tcp_minisocks.c 24.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
/*
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		Implementation of the Transmission Control Protocol(TCP).
 *
 * Authors:	Ross Biro
 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 *		Florian La Roche, <flla@stud.uni-sb.de>
 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 *		Jorge Cwik, <jorge@laser.satlink.net>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/sysctl.h>
#include <linux/workqueue.h>
#include <net/tcp.h>
#include <net/inet_common.h>
#include <net/xfrm.h>

int sysctl_tcp_syncookies __read_mostly = 1;
EXPORT_SYMBOL(sysctl_tcp_syncookies);

int sysctl_tcp_abort_on_overflow __read_mostly;

struct inet_timewait_death_row tcp_death_row = {
	.sysctl_max_tw_buckets = NR_FILE * 2,
	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
	.hashinfo	= &tcp_hashinfo,
	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
					    (unsigned long)&tcp_death_row),
	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
					     inet_twdr_twkill_work),
/* Short-time timewait calendar */

	.twcal_hand	= -1,
	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
					    (unsigned long)&tcp_death_row),
};
EXPORT_SYMBOL_GPL(tcp_death_row);

/* VJ's idea. Save last timestamp seen from this destination
 * and hold it at least for normal timewait interval to use for duplicate
 * segment detection in subsequent connections, before they enter synchronized
 * state.
 */

static int tcp_remember_stamp(struct sock *sk)
{
	const struct inet_connection_sock *icsk = inet_csk(sk);
	struct tcp_sock *tp = tcp_sk(sk);
	struct inet_peer *peer;
	bool release_it;

	peer = icsk->icsk_af_ops->get_peer(sk, &release_it);
	if (peer) {
		if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
		     peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
			peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
			peer->tcp_ts = tp->rx_opt.ts_recent;
		}
		if (release_it)
			inet_putpeer(peer);
		return 1;
	}

	return 0;
}

static int tcp_tw_remember_stamp(struct inet_timewait_sock *tw)
{
	struct sock *sk = (struct sock *) tw;
	struct inet_peer *peer;

	peer = twsk_getpeer(sk);
	if (peer) {
		const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);

		if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
		     peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
			peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
			peer->tcp_ts	   = tcptw->tw_ts_recent;
		}
		inet_putpeer(peer);
		return 1;
	}
	return 0;
}

static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
{
	if (seq == s_win)
		return 1;
	if (after(end_seq, s_win) && before(seq, e_win))
		return 1;
	return seq == e_win && seq == end_seq;
}

/*
 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 *   (and, probably, tail of data) and one or more our ACKs are lost.
 * * What is TIME-WAIT timeout? It is associated with maximal packet
 *   lifetime in the internet, which results in wrong conclusion, that
 *   it is set to catch "old duplicate segments" wandering out of their path.
 *   It is not quite correct. This timeout is calculated so that it exceeds
 *   maximal retransmission timeout enough to allow to lose one (or more)
 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 * * When TIME-WAIT socket receives RST, it means that another end
 *   finally closed and we are allowed to kill TIME-WAIT too.
 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 * * If we invented some more clever way to catch duplicates
 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 *
 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 * from the very beginning.
 *
 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 * is _not_ stateless. It means, that strictly speaking we must
 * spinlock it. I do not want! Well, probability of misbehaviour
 * is ridiculously low and, seems, we could use some mb() tricks
 * to avoid misread sequence numbers, states etc.  --ANK
 */
enum tcp_tw_status
tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
			   const struct tcphdr *th)
{
	struct tcp_options_received tmp_opt;
	const u8 *hash_location;
	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
	int paws_reject = 0;

	tmp_opt.saw_tstamp = 0;
	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);

		if (tmp_opt.saw_tstamp) {
			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
		}
	}

	if (tw->tw_substate == TCP_FIN_WAIT2) {
		/* Just repeat all the checks of tcp_rcv_state_process() */

		/* Out of window, send ACK */
		if (paws_reject ||
		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
				   tcptw->tw_rcv_nxt,
				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
			return TCP_TW_ACK;

		if (th->rst)
			goto kill;

		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
			goto kill_with_rst;

		/* Dup ACK? */
		if (!th->ack ||
		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
			inet_twsk_put(tw);
			return TCP_TW_SUCCESS;
		}

		/* New data or FIN. If new data arrive after half-duplex close,
		 * reset.
		 */
		if (!th->fin ||
		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
kill_with_rst:
			inet_twsk_deschedule(tw, &tcp_death_row);
			inet_twsk_put(tw);
			return TCP_TW_RST;
		}

		/* FIN arrived, enter true time-wait state. */
		tw->tw_substate	  = TCP_TIME_WAIT;
		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
		if (tmp_opt.saw_tstamp) {
			tcptw->tw_ts_recent_stamp = get_seconds();
			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
		}

		if (tcp_death_row.sysctl_tw_recycle &&
		    tcptw->tw_ts_recent_stamp &&
		    tcp_tw_remember_stamp(tw))
			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
					   TCP_TIMEWAIT_LEN);
		else
			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
					   TCP_TIMEWAIT_LEN);
		return TCP_TW_ACK;
	}

	/*
	 *	Now real TIME-WAIT state.
	 *
	 *	RFC 1122:
	 *	"When a connection is [...] on TIME-WAIT state [...]
	 *	[a TCP] MAY accept a new SYN from the remote TCP to
	 *	reopen the connection directly, if it:
	 *
	 *	(1)  assigns its initial sequence number for the new
	 *	connection to be larger than the largest sequence
	 *	number it used on the previous connection incarnation,
	 *	and
	 *
	 *	(2)  returns to TIME-WAIT state if the SYN turns out
	 *	to be an old duplicate".
	 */

	if (!paws_reject &&
	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
		/* In window segment, it may be only reset or bare ack. */

		if (th->rst) {
			/* This is TIME_WAIT assassination, in two flavors.
			 * Oh well... nobody has a sufficient solution to this
			 * protocol bug yet.
			 */
			if (sysctl_tcp_rfc1337 == 0) {
kill:
				inet_twsk_deschedule(tw, &tcp_death_row);
				inet_twsk_put(tw);
				return TCP_TW_SUCCESS;
			}
		}
		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
				   TCP_TIMEWAIT_LEN);

		if (tmp_opt.saw_tstamp) {
			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
			tcptw->tw_ts_recent_stamp = get_seconds();
		}

		inet_twsk_put(tw);
		return TCP_TW_SUCCESS;
	}

	/* Out of window segment.

	   All the segments are ACKed immediately.

	   The only exception is new SYN. We accept it, if it is
	   not old duplicate and we are not in danger to be killed
	   by delayed old duplicates. RFC check is that it has
	   newer sequence number works at rates <40Mbit/sec.
	   However, if paws works, it is reliable AND even more,
	   we even may relax silly seq space cutoff.

	   RED-PEN: we violate main RFC requirement, if this SYN will appear
	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
	   we must return socket to time-wait state. It is not good,
	   but not fatal yet.
	 */

	if (th->syn && !th->rst && !th->ack && !paws_reject &&
	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
	     (tmp_opt.saw_tstamp &&
	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
		if (isn == 0)
			isn++;
		TCP_SKB_CB(skb)->when = isn;
		return TCP_TW_SYN;
	}

	if (paws_reject)
		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);

	if (!th->rst) {
		/* In this case we must reset the TIMEWAIT timer.
		 *
		 * If it is ACKless SYN it may be both old duplicate
		 * and new good SYN with random sequence number <rcv_nxt.
		 * Do not reschedule in the last case.
		 */
		if (paws_reject || th->ack)
			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
					   TCP_TIMEWAIT_LEN);

		/* Send ACK. Note, we do not put the bucket,
		 * it will be released by caller.
		 */
		return TCP_TW_ACK;
	}
	inet_twsk_put(tw);
	return TCP_TW_SUCCESS;
}
EXPORT_SYMBOL(tcp_timewait_state_process);

/*
 * Move a socket to time-wait or dead fin-wait-2 state.
 */
void tcp_time_wait(struct sock *sk, int state, int timeo)
{
	struct inet_timewait_sock *tw = NULL;
	const struct inet_connection_sock *icsk = inet_csk(sk);
	const struct tcp_sock *tp = tcp_sk(sk);
	int recycle_ok = 0;

	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
		recycle_ok = tcp_remember_stamp(sk);

	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
		tw = inet_twsk_alloc(sk, state);

	if (tw != NULL) {
		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);

		tw->tw_transparent	= inet_sk(sk)->transparent;
		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
		tcptw->tw_snd_nxt	= tp->snd_nxt;
		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;

#if IS_ENABLED(CONFIG_IPV6)
		if (tw->tw_family == PF_INET6) {
			struct ipv6_pinfo *np = inet6_sk(sk);
			struct inet6_timewait_sock *tw6;

			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
			tw6 = inet6_twsk((struct sock *)tw);
			tw6->tw_v6_daddr = np->daddr;
			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
			tw->tw_tclass = np->tclass;
			tw->tw_ipv6only = np->ipv6only;
		}
#endif

#ifdef CONFIG_TCP_MD5SIG
		/*
		 * The timewait bucket does not have the key DB from the
		 * sock structure. We just make a quick copy of the
		 * md5 key being used (if indeed we are using one)
		 * so the timewait ack generating code has the key.
		 */
		do {
			struct tcp_md5sig_key *key;
			memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key));
			tcptw->tw_md5_keylen = 0;
			key = tp->af_specific->md5_lookup(sk, sk);
			if (key != NULL) {
				memcpy(&tcptw->tw_md5_key, key->key, key->keylen);
				tcptw->tw_md5_keylen = key->keylen;
				if (tcp_alloc_md5sig_pool(sk) == NULL)
					BUG();
			}
		} while (0);
#endif

		/* Linkage updates. */
		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);

		/* Get the TIME_WAIT timeout firing. */
		if (timeo < rto)
			timeo = rto;

		if (recycle_ok) {
			tw->tw_timeout = rto;
		} else {
			tw->tw_timeout = TCP_TIMEWAIT_LEN;
			if (state == TCP_TIME_WAIT)
				timeo = TCP_TIMEWAIT_LEN;
		}

		inet_twsk_schedule(tw, &tcp_death_row, timeo,
				   TCP_TIMEWAIT_LEN);
		inet_twsk_put(tw);
	} else {
		/* Sorry, if we're out of memory, just CLOSE this
		 * socket up.  We've got bigger problems than
		 * non-graceful socket closings.
		 */
		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
	}

	tcp_update_metrics(sk);
	tcp_done(sk);
}

void tcp_twsk_destructor(struct sock *sk)
{
#ifdef CONFIG_TCP_MD5SIG
	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
	if (twsk->tw_md5_keylen)
		tcp_free_md5sig_pool();
#endif
}
EXPORT_SYMBOL_GPL(tcp_twsk_destructor);

static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
					 struct request_sock *req)
{
	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
}

/* This is not only more efficient than what we used to do, it eliminates
 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
 *
 * Actually, we could lots of memory writes here. tp of listening
 * socket contains all necessary default parameters.
 */
struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
{
	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);

	if (newsk != NULL) {
		const struct inet_request_sock *ireq = inet_rsk(req);
		struct tcp_request_sock *treq = tcp_rsk(req);
		struct inet_connection_sock *newicsk = inet_csk(newsk);
		struct tcp_sock *newtp = tcp_sk(newsk);
		struct tcp_sock *oldtp = tcp_sk(sk);
		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;

		/* TCP Cookie Transactions require space for the cookie pair,
		 * as it differs for each connection.  There is no need to
		 * copy any s_data_payload stored at the original socket.
		 * Failure will prevent resuming the connection.
		 *
		 * Presumed copied, in order of appearance:
		 *	cookie_in_always, cookie_out_never
		 */
		if (oldcvp != NULL) {
			struct tcp_cookie_values *newcvp =
				kzalloc(sizeof(*newtp->cookie_values),
					GFP_ATOMIC);

			if (newcvp != NULL) {
				kref_init(&newcvp->kref);
				newcvp->cookie_desired =
						oldcvp->cookie_desired;
				newtp->cookie_values = newcvp;
			} else {
				/* Not Yet Implemented */
				newtp->cookie_values = NULL;
			}
		}

		/* Now setup tcp_sock */
		newtp->pred_flags = 0;

		newtp->rcv_wup = newtp->copied_seq =
		newtp->rcv_nxt = treq->rcv_isn + 1;

		newtp->snd_sml = newtp->snd_una =
		newtp->snd_nxt = newtp->snd_up =
			treq->snt_isn + 1 + tcp_s_data_size(oldtp);

		tcp_prequeue_init(newtp);

		tcp_init_wl(newtp, treq->rcv_isn);

		newtp->srtt = 0;
		newtp->mdev = TCP_TIMEOUT_INIT;
		newicsk->icsk_rto = TCP_TIMEOUT_INIT;

		newtp->packets_out = 0;
		newtp->retrans_out = 0;
		newtp->sacked_out = 0;
		newtp->fackets_out = 0;
		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;

		/* So many TCP implementations out there (incorrectly) count the
		 * initial SYN frame in their delayed-ACK and congestion control
		 * algorithms that we must have the following bandaid to talk
		 * efficiently to them.  -DaveM
		 */
		newtp->snd_cwnd = TCP_INIT_CWND;
		newtp->snd_cwnd_cnt = 0;
		newtp->bytes_acked = 0;

		newtp->frto_counter = 0;
		newtp->frto_highmark = 0;

		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
		    !try_module_get(newicsk->icsk_ca_ops->owner))
			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;

		tcp_set_ca_state(newsk, TCP_CA_Open);
		tcp_init_xmit_timers(newsk);
		skb_queue_head_init(&newtp->out_of_order_queue);
		newtp->write_seq = newtp->pushed_seq =
			treq->snt_isn + 1 + tcp_s_data_size(oldtp);

		newtp->rx_opt.saw_tstamp = 0;

		newtp->rx_opt.dsack = 0;
		newtp->rx_opt.num_sacks = 0;

		newtp->urg_data = 0;

		if (sock_flag(newsk, SOCK_KEEPOPEN))
			inet_csk_reset_keepalive_timer(newsk,
						       keepalive_time_when(newtp));

		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
			if (sysctl_tcp_fack)
				tcp_enable_fack(newtp);
		}
		newtp->window_clamp = req->window_clamp;
		newtp->rcv_ssthresh = req->rcv_wnd;
		newtp->rcv_wnd = req->rcv_wnd;
		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
		if (newtp->rx_opt.wscale_ok) {
			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
		} else {
			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
			newtp->window_clamp = min(newtp->window_clamp, 65535U);
		}
		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
				  newtp->rx_opt.snd_wscale);
		newtp->max_window = newtp->snd_wnd;

		if (newtp->rx_opt.tstamp_ok) {
			newtp->rx_opt.ts_recent = req->ts_recent;
			newtp->rx_opt.ts_recent_stamp = get_seconds();
			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
		} else {
			newtp->rx_opt.ts_recent_stamp = 0;
			newtp->tcp_header_len = sizeof(struct tcphdr);
		}
#ifdef CONFIG_TCP_MD5SIG
		newtp->md5sig_info = NULL;	/*XXX*/
		if (newtp->af_specific->md5_lookup(sk, newsk))
			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
#endif
		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
		newtp->rx_opt.mss_clamp = req->mss;
		TCP_ECN_openreq_child(newtp, req);

		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
	}
	return newsk;
}
EXPORT_SYMBOL(tcp_create_openreq_child);

/*
 *	Process an incoming packet for SYN_RECV sockets represented
 *	as a request_sock.
 */

struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
			   struct request_sock *req,
			   struct request_sock **prev)
{
	struct tcp_options_received tmp_opt;
	const u8 *hash_location;
	struct sock *child;
	const struct tcphdr *th = tcp_hdr(skb);
	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
	int paws_reject = 0;

	tmp_opt.saw_tstamp = 0;
	if (th->doff > (sizeof(struct tcphdr)>>2)) {
		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);

		if (tmp_opt.saw_tstamp) {
			tmp_opt.ts_recent = req->ts_recent;
			/* We do not store true stamp, but it is not required,
			 * it can be estimated (approximately)
			 * from another data.
			 */
			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
		}
	}

	/* Check for pure retransmitted SYN. */
	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
	    flg == TCP_FLAG_SYN &&
	    !paws_reject) {
		/*
		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
		 * this case on figure 6 and figure 8, but formal
		 * protocol description says NOTHING.
		 * To be more exact, it says that we should send ACK,
		 * because this segment (at least, if it has no data)
		 * is out of window.
		 *
		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
		 *  describe SYN-RECV state. All the description
		 *  is wrong, we cannot believe to it and should
		 *  rely only on common sense and implementation
		 *  experience.
		 *
		 * Enforce "SYN-ACK" according to figure 8, figure 6
		 * of RFC793, fixed by RFC1122.
		 */
		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
		return NULL;
	}

	/* Further reproduces section "SEGMENT ARRIVES"
	   for state SYN-RECEIVED of RFC793.
	   It is broken, however, it does not work only
	   when SYNs are crossed.

	   You would think that SYN crossing is impossible here, since
	   we should have a SYN_SENT socket (from connect()) on our end,
	   but this is not true if the crossed SYNs were sent to both
	   ends by a malicious third party.  We must defend against this,
	   and to do that we first verify the ACK (as per RFC793, page
	   36) and reset if it is invalid.  Is this a true full defense?
	   To convince ourselves, let us consider a way in which the ACK
	   test can still pass in this 'malicious crossed SYNs' case.
	   Malicious sender sends identical SYNs (and thus identical sequence
	   numbers) to both A and B:

		A: gets SYN, seq=7
		B: gets SYN, seq=7

	   By our good fortune, both A and B select the same initial
	   send sequence number of seven :-)

		A: sends SYN|ACK, seq=7, ack_seq=8
		B: sends SYN|ACK, seq=7, ack_seq=8

	   So we are now A eating this SYN|ACK, ACK test passes.  So
	   does sequence test, SYN is truncated, and thus we consider
	   it a bare ACK.

	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
	   bare ACK.  Otherwise, we create an established connection.  Both
	   ends (listening sockets) accept the new incoming connection and try
	   to talk to each other. 8-)

	   Note: This case is both harmless, and rare.  Possibility is about the
	   same as us discovering intelligent life on another plant tomorrow.

	   But generally, we should (RFC lies!) to accept ACK
	   from SYNACK both here and in tcp_rcv_state_process().
	   tcp_rcv_state_process() does not, hence, we do not too.

	   Note that the case is absolutely generic:
	   we cannot optimize anything here without
	   violating protocol. All the checks must be made
	   before attempt to create socket.
	 */

	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
	 *                  and the incoming segment acknowledges something not yet
	 *                  sent (the segment carries an unacceptable ACK) ...
	 *                  a reset is sent."
	 *
	 * Invalid ACK: reset will be sent by listening socket
	 */
	if ((flg & TCP_FLAG_ACK) &&
	    (TCP_SKB_CB(skb)->ack_seq !=
	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
		return sk;

	/* Also, it would be not so bad idea to check rcv_tsecr, which
	 * is essentially ACK extension and too early or too late values
	 * should cause reset in unsynchronized states.
	 */

	/* RFC793: "first check sequence number". */

	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
		/* Out of window: send ACK and drop. */
		if (!(flg & TCP_FLAG_RST))
			req->rsk_ops->send_ack(sk, skb, req);
		if (paws_reject)
			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
		return NULL;
	}

	/* In sequence, PAWS is OK. */

	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
		req->ts_recent = tmp_opt.rcv_tsval;

	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
		/* Truncate SYN, it is out of window starting
		   at tcp_rsk(req)->rcv_isn + 1. */
		flg &= ~TCP_FLAG_SYN;
	}

	/* RFC793: "second check the RST bit" and
	 *	   "fourth, check the SYN bit"
	 */
	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
		goto embryonic_reset;
	}

	/* ACK sequence verified above, just make sure ACK is
	 * set.  If ACK not set, just silently drop the packet.
	 */
	if (!(flg & TCP_FLAG_ACK))
		return NULL;

	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
		inet_rsk(req)->acked = 1;
		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
		return NULL;
	}
	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
	else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
		tcp_rsk(req)->snt_synack = 0;

	/* OK, ACK is valid, create big socket and
	 * feed this segment to it. It will repeat all
	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
	 * ESTABLISHED STATE. If it will be dropped after
	 * socket is created, wait for troubles.
	 */
	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
	if (child == NULL)
		goto listen_overflow;

	inet_csk_reqsk_queue_unlink(sk, req, prev);
	inet_csk_reqsk_queue_removed(sk, req);

	inet_csk_reqsk_queue_add(sk, req, child);
	return child;

listen_overflow:
	if (!sysctl_tcp_abort_on_overflow) {
		inet_rsk(req)->acked = 1;
		return NULL;
	}

embryonic_reset:
	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
	if (!(flg & TCP_FLAG_RST))
		req->rsk_ops->send_reset(sk, skb);

	inet_csk_reqsk_queue_drop(sk, req, prev);
	return NULL;
}
EXPORT_SYMBOL(tcp_check_req);

/*
 * Queue segment on the new socket if the new socket is active,
 * otherwise we just shortcircuit this and continue with
 * the new socket.
 */

int tcp_child_process(struct sock *parent, struct sock *child,
		      struct sk_buff *skb)
{
	int ret = 0;
	int state = child->sk_state;

	if (!sock_owned_by_user(child)) {
		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
					    skb->len);
		/* Wakeup parent, send SIGIO */
		if (state == TCP_SYN_RECV && child->sk_state != state)
			parent->sk_data_ready(parent, 0);
	} else {
		/* Alas, it is possible again, because we do lookup
		 * in main socket hash table and lock on listening
		 * socket does not protect us more.
		 */
		__sk_add_backlog(child, skb);
	}

	bh_unlock_sock(child);
	sock_put(child);
	return ret;
}
EXPORT_SYMBOL(tcp_child_process);