iw_send.c 29.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
/*
 * Copyright (c) 2006 Oracle.  All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */
#include <linux/kernel.h>
#include <linux/in.h>
#include <linux/device.h>
#include <linux/dmapool.h>
#include <linux/ratelimit.h>

#include "rds.h"
#include "iw.h"

static void rds_iw_send_rdma_complete(struct rds_message *rm,
				      int wc_status)
{
	int notify_status;

	switch (wc_status) {
	case IB_WC_WR_FLUSH_ERR:
		return;

	case IB_WC_SUCCESS:
		notify_status = RDS_RDMA_SUCCESS;
		break;

	case IB_WC_REM_ACCESS_ERR:
		notify_status = RDS_RDMA_REMOTE_ERROR;
		break;

	default:
		notify_status = RDS_RDMA_OTHER_ERROR;
		break;
	}
	rds_rdma_send_complete(rm, notify_status);
}

static void rds_iw_send_unmap_rdma(struct rds_iw_connection *ic,
				   struct rm_rdma_op *op)
{
	if (op->op_mapped) {
		ib_dma_unmap_sg(ic->i_cm_id->device,
			op->op_sg, op->op_nents,
			op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
		op->op_mapped = 0;
	}
}

static void rds_iw_send_unmap_rm(struct rds_iw_connection *ic,
			  struct rds_iw_send_work *send,
			  int wc_status)
{
	struct rds_message *rm = send->s_rm;

	rdsdebug("ic %p send %p rm %p\n", ic, send, rm);

	ib_dma_unmap_sg(ic->i_cm_id->device,
		     rm->data.op_sg, rm->data.op_nents,
		     DMA_TO_DEVICE);

	if (rm->rdma.op_active) {
		rds_iw_send_unmap_rdma(ic, &rm->rdma);

		/* If the user asked for a completion notification on this
		 * message, we can implement three different semantics:
		 *  1.	Notify when we received the ACK on the RDS message
		 *	that was queued with the RDMA. This provides reliable
		 *	notification of RDMA status at the expense of a one-way
		 *	packet delay.
		 *  2.	Notify when the IB stack gives us the completion event for
		 *	the RDMA operation.
		 *  3.	Notify when the IB stack gives us the completion event for
		 *	the accompanying RDS messages.
		 * Here, we implement approach #3. To implement approach #2,
		 * call rds_rdma_send_complete from the cq_handler. To implement #1,
		 * don't call rds_rdma_send_complete at all, and fall back to the notify
		 * handling in the ACK processing code.
		 *
		 * Note: There's no need to explicitly sync any RDMA buffers using
		 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
		 * operation itself unmapped the RDMA buffers, which takes care
		 * of synching.
		 */
		rds_iw_send_rdma_complete(rm, wc_status);

		if (rm->rdma.op_write)
			rds_stats_add(s_send_rdma_bytes, rm->rdma.op_bytes);
		else
			rds_stats_add(s_recv_rdma_bytes, rm->rdma.op_bytes);
	}

	/* If anyone waited for this message to get flushed out, wake
	 * them up now */
	rds_message_unmapped(rm);

	rds_message_put(rm);
	send->s_rm = NULL;
}

void rds_iw_send_init_ring(struct rds_iw_connection *ic)
{
	struct rds_iw_send_work *send;
	u32 i;

	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
		struct ib_sge *sge;

		send->s_rm = NULL;
		send->s_op = NULL;
		send->s_mapping = NULL;

		send->s_wr.next = NULL;
		send->s_wr.wr_id = i;
		send->s_wr.sg_list = send->s_sge;
		send->s_wr.num_sge = 1;
		send->s_wr.opcode = IB_WR_SEND;
		send->s_wr.send_flags = 0;
		send->s_wr.ex.imm_data = 0;

		sge = rds_iw_data_sge(ic, send->s_sge);
		sge->lkey = 0;

		sge = rds_iw_header_sge(ic, send->s_sge);
		sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
		sge->length = sizeof(struct rds_header);
		sge->lkey = 0;

		send->s_mr = ib_alloc_fast_reg_mr(ic->i_pd, fastreg_message_size);
		if (IS_ERR(send->s_mr)) {
			printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed\n");
			break;
		}

		send->s_page_list = ib_alloc_fast_reg_page_list(
			ic->i_cm_id->device, fastreg_message_size);
		if (IS_ERR(send->s_page_list)) {
			printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed\n");
			break;
		}
	}
}

void rds_iw_send_clear_ring(struct rds_iw_connection *ic)
{
	struct rds_iw_send_work *send;
	u32 i;

	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
		BUG_ON(!send->s_mr);
		ib_dereg_mr(send->s_mr);
		BUG_ON(!send->s_page_list);
		ib_free_fast_reg_page_list(send->s_page_list);
		if (send->s_wr.opcode == 0xdead)
			continue;
		if (send->s_rm)
			rds_iw_send_unmap_rm(ic, send, IB_WC_WR_FLUSH_ERR);
		if (send->s_op)
			rds_iw_send_unmap_rdma(ic, send->s_op);
	}
}

/*
 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
 * operations performed in the send path.  As the sender allocs and potentially
 * unallocs the next free entry in the ring it doesn't alter which is
 * the next to be freed, which is what this is concerned with.
 */
void rds_iw_send_cq_comp_handler(struct ib_cq *cq, void *context)
{
	struct rds_connection *conn = context;
	struct rds_iw_connection *ic = conn->c_transport_data;
	struct ib_wc wc;
	struct rds_iw_send_work *send;
	u32 completed;
	u32 oldest;
	u32 i;
	int ret;

	rdsdebug("cq %p conn %p\n", cq, conn);
	rds_iw_stats_inc(s_iw_tx_cq_call);
	ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
	if (ret)
		rdsdebug("ib_req_notify_cq send failed: %d\n", ret);

	while (ib_poll_cq(cq, 1, &wc) > 0) {
		rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
			 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
			 be32_to_cpu(wc.ex.imm_data));
		rds_iw_stats_inc(s_iw_tx_cq_event);

		if (wc.status != IB_WC_SUCCESS) {
			printk(KERN_ERR "WC Error:  status = %d opcode = %d\n", wc.status, wc.opcode);
			break;
		}

		if (wc.opcode == IB_WC_LOCAL_INV && wc.wr_id == RDS_IW_LOCAL_INV_WR_ID) {
			ic->i_fastreg_posted = 0;
			continue;
		}

		if (wc.opcode == IB_WC_FAST_REG_MR && wc.wr_id == RDS_IW_FAST_REG_WR_ID) {
			ic->i_fastreg_posted = 1;
			continue;
		}

		if (wc.wr_id == RDS_IW_ACK_WR_ID) {
			if (ic->i_ack_queued + HZ/2 < jiffies)
				rds_iw_stats_inc(s_iw_tx_stalled);
			rds_iw_ack_send_complete(ic);
			continue;
		}

		oldest = rds_iw_ring_oldest(&ic->i_send_ring);

		completed = rds_iw_ring_completed(&ic->i_send_ring, wc.wr_id, oldest);

		for (i = 0; i < completed; i++) {
			send = &ic->i_sends[oldest];

			/* In the error case, wc.opcode sometimes contains garbage */
			switch (send->s_wr.opcode) {
			case IB_WR_SEND:
				if (send->s_rm)
					rds_iw_send_unmap_rm(ic, send, wc.status);
				break;
			case IB_WR_FAST_REG_MR:
			case IB_WR_RDMA_WRITE:
			case IB_WR_RDMA_READ:
			case IB_WR_RDMA_READ_WITH_INV:
				/* Nothing to be done - the SG list will be unmapped
				 * when the SEND completes. */
				break;
			default:
				printk_ratelimited(KERN_NOTICE
						"RDS/IW: %s: unexpected opcode 0x%x in WR!\n",
						__func__, send->s_wr.opcode);
				break;
			}

			send->s_wr.opcode = 0xdead;
			send->s_wr.num_sge = 1;
			if (send->s_queued + HZ/2 < jiffies)
				rds_iw_stats_inc(s_iw_tx_stalled);

			/* If a RDMA operation produced an error, signal this right
			 * away. If we don't, the subsequent SEND that goes with this
			 * RDMA will be canceled with ERR_WFLUSH, and the application
			 * never learn that the RDMA failed. */
			if (unlikely(wc.status == IB_WC_REM_ACCESS_ERR && send->s_op)) {
				struct rds_message *rm;

				rm = rds_send_get_message(conn, send->s_op);
				if (rm)
					rds_iw_send_rdma_complete(rm, wc.status);
			}

			oldest = (oldest + 1) % ic->i_send_ring.w_nr;
		}

		rds_iw_ring_free(&ic->i_send_ring, completed);

		if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
		    test_bit(0, &conn->c_map_queued))
			queue_delayed_work(rds_wq, &conn->c_send_w, 0);

		/* We expect errors as the qp is drained during shutdown */
		if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) {
			rds_iw_conn_error(conn,
				"send completion on %pI4 "
				"had status %u, disconnecting and reconnecting\n",
				&conn->c_faddr, wc.status);
		}
	}
}

/*
 * This is the main function for allocating credits when sending
 * messages.
 *
 * Conceptually, we have two counters:
 *  -	send credits: this tells us how many WRs we're allowed
 *	to submit without overruning the receiver's queue. For
 *	each SEND WR we post, we decrement this by one.
 *
 *  -	posted credits: this tells us how many WRs we recently
 *	posted to the receive queue. This value is transferred
 *	to the peer as a "credit update" in a RDS header field.
 *	Every time we transmit credits to the peer, we subtract
 *	the amount of transferred credits from this counter.
 *
 * It is essential that we avoid situations where both sides have
 * exhausted their send credits, and are unable to send new credits
 * to the peer. We achieve this by requiring that we send at least
 * one credit update to the peer before exhausting our credits.
 * When new credits arrive, we subtract one credit that is withheld
 * until we've posted new buffers and are ready to transmit these
 * credits (see rds_iw_send_add_credits below).
 *
 * The RDS send code is essentially single-threaded; rds_send_xmit
 * grabs c_send_lock to ensure exclusive access to the send ring.
 * However, the ACK sending code is independent and can race with
 * message SENDs.
 *
 * In the send path, we need to update the counters for send credits
 * and the counter of posted buffers atomically - when we use the
 * last available credit, we cannot allow another thread to race us
 * and grab the posted credits counter.  Hence, we have to use a
 * spinlock to protect the credit counter, or use atomics.
 *
 * Spinlocks shared between the send and the receive path are bad,
 * because they create unnecessary delays. An early implementation
 * using a spinlock showed a 5% degradation in throughput at some
 * loads.
 *
 * This implementation avoids spinlocks completely, putting both
 * counters into a single atomic, and updating that atomic using
 * atomic_add (in the receive path, when receiving fresh credits),
 * and using atomic_cmpxchg when updating the two counters.
 */
int rds_iw_send_grab_credits(struct rds_iw_connection *ic,
			     u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
{
	unsigned int avail, posted, got = 0, advertise;
	long oldval, newval;

	*adv_credits = 0;
	if (!ic->i_flowctl)
		return wanted;

try_again:
	advertise = 0;
	oldval = newval = atomic_read(&ic->i_credits);
	posted = IB_GET_POST_CREDITS(oldval);
	avail = IB_GET_SEND_CREDITS(oldval);

	rdsdebug("rds_iw_send_grab_credits(%u): credits=%u posted=%u\n",
			wanted, avail, posted);

	/* The last credit must be used to send a credit update. */
	if (avail && !posted)
		avail--;

	if (avail < wanted) {
		struct rds_connection *conn = ic->i_cm_id->context;

		/* Oops, there aren't that many credits left! */
		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
		got = avail;
	} else {
		/* Sometimes you get what you want, lalala. */
		got = wanted;
	}
	newval -= IB_SET_SEND_CREDITS(got);

	/*
	 * If need_posted is non-zero, then the caller wants
	 * the posted regardless of whether any send credits are
	 * available.
	 */
	if (posted && (got || need_posted)) {
		advertise = min_t(unsigned int, posted, max_posted);
		newval -= IB_SET_POST_CREDITS(advertise);
	}

	/* Finally bill everything */
	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
		goto try_again;

	*adv_credits = advertise;
	return got;
}

void rds_iw_send_add_credits(struct rds_connection *conn, unsigned int credits)
{
	struct rds_iw_connection *ic = conn->c_transport_data;

	if (credits == 0)
		return;

	rdsdebug("rds_iw_send_add_credits(%u): current=%u%s\n",
			credits,
			IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
			test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");

	atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
		queue_delayed_work(rds_wq, &conn->c_send_w, 0);

	WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);

	rds_iw_stats_inc(s_iw_rx_credit_updates);
}

void rds_iw_advertise_credits(struct rds_connection *conn, unsigned int posted)
{
	struct rds_iw_connection *ic = conn->c_transport_data;

	if (posted == 0)
		return;

	atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);

	/* Decide whether to send an update to the peer now.
	 * If we would send a credit update for every single buffer we
	 * post, we would end up with an ACK storm (ACK arrives,
	 * consumes buffer, we refill the ring, send ACK to remote
	 * advertising the newly posted buffer... ad inf)
	 *
	 * Performance pretty much depends on how often we send
	 * credit updates - too frequent updates mean lots of ACKs.
	 * Too infrequent updates, and the peer will run out of
	 * credits and has to throttle.
	 * For the time being, 16 seems to be a good compromise.
	 */
	if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
}

static inline void
rds_iw_xmit_populate_wr(struct rds_iw_connection *ic,
		struct rds_iw_send_work *send, unsigned int pos,
		unsigned long buffer, unsigned int length,
		int send_flags)
{
	struct ib_sge *sge;

	WARN_ON(pos != send - ic->i_sends);

	send->s_wr.send_flags = send_flags;
	send->s_wr.opcode = IB_WR_SEND;
	send->s_wr.num_sge = 2;
	send->s_wr.next = NULL;
	send->s_queued = jiffies;
	send->s_op = NULL;

	if (length != 0) {
		sge = rds_iw_data_sge(ic, send->s_sge);
		sge->addr = buffer;
		sge->length = length;
		sge->lkey = rds_iw_local_dma_lkey(ic);

		sge = rds_iw_header_sge(ic, send->s_sge);
	} else {
		/* We're sending a packet with no payload. There is only
		 * one SGE */
		send->s_wr.num_sge = 1;
		sge = &send->s_sge[0];
	}

	sge->addr = ic->i_send_hdrs_dma + (pos * sizeof(struct rds_header));
	sge->length = sizeof(struct rds_header);
	sge->lkey = rds_iw_local_dma_lkey(ic);
}

/*
 * This can be called multiple times for a given message.  The first time
 * we see a message we map its scatterlist into the IB device so that
 * we can provide that mapped address to the IB scatter gather entries
 * in the IB work requests.  We translate the scatterlist into a series
 * of work requests that fragment the message.  These work requests complete
 * in order so we pass ownership of the message to the completion handler
 * once we send the final fragment.
 *
 * The RDS core uses the c_send_lock to only enter this function once
 * per connection.  This makes sure that the tx ring alloc/unalloc pairs
 * don't get out of sync and confuse the ring.
 */
int rds_iw_xmit(struct rds_connection *conn, struct rds_message *rm,
		unsigned int hdr_off, unsigned int sg, unsigned int off)
{
	struct rds_iw_connection *ic = conn->c_transport_data;
	struct ib_device *dev = ic->i_cm_id->device;
	struct rds_iw_send_work *send = NULL;
	struct rds_iw_send_work *first;
	struct rds_iw_send_work *prev;
	struct ib_send_wr *failed_wr;
	struct scatterlist *scat;
	u32 pos;
	u32 i;
	u32 work_alloc;
	u32 credit_alloc;
	u32 posted;
	u32 adv_credits = 0;
	int send_flags = 0;
	int sent;
	int ret;
	int flow_controlled = 0;

	BUG_ON(off % RDS_FRAG_SIZE);
	BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));

	/* Fastreg support */
	if (rds_rdma_cookie_key(rm->m_rdma_cookie) && !ic->i_fastreg_posted) {
		ret = -EAGAIN;
		goto out;
	}

	/* FIXME we may overallocate here */
	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
		i = 1;
	else
		i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);

	work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos);
	if (work_alloc == 0) {
		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
		rds_iw_stats_inc(s_iw_tx_ring_full);
		ret = -ENOMEM;
		goto out;
	}

	credit_alloc = work_alloc;
	if (ic->i_flowctl) {
		credit_alloc = rds_iw_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
		adv_credits += posted;
		if (credit_alloc < work_alloc) {
			rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
			work_alloc = credit_alloc;
			flow_controlled++;
		}
		if (work_alloc == 0) {
			set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
			rds_iw_stats_inc(s_iw_tx_throttle);
			ret = -ENOMEM;
			goto out;
		}
	}

	/* map the message the first time we see it */
	if (!ic->i_rm) {
		/*
		printk(KERN_NOTICE "rds_iw_xmit prep msg dport=%u flags=0x%x len=%d\n",
				be16_to_cpu(rm->m_inc.i_hdr.h_dport),
				rm->m_inc.i_hdr.h_flags,
				be32_to_cpu(rm->m_inc.i_hdr.h_len));
		   */
		if (rm->data.op_nents) {
			rm->data.op_count = ib_dma_map_sg(dev,
							  rm->data.op_sg,
							  rm->data.op_nents,
							  DMA_TO_DEVICE);
			rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
			if (rm->data.op_count == 0) {
				rds_iw_stats_inc(s_iw_tx_sg_mapping_failure);
				rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
				ret = -ENOMEM; /* XXX ? */
				goto out;
			}
		} else {
			rm->data.op_count = 0;
		}

		ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
		ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes;
		rds_message_addref(rm);
		ic->i_rm = rm;

		/* Finalize the header */
		if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
		if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;

		/* If it has a RDMA op, tell the peer we did it. This is
		 * used by the peer to release use-once RDMA MRs. */
		if (rm->rdma.op_active) {
			struct rds_ext_header_rdma ext_hdr;

			ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
			rds_message_add_extension(&rm->m_inc.i_hdr,
					RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
		}
		if (rm->m_rdma_cookie) {
			rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
					rds_rdma_cookie_key(rm->m_rdma_cookie),
					rds_rdma_cookie_offset(rm->m_rdma_cookie));
		}

		/* Note - rds_iw_piggyb_ack clears the ACK_REQUIRED bit, so
		 * we should not do this unless we have a chance of at least
		 * sticking the header into the send ring. Which is why we
		 * should call rds_iw_ring_alloc first. */
		rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_iw_piggyb_ack(ic));
		rds_message_make_checksum(&rm->m_inc.i_hdr);

		/*
		 * Update adv_credits since we reset the ACK_REQUIRED bit.
		 */
		rds_iw_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
		adv_credits += posted;
		BUG_ON(adv_credits > 255);
	}

	send = &ic->i_sends[pos];
	first = send;
	prev = NULL;
	scat = &rm->data.op_sg[sg];
	sent = 0;
	i = 0;

	/* Sometimes you want to put a fence between an RDMA
	 * READ and the following SEND.
	 * We could either do this all the time
	 * or when requested by the user. Right now, we let
	 * the application choose.
	 */
	if (rm->rdma.op_active && rm->rdma.op_fence)
		send_flags = IB_SEND_FENCE;

	/*
	 * We could be copying the header into the unused tail of the page.
	 * That would need to be changed in the future when those pages might
	 * be mapped userspace pages or page cache pages.  So instead we always
	 * use a second sge and our long-lived ring of mapped headers.  We send
	 * the header after the data so that the data payload can be aligned on
	 * the receiver.
	 */

	/* handle a 0-len message */
	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) {
		rds_iw_xmit_populate_wr(ic, send, pos, 0, 0, send_flags);
		goto add_header;
	}

	/* if there's data reference it with a chain of work reqs */
	for (; i < work_alloc && scat != &rm->data.op_sg[rm->data.op_count]; i++) {
		unsigned int len;

		send = &ic->i_sends[pos];

		len = min(RDS_FRAG_SIZE, ib_sg_dma_len(dev, scat) - off);
		rds_iw_xmit_populate_wr(ic, send, pos,
				ib_sg_dma_address(dev, scat) + off, len,
				send_flags);

		/*
		 * We want to delay signaling completions just enough to get
		 * the batching benefits but not so much that we create dead time
		 * on the wire.
		 */
		if (ic->i_unsignaled_wrs-- == 0) {
			ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
			send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
		}

		ic->i_unsignaled_bytes -= len;
		if (ic->i_unsignaled_bytes <= 0) {
			ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes;
			send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
		}

		/*
		 * Always signal the last one if we're stopping due to flow control.
		 */
		if (flow_controlled && i == (work_alloc-1))
			send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;

		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
			 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);

		sent += len;
		off += len;
		if (off == ib_sg_dma_len(dev, scat)) {
			scat++;
			off = 0;
		}

add_header:
		/* Tack on the header after the data. The header SGE should already
		 * have been set up to point to the right header buffer. */
		memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));

		if (0) {
			struct rds_header *hdr = &ic->i_send_hdrs[pos];

			printk(KERN_NOTICE "send WR dport=%u flags=0x%x len=%d\n",
				be16_to_cpu(hdr->h_dport),
				hdr->h_flags,
				be32_to_cpu(hdr->h_len));
		}
		if (adv_credits) {
			struct rds_header *hdr = &ic->i_send_hdrs[pos];

			/* add credit and redo the header checksum */
			hdr->h_credit = adv_credits;
			rds_message_make_checksum(hdr);
			adv_credits = 0;
			rds_iw_stats_inc(s_iw_tx_credit_updates);
		}

		if (prev)
			prev->s_wr.next = &send->s_wr;
		prev = send;

		pos = (pos + 1) % ic->i_send_ring.w_nr;
	}

	/* Account the RDS header in the number of bytes we sent, but just once.
	 * The caller has no concept of fragmentation. */
	if (hdr_off == 0)
		sent += sizeof(struct rds_header);

	/* if we finished the message then send completion owns it */
	if (scat == &rm->data.op_sg[rm->data.op_count]) {
		prev->s_rm = ic->i_rm;
		prev->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
		ic->i_rm = NULL;
	}

	if (i < work_alloc) {
		rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i);
		work_alloc = i;
	}
	if (ic->i_flowctl && i < credit_alloc)
		rds_iw_send_add_credits(conn, credit_alloc - i);

	/* XXX need to worry about failed_wr and partial sends. */
	failed_wr = &first->s_wr;
	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
		 first, &first->s_wr, ret, failed_wr);
	BUG_ON(failed_wr != &first->s_wr);
	if (ret) {
		printk(KERN_WARNING "RDS/IW: ib_post_send to %pI4 "
		       "returned %d\n", &conn->c_faddr, ret);
		rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
		if (prev->s_rm) {
			ic->i_rm = prev->s_rm;
			prev->s_rm = NULL;
		}
		goto out;
	}

	ret = sent;
out:
	BUG_ON(adv_credits);
	return ret;
}

static void rds_iw_build_send_fastreg(struct rds_iw_device *rds_iwdev, struct rds_iw_connection *ic, struct rds_iw_send_work *send, int nent, int len, u64 sg_addr)
{
	BUG_ON(nent > send->s_page_list->max_page_list_len);
	/*
	 * Perform a WR for the fast_reg_mr. Each individual page
	 * in the sg list is added to the fast reg page list and placed
	 * inside the fast_reg_mr WR.
	 */
	send->s_wr.opcode = IB_WR_FAST_REG_MR;
	send->s_wr.wr.fast_reg.length = len;
	send->s_wr.wr.fast_reg.rkey = send->s_mr->rkey;
	send->s_wr.wr.fast_reg.page_list = send->s_page_list;
	send->s_wr.wr.fast_reg.page_list_len = nent;
	send->s_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
	send->s_wr.wr.fast_reg.access_flags = IB_ACCESS_REMOTE_WRITE;
	send->s_wr.wr.fast_reg.iova_start = sg_addr;

	ib_update_fast_reg_key(send->s_mr, send->s_remap_count++);
}

int rds_iw_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
{
	struct rds_iw_connection *ic = conn->c_transport_data;
	struct rds_iw_send_work *send = NULL;
	struct rds_iw_send_work *first;
	struct rds_iw_send_work *prev;
	struct ib_send_wr *failed_wr;
	struct rds_iw_device *rds_iwdev;
	struct scatterlist *scat;
	unsigned long len;
	u64 remote_addr = op->op_remote_addr;
	u32 pos, fr_pos;
	u32 work_alloc;
	u32 i;
	u32 j;
	int sent;
	int ret;
	int num_sge;

	rds_iwdev = ib_get_client_data(ic->i_cm_id->device, &rds_iw_client);

	/* map the message the first time we see it */
	if (!op->op_mapped) {
		op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
					     op->op_sg, op->op_nents, (op->op_write) ?
					     DMA_TO_DEVICE : DMA_FROM_DEVICE);
		rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
		if (op->op_count == 0) {
			rds_iw_stats_inc(s_iw_tx_sg_mapping_failure);
			ret = -ENOMEM; /* XXX ? */
			goto out;
		}

		op->op_mapped = 1;
	}

	if (!op->op_write) {
		/* Alloc space on the send queue for the fastreg */
		work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, 1, &fr_pos);
		if (work_alloc != 1) {
			rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
			rds_iw_stats_inc(s_iw_tx_ring_full);
			ret = -ENOMEM;
			goto out;
		}
	}

	/*
	 * Instead of knowing how to return a partial rdma read/write we insist that there
	 * be enough work requests to send the entire message.
	 */
	i = ceil(op->op_count, rds_iwdev->max_sge);

	work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos);
	if (work_alloc != i) {
		rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
		rds_iw_stats_inc(s_iw_tx_ring_full);
		ret = -ENOMEM;
		goto out;
	}

	send = &ic->i_sends[pos];
	if (!op->op_write) {
		first = prev = &ic->i_sends[fr_pos];
	} else {
		first = send;
		prev = NULL;
	}
	scat = &op->op_sg[0];
	sent = 0;
	num_sge = op->op_count;

	for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
		send->s_wr.send_flags = 0;
		send->s_queued = jiffies;

		/*
		 * We want to delay signaling completions just enough to get
		 * the batching benefits but not so much that we create dead time on the wire.
		 */
		if (ic->i_unsignaled_wrs-- == 0) {
			ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs;
			send->s_wr.send_flags = IB_SEND_SIGNALED;
		}

		/* To avoid the need to have the plumbing to invalidate the fastreg_mr used
		 * for local access after RDS is finished with it, using
		 * IB_WR_RDMA_READ_WITH_INV will invalidate it after the read has completed.
		 */
		if (op->op_write)
			send->s_wr.opcode = IB_WR_RDMA_WRITE;
		else
			send->s_wr.opcode = IB_WR_RDMA_READ_WITH_INV;

		send->s_wr.wr.rdma.remote_addr = remote_addr;
		send->s_wr.wr.rdma.rkey = op->op_rkey;
		send->s_op = op;

		if (num_sge > rds_iwdev->max_sge) {
			send->s_wr.num_sge = rds_iwdev->max_sge;
			num_sge -= rds_iwdev->max_sge;
		} else
			send->s_wr.num_sge = num_sge;

		send->s_wr.next = NULL;

		if (prev)
			prev->s_wr.next = &send->s_wr;

		for (j = 0; j < send->s_wr.num_sge && scat != &op->op_sg[op->op_count]; j++) {
			len = ib_sg_dma_len(ic->i_cm_id->device, scat);

			if (send->s_wr.opcode == IB_WR_RDMA_READ_WITH_INV)
				send->s_page_list->page_list[j] = ib_sg_dma_address(ic->i_cm_id->device, scat);
			else {
				send->s_sge[j].addr = ib_sg_dma_address(ic->i_cm_id->device, scat);
				send->s_sge[j].length = len;
				send->s_sge[j].lkey = rds_iw_local_dma_lkey(ic);
			}

			sent += len;
			rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
			remote_addr += len;

			scat++;
		}

		if (send->s_wr.opcode == IB_WR_RDMA_READ_WITH_INV) {
			send->s_wr.num_sge = 1;
			send->s_sge[0].addr = conn->c_xmit_rm->m_rs->rs_user_addr;
			send->s_sge[0].length = conn->c_xmit_rm->m_rs->rs_user_bytes;
			send->s_sge[0].lkey = ic->i_sends[fr_pos].s_mr->lkey;
		}

		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
			&send->s_wr, send->s_wr.num_sge, send->s_wr.next);

		prev = send;
		if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
			send = ic->i_sends;
	}

	/* if we finished the message then send completion owns it */
	if (scat == &op->op_sg[op->op_count])
		first->s_wr.send_flags = IB_SEND_SIGNALED;

	if (i < work_alloc) {
		rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i);
		work_alloc = i;
	}

	/* On iWARP, local memory access by a remote system (ie, RDMA Read) is not
	 * recommended.  Putting the lkey on the wire is a security hole, as it can
	 * allow for memory access to all of memory on the remote system.  Some
	 * adapters do not allow using the lkey for this at all.  To bypass this use a
	 * fastreg_mr (or possibly a dma_mr)
	 */
	if (!op->op_write) {
		rds_iw_build_send_fastreg(rds_iwdev, ic, &ic->i_sends[fr_pos],
			op->op_count, sent, conn->c_xmit_rm->m_rs->rs_user_addr);
		work_alloc++;
	}

	failed_wr = &first->s_wr;
	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
		 first, &first->s_wr, ret, failed_wr);
	BUG_ON(failed_wr != &first->s_wr);
	if (ret) {
		printk(KERN_WARNING "RDS/IW: rdma ib_post_send to %pI4 "
		       "returned %d\n", &conn->c_faddr, ret);
		rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc);
		goto out;
	}

out:
	return ret;
}

void rds_iw_xmit_complete(struct rds_connection *conn)
{
	struct rds_iw_connection *ic = conn->c_transport_data;

	/* We may have a pending ACK or window update we were unable
	 * to send previously (due to flow control). Try again. */
	rds_iw_attempt_ack(ic);
}