backend if we managed to mark the page
	 * uncached here; this deals with synchronisation vs withdrawal */
	if (TestClearPageFsCache(page) &&
	    object->cache->ops->uncache_page) {
		/* the cache backend releases the cookie lock */
		fscache_stat(&fscache_n_cop_uncache_page);
		object->cache->ops->uncache_page(object, page);
		fscache_stat_d(&fscache_n_cop_uncache_page);
		goto done;
	}

done_unlock:
	spin_unlock(&cookie->lock);
done:
	_leave("");
}
EXPORT_SYMBOL(__fscache_uncache_page);

/**
 * fscache_mark_pages_cached - Mark pages as being cached
 * @op: The retrieval op pages are being marked for
 * @pagevec: The pages to be marked
 *
 * Mark a bunch of netfs pages as being cached.  After this is called,
 * the netfs must call fscache_uncache_page() to remove the mark.
 */
void fscache_mark_pages_cached(struct fscache_retrieval *op,
			       struct pagevec *pagevec)
{
	struct fscache_cookie *cookie = op->op.object->cookie;
	unsigned long loop;

#ifdef CONFIG_FSCACHE_STATS
	atomic_add(pagevec->nr, &fscache_n_marks);
#endif

	for (loop = 0; loop < pagevec->nr; loop++) {
		struct page *page = pagevec->pages[loop];

		_debug("- mark %p{%lx}", page, page->index);
		if (TestSetPageFsCache(page)) {
			static bool once_only;
			if (!once_only) {
				once_only = true;
				printk(KERN_WARNING "FS-Cache:"
				       " Cookie type %s marked page %lx"
				       " multiple times\n",
				       cookie->def->name, page->index);
			}
		}
	}

	if (cookie->def->mark_pages_cached)
		cookie->def->mark_pages_cached(cookie->netfs_data,
					       op->mapping, pagevec);
	pagevec_reinit(pagevec);
}
EXPORT_SYMBOL(fscache_mark_pages_cached);

/*
 * Uncache all the pages in an inode that are marked PG_fscache, assuming them
 * to be associated with the given cookie.
 */
void __fscache_uncache_all_inode_pages(struct fscache_cookie *cookie,
				       struct inode *inode)
{
	struct address_space *mapping = inode->i_mapping;
	struct pagevec pvec;
	pgoff_t next;
	int i;

	_enter("%p,%p", cookie, inode);

	if (!mapping || mapping->nrpages == 0) {
		_leave(" [no pages]");
		return;
	}

	pagevec_init(&pvec, 0);
	next = 0;
	do {
		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE))
			break;
		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			next = page->index;
			if (PageFsCache(page)) {
				__fscache_wait_on_page_write(cookie, page);
				__fscache_uncache_page(cookie, page);
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	} while (++next);

	_leave("");
}
EXPORT_SYMBOL(__fscache_uncache_all_inode_pages);