sched.c 25.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/*
 * linux/net/sunrpc/sched.c
 *
 * Scheduling for synchronous and asynchronous RPC requests.
 *
 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
 *
 * TCP NFS related read + write fixes
 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
 */

#include <linux/module.h>

#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/mempool.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/freezer.h>

#include <linux/sunrpc/clnt.h>

#include "sunrpc.h"

#ifdef RPC_DEBUG
#define RPCDBG_FACILITY		RPCDBG_SCHED
#endif

/*
 * RPC slabs and memory pools
 */
#define RPC_BUFFER_MAXSIZE	(2048)
#define RPC_BUFFER_POOLSIZE	(8)
#define RPC_TASK_POOLSIZE	(8)
static struct kmem_cache	*rpc_task_slabp __read_mostly;
static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
static mempool_t	*rpc_task_mempool __read_mostly;
static mempool_t	*rpc_buffer_mempool __read_mostly;

static void			rpc_async_schedule(struct work_struct *);
static void			 rpc_release_task(struct rpc_task *task);
static void __rpc_queue_timer_fn(unsigned long ptr);

/*
 * RPC tasks sit here while waiting for conditions to improve.
 */
static struct rpc_wait_queue delay_queue;

/*
 * rpciod-related stuff
 */
struct workqueue_struct *rpciod_workqueue;

/*
 * Disable the timer for a given RPC task. Should be called with
 * queue->lock and bh_disabled in order to avoid races within
 * rpc_run_timer().
 */
static void
__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
{
	if (task->tk_timeout == 0)
		return;
	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
	task->tk_timeout = 0;
	list_del(&task->u.tk_wait.timer_list);
	if (list_empty(&queue->timer_list.list))
		del_timer(&queue->timer_list.timer);
}

static void
rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
{
	queue->timer_list.expires = expires;
	mod_timer(&queue->timer_list.timer, expires);
}

/*
 * Set up a timer for the current task.
 */
static void
__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
{
	if (!task->tk_timeout)
		return;

	dprintk("RPC: %5u setting alarm for %lu ms\n",
			task->tk_pid, task->tk_timeout * 1000 / HZ);

	task->u.tk_wait.expires = jiffies + task->tk_timeout;
	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
}

/*
 * Add new request to a priority queue.
 */
static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
		struct rpc_task *task,
		unsigned char queue_priority)
{
	struct list_head *q;
	struct rpc_task *t;

	INIT_LIST_HEAD(&task->u.tk_wait.links);
	q = &queue->tasks[queue_priority];
	if (unlikely(queue_priority > queue->maxpriority))
		q = &queue->tasks[queue->maxpriority];
	list_for_each_entry(t, q, u.tk_wait.list) {
		if (t->tk_owner == task->tk_owner) {
			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
			return;
		}
	}
	list_add_tail(&task->u.tk_wait.list, q);
}

/*
 * Add new request to wait queue.
 *
 * Swapper tasks always get inserted at the head of the queue.
 * This should avoid many nasty memory deadlocks and hopefully
 * improve overall performance.
 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 */
static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
		struct rpc_task *task,
		unsigned char queue_priority)
{
	BUG_ON (RPC_IS_QUEUED(task));

	if (RPC_IS_PRIORITY(queue))
		__rpc_add_wait_queue_priority(queue, task, queue_priority);
	else if (RPC_IS_SWAPPER(task))
		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
	else
		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
	task->tk_waitqueue = queue;
	queue->qlen++;
	rpc_set_queued(task);

	dprintk("RPC: %5u added to queue %p \"%s\"\n",
			task->tk_pid, queue, rpc_qname(queue));
}

/*
 * Remove request from a priority queue.
 */
static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
{
	struct rpc_task *t;

	if (!list_empty(&task->u.tk_wait.links)) {
		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
	}
}

/*
 * Remove request from queue.
 * Note: must be called with spin lock held.
 */
static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
{
	__rpc_disable_timer(queue, task);
	if (RPC_IS_PRIORITY(queue))
		__rpc_remove_wait_queue_priority(task);
	list_del(&task->u.tk_wait.list);
	queue->qlen--;
	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
			task->tk_pid, queue, rpc_qname(queue));
}

static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
{
	queue->priority = priority;
	queue->count = 1 << (priority * 2);
}

static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
{
	queue->owner = pid;
	queue->nr = RPC_BATCH_COUNT;
}

static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
{
	rpc_set_waitqueue_priority(queue, queue->maxpriority);
	rpc_set_waitqueue_owner(queue, 0);
}

static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
{
	int i;

	spin_lock_init(&queue->lock);
	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
		INIT_LIST_HEAD(&queue->tasks[i]);
	queue->maxpriority = nr_queues - 1;
	rpc_reset_waitqueue_priority(queue);
	queue->qlen = 0;
	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
	INIT_LIST_HEAD(&queue->timer_list.list);
#ifdef RPC_DEBUG
	queue->name = qname;
#endif
}

void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
{
	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
}
EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);

void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
{
	__rpc_init_priority_wait_queue(queue, qname, 1);
}
EXPORT_SYMBOL_GPL(rpc_init_wait_queue);

void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
{
	del_timer_sync(&queue->timer_list.timer);
}
EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);

static int rpc_wait_bit_killable(void *word)
{
	if (fatal_signal_pending(current))
		return -ERESTARTSYS;
	freezable_schedule();
	return 0;
}

#ifdef RPC_DEBUG
static void rpc_task_set_debuginfo(struct rpc_task *task)
{
	static atomic_t rpc_pid;

	task->tk_pid = atomic_inc_return(&rpc_pid);
}
#else
static inline void rpc_task_set_debuginfo(struct rpc_task *task)
{
}
#endif

static void rpc_set_active(struct rpc_task *task)
{
	rpc_task_set_debuginfo(task);
	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
}

/*
 * Mark an RPC call as having completed by clearing the 'active' bit
 * and then waking up all tasks that were sleeping.
 */
static int rpc_complete_task(struct rpc_task *task)
{
	void *m = &task->tk_runstate;
	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&wq->lock, flags);
	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
	ret = atomic_dec_and_test(&task->tk_count);
	if (waitqueue_active(wq))
		__wake_up_locked_key(wq, TASK_NORMAL, &k);
	spin_unlock_irqrestore(&wq->lock, flags);
	return ret;
}

/*
 * Allow callers to wait for completion of an RPC call
 *
 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 * to enforce taking of the wq->lock and hence avoid races with
 * rpc_complete_task().
 */
int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
{
	if (action == NULL)
		action = rpc_wait_bit_killable;
	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
			action, TASK_KILLABLE);
}
EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);

/*
 * Make an RPC task runnable.
 *
 * Note: If the task is ASYNC, this must be called with
 * the spinlock held to protect the wait queue operation.
 */
static void rpc_make_runnable(struct rpc_task *task)
{
	rpc_clear_queued(task);
	if (rpc_test_and_set_running(task))
		return;
	if (RPC_IS_ASYNC(task)) {
		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
		queue_work(rpciod_workqueue, &task->u.tk_work);
	} else
		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
}

/*
 * Prepare for sleeping on a wait queue.
 * By always appending tasks to the list we ensure FIFO behavior.
 * NB: An RPC task will only receive interrupt-driven events as long
 * as it's on a wait queue.
 */
static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
		struct rpc_task *task,
		rpc_action action,
		unsigned char queue_priority)
{
	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
			task->tk_pid, rpc_qname(q), jiffies);

	__rpc_add_wait_queue(q, task, queue_priority);

	BUG_ON(task->tk_callback != NULL);
	task->tk_callback = action;
	__rpc_add_timer(q, task);
}

void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
				rpc_action action)
{
	/* We shouldn't ever put an inactive task to sleep */
	BUG_ON(!RPC_IS_ACTIVATED(task));

	/*
	 * Protect the queue operations.
	 */
	spin_lock_bh(&q->lock);
	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
	spin_unlock_bh(&q->lock);
}
EXPORT_SYMBOL_GPL(rpc_sleep_on);

void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
		rpc_action action, int priority)
{
	/* We shouldn't ever put an inactive task to sleep */
	BUG_ON(!RPC_IS_ACTIVATED(task));

	/*
	 * Protect the queue operations.
	 */
	spin_lock_bh(&q->lock);
	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
	spin_unlock_bh(&q->lock);
}

/**
 * __rpc_do_wake_up_task - wake up a single rpc_task
 * @queue: wait queue
 * @task: task to be woken up
 *
 * Caller must hold queue->lock, and have cleared the task queued flag.
 */
static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
{
	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
			task->tk_pid, jiffies);

	/* Has the task been executed yet? If not, we cannot wake it up! */
	if (!RPC_IS_ACTIVATED(task)) {
		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
		return;
	}

	__rpc_remove_wait_queue(queue, task);

	rpc_make_runnable(task);

	dprintk("RPC:       __rpc_wake_up_task done\n");
}

/*
 * Wake up a queued task while the queue lock is being held
 */
static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
{
	if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
		__rpc_do_wake_up_task(queue, task);
}

/*
 * Tests whether rpc queue is empty
 */
int rpc_queue_empty(struct rpc_wait_queue *queue)
{
	int res;

	spin_lock_bh(&queue->lock);
	res = queue->qlen;
	spin_unlock_bh(&queue->lock);
	return res == 0;
}
EXPORT_SYMBOL_GPL(rpc_queue_empty);

/*
 * Wake up a task on a specific queue
 */
void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
{
	spin_lock_bh(&queue->lock);
	rpc_wake_up_task_queue_locked(queue, task);
	spin_unlock_bh(&queue->lock);
}
EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);

/*
 * Wake up the next task on a priority queue.
 */
static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
{
	struct list_head *q;
	struct rpc_task *task;

	/*
	 * Service a batch of tasks from a single owner.
	 */
	q = &queue->tasks[queue->priority];
	if (!list_empty(q)) {
		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
		if (queue->owner == task->tk_owner) {
			if (--queue->nr)
				goto out;
			list_move_tail(&task->u.tk_wait.list, q);
		}
		/*
		 * Check if we need to switch queues.
		 */
		if (--queue->count)
			goto new_owner;
	}

	/*
	 * Service the next queue.
	 */
	do {
		if (q == &queue->tasks[0])
			q = &queue->tasks[queue->maxpriority];
		else
			q = q - 1;
		if (!list_empty(q)) {
			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
			goto new_queue;
		}
	} while (q != &queue->tasks[queue->priority]);

	rpc_reset_waitqueue_priority(queue);
	return NULL;

new_queue:
	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
new_owner:
	rpc_set_waitqueue_owner(queue, task->tk_owner);
out:
	rpc_wake_up_task_queue_locked(queue, task);
	return task;
}

/*
 * Wake up the next task on the wait queue.
 */
struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
{
	struct rpc_task	*task = NULL;

	dprintk("RPC:       wake_up_next(%p \"%s\")\n",
			queue, rpc_qname(queue));
	spin_lock_bh(&queue->lock);
	if (RPC_IS_PRIORITY(queue))
		task = __rpc_wake_up_next_priority(queue);
	else {
		task_for_first(task, &queue->tasks[0])
			rpc_wake_up_task_queue_locked(queue, task);
	}
	spin_unlock_bh(&queue->lock);

	return task;
}
EXPORT_SYMBOL_GPL(rpc_wake_up_next);

/**
 * rpc_wake_up - wake up all rpc_tasks
 * @queue: rpc_wait_queue on which the tasks are sleeping
 *
 * Grabs queue->lock
 */
void rpc_wake_up(struct rpc_wait_queue *queue)
{
	struct rpc_task *task, *next;
	struct list_head *head;

	spin_lock_bh(&queue->lock);
	head = &queue->tasks[queue->maxpriority];
	for (;;) {
		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
			rpc_wake_up_task_queue_locked(queue, task);
		if (head == &queue->tasks[0])
			break;
		head--;
	}
	spin_unlock_bh(&queue->lock);
}
EXPORT_SYMBOL_GPL(rpc_wake_up);

/**
 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 * @queue: rpc_wait_queue on which the tasks are sleeping
 * @status: status value to set
 *
 * Grabs queue->lock
 */
void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
{
	struct rpc_task *task, *next;
	struct list_head *head;

	spin_lock_bh(&queue->lock);
	head = &queue->tasks[queue->maxpriority];
	for (;;) {
		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
			task->tk_status = status;
			rpc_wake_up_task_queue_locked(queue, task);
		}
		if (head == &queue->tasks[0])
			break;
		head--;
	}
	spin_unlock_bh(&queue->lock);
}
EXPORT_SYMBOL_GPL(rpc_wake_up_status);

static void __rpc_queue_timer_fn(unsigned long ptr)
{
	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
	struct rpc_task *task, *n;
	unsigned long expires, now, timeo;

	spin_lock(&queue->lock);
	expires = now = jiffies;
	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
		timeo = task->u.tk_wait.expires;
		if (time_after_eq(now, timeo)) {
			dprintk("RPC: %5u timeout\n", task->tk_pid);
			task->tk_status = -ETIMEDOUT;
			rpc_wake_up_task_queue_locked(queue, task);
			continue;
		}
		if (expires == now || time_after(expires, timeo))
			expires = timeo;
	}
	if (!list_empty(&queue->timer_list.list))
		rpc_set_queue_timer(queue, expires);
	spin_unlock(&queue->lock);
}

static void __rpc_atrun(struct rpc_task *task)
{
	task->tk_status = 0;
}

/*
 * Run a task at a later time
 */
void rpc_delay(struct rpc_task *task, unsigned long delay)
{
	task->tk_timeout = delay;
	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
}
EXPORT_SYMBOL_GPL(rpc_delay);

/*
 * Helper to call task->tk_ops->rpc_call_prepare
 */
void rpc_prepare_task(struct rpc_task *task)
{
	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
}

static void
rpc_init_task_statistics(struct rpc_task *task)
{
	/* Initialize retry counters */
	task->tk_garb_retry = 2;
	task->tk_cred_retry = 2;
	task->tk_rebind_retry = 2;

	/* starting timestamp */
	task->tk_start = ktime_get();
}

static void
rpc_reset_task_statistics(struct rpc_task *task)
{
	task->tk_timeouts = 0;
	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);

	rpc_init_task_statistics(task);
}

/*
 * Helper that calls task->tk_ops->rpc_call_done if it exists
 */
void rpc_exit_task(struct rpc_task *task)
{
	task->tk_action = NULL;
	if (task->tk_ops->rpc_call_done != NULL) {
		task->tk_ops->rpc_call_done(task, task->tk_calldata);
		if (task->tk_action != NULL) {
			WARN_ON(RPC_ASSASSINATED(task));
			/* Always release the RPC slot and buffer memory */
			xprt_release(task);
			rpc_reset_task_statistics(task);
		}
	}
}

void rpc_exit(struct rpc_task *task, int status)
{
	task->tk_status = status;
	task->tk_action = rpc_exit_task;
	if (RPC_IS_QUEUED(task))
		rpc_wake_up_queued_task(task->tk_waitqueue, task);
}
EXPORT_SYMBOL_GPL(rpc_exit);

void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
{
	if (ops->rpc_release != NULL)
		ops->rpc_release(calldata);
}

/*
 * This is the RPC `scheduler' (or rather, the finite state machine).
 */
static void __rpc_execute(struct rpc_task *task)
{
	struct rpc_wait_queue *queue;
	int task_is_async = RPC_IS_ASYNC(task);
	int status = 0;

	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
			task->tk_pid, task->tk_flags);

	BUG_ON(RPC_IS_QUEUED(task));

	for (;;) {
		void (*do_action)(struct rpc_task *);

		/*
		 * Execute any pending callback first.
		 */
		do_action = task->tk_callback;
		task->tk_callback = NULL;
		if (do_action == NULL) {
			/*
			 * Perform the next FSM step.
			 * tk_action may be NULL if the task has been killed.
			 * In particular, note that rpc_killall_tasks may
			 * do this at any time, so beware when dereferencing.
			 */
			do_action = task->tk_action;
			if (do_action == NULL)
				break;
		}
		do_action(task);

		/*
		 * Lockless check for whether task is sleeping or not.
		 */
		if (!RPC_IS_QUEUED(task))
			continue;
		/*
		 * The queue->lock protects against races with
		 * rpc_make_runnable().
		 *
		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
		 * rpc_task, rpc_make_runnable() can assign it to a
		 * different workqueue. We therefore cannot assume that the
		 * rpc_task pointer may still be dereferenced.
		 */
		queue = task->tk_waitqueue;
		spin_lock_bh(&queue->lock);
		if (!RPC_IS_QUEUED(task)) {
			spin_unlock_bh(&queue->lock);
			continue;
		}
		rpc_clear_running(task);
		spin_unlock_bh(&queue->lock);
		if (task_is_async)
			return;

		/* sync task: sleep here */
		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
		status = out_of_line_wait_on_bit(&task->tk_runstate,
				RPC_TASK_QUEUED, rpc_wait_bit_killable,
				TASK_KILLABLE);
		if (status == -ERESTARTSYS) {
			/*
			 * When a sync task receives a signal, it exits with
			 * -ERESTARTSYS. In order to catch any callbacks that
			 * clean up after sleeping on some queue, we don't
			 * break the loop here, but go around once more.
			 */
			dprintk("RPC: %5u got signal\n", task->tk_pid);
			task->tk_flags |= RPC_TASK_KILLED;
			rpc_exit(task, -ERESTARTSYS);
		}
		rpc_set_running(task);
		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
	}

	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
			task->tk_status);
	/* Release all resources associated with the task */
	rpc_release_task(task);
}

/*
 * User-visible entry point to the scheduler.
 *
 * This may be called recursively if e.g. an async NFS task updates
 * the attributes and finds that dirty pages must be flushed.
 * NOTE: Upon exit of this function the task is guaranteed to be
 *	 released. In particular note that tk_release() will have
 *	 been called, so your task memory may have been freed.
 */
void rpc_execute(struct rpc_task *task)
{
	rpc_set_active(task);
	rpc_make_runnable(task);
	if (!RPC_IS_ASYNC(task))
		__rpc_execute(task);
}

static void rpc_async_schedule(struct work_struct *work)
{
	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
}

/**
 * rpc_malloc - allocate an RPC buffer
 * @task: RPC task that will use this buffer
 * @size: requested byte size
 *
 * To prevent rpciod from hanging, this allocator never sleeps,
 * returning NULL if the request cannot be serviced immediately.
 * The caller can arrange to sleep in a way that is safe for rpciod.
 *
 * Most requests are 'small' (under 2KiB) and can be serviced from a
 * mempool, ensuring that NFS reads and writes can always proceed,
 * and that there is good locality of reference for these buffers.
 *
 * In order to avoid memory starvation triggering more writebacks of
 * NFS requests, we avoid using GFP_KERNEL.
 */
void *rpc_malloc(struct rpc_task *task, size_t size)
{
	struct rpc_buffer *buf;
	gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;

	size += sizeof(struct rpc_buffer);
	if (size <= RPC_BUFFER_MAXSIZE)
		buf = mempool_alloc(rpc_buffer_mempool, gfp);
	else
		buf = kmalloc(size, gfp);

	if (!buf)
		return NULL;

	buf->len = size;
	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
			task->tk_pid, size, buf);
	return &buf->data;
}
EXPORT_SYMBOL_GPL(rpc_malloc);

/**
 * rpc_free - free buffer allocated via rpc_malloc
 * @buffer: buffer to free
 *
 */
void rpc_free(void *buffer)
{
	size_t size;
	struct rpc_buffer *buf;

	if (!buffer)
		return;

	buf = container_of(buffer, struct rpc_buffer, data);
	size = buf->len;

	dprintk("RPC:       freeing buffer of size %zu at %p\n",
			size, buf);

	if (size <= RPC_BUFFER_MAXSIZE)
		mempool_free(buf, rpc_buffer_mempool);
	else
		kfree(buf);
}
EXPORT_SYMBOL_GPL(rpc_free);

/*
 * Creation and deletion of RPC task structures
 */
static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
{
	memset(task, 0, sizeof(*task));
	atomic_set(&task->tk_count, 1);
	task->tk_flags  = task_setup_data->flags;
	task->tk_ops = task_setup_data->callback_ops;
	task->tk_calldata = task_setup_data->callback_data;
	INIT_LIST_HEAD(&task->tk_task);

	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
	task->tk_owner = current->tgid;

	/* Initialize workqueue for async tasks */
	task->tk_workqueue = task_setup_data->workqueue;

	if (task->tk_ops->rpc_call_prepare != NULL)
		task->tk_action = rpc_prepare_task;

	rpc_init_task_statistics(task);

	dprintk("RPC:       new task initialized, procpid %u\n",
				task_pid_nr(current));
}

static struct rpc_task *
rpc_alloc_task(void)
{
	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
}

/*
 * Create a new task for the specified client.
 */
struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
{
	struct rpc_task	*task = setup_data->task;
	unsigned short flags = 0;

	if (task == NULL) {
		task = rpc_alloc_task();
		if (task == NULL) {
			rpc_release_calldata(setup_data->callback_ops,
					setup_data->callback_data);
			return ERR_PTR(-ENOMEM);
		}
		flags = RPC_TASK_DYNAMIC;
	}

	rpc_init_task(task, setup_data);
	task->tk_flags |= flags;
	dprintk("RPC:       allocated task %p\n", task);
	return task;
}

static void rpc_free_task(struct rpc_task *task)
{
	const struct rpc_call_ops *tk_ops = task->tk_ops;
	void *calldata = task->tk_calldata;

	if (task->tk_flags & RPC_TASK_DYNAMIC) {
		dprintk("RPC: %5u freeing task\n", task->tk_pid);
		mempool_free(task, rpc_task_mempool);
	}
	rpc_release_calldata(tk_ops, calldata);
}

static void rpc_async_release(struct work_struct *work)
{
	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
}

static void rpc_release_resources_task(struct rpc_task *task)
{
	if (task->tk_rqstp)
		xprt_release(task);
	if (task->tk_msg.rpc_cred) {
		put_rpccred(task->tk_msg.rpc_cred);
		task->tk_msg.rpc_cred = NULL;
	}
	rpc_task_release_client(task);
}

static void rpc_final_put_task(struct rpc_task *task,
		struct workqueue_struct *q)
{
	if (q != NULL) {
		INIT_WORK(&task->u.tk_work, rpc_async_release);
		queue_work(q, &task->u.tk_work);
	} else
		rpc_free_task(task);
}

static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
{
	if (atomic_dec_and_test(&task->tk_count)) {
		rpc_release_resources_task(task);
		rpc_final_put_task(task, q);
	}
}

void rpc_put_task(struct rpc_task *task)
{
	rpc_do_put_task(task, NULL);
}
EXPORT_SYMBOL_GPL(rpc_put_task);

void rpc_put_task_async(struct rpc_task *task)
{
	rpc_do_put_task(task, task->tk_workqueue);
}
EXPORT_SYMBOL_GPL(rpc_put_task_async);

static void rpc_release_task(struct rpc_task *task)
{
	dprintk("RPC: %5u release task\n", task->tk_pid);

	BUG_ON (RPC_IS_QUEUED(task));

	rpc_release_resources_task(task);

	/*
	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
	 * so it should be safe to use task->tk_count as a test for whether
	 * or not any other processes still hold references to our rpc_task.
	 */
	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
		/* Wake up anyone who may be waiting for task completion */
		if (!rpc_complete_task(task))
			return;
	} else {
		if (!atomic_dec_and_test(&task->tk_count))
			return;
	}
	rpc_final_put_task(task, task->tk_workqueue);
}

int rpciod_up(void)
{
	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
}

void rpciod_down(void)
{
	module_put(THIS_MODULE);
}

/*
 * Start up the rpciod workqueue.
 */
static int rpciod_start(void)
{
	struct workqueue_struct *wq;

	/*
	 * Create the rpciod thread and wait for it to start.
	 */
	dprintk("RPC:       creating workqueue rpciod\n");
	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
	rpciod_workqueue = wq;
	return rpciod_workqueue != NULL;
}

static void rpciod_stop(void)
{
	struct workqueue_struct *wq = NULL;

	if (rpciod_workqueue == NULL)
		return;
	dprintk("RPC:       destroying workqueue rpciod\n");

	wq = rpciod_workqueue;
	rpciod_workqueue = NULL;
	destroy_workqueue(wq);
}

void
rpc_destroy_mempool(void)
{
	rpciod_stop();
	if (rpc_buffer_mempool)
		mempool_destroy(rpc_buffer_mempool);
	if (rpc_task_mempool)
		mempool_destroy(rpc_task_mempool);
	if (rpc_task_slabp)
		kmem_cache_destroy(rpc_task_slabp);
	if (rpc_buffer_slabp)
		kmem_cache_destroy(rpc_buffer_slabp);
	rpc_destroy_wait_queue(&delay_queue);
}

int
rpc_init_mempool(void)
{
	/*
	 * The following is not strictly a mempool initialisation,
	 * but there is no harm in doing it here
	 */
	rpc_init_wait_queue(&delay_queue, "delayq");
	if (!rpciod_start())
		goto err_nomem;

	rpc_task_slabp = kmem_cache_create("rpc_tasks",
					     sizeof(struct rpc_task),
					     0, SLAB_HWCACHE_ALIGN,
					     NULL);
	if (!rpc_task_slabp)
		goto err_nomem;
	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
					     RPC_BUFFER_MAXSIZE,
					     0, SLAB_HWCACHE_ALIGN,
					     NULL);
	if (!rpc_buffer_slabp)
		goto err_nomem;
	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
						    rpc_task_slabp);
	if (!rpc_task_mempool)
		goto err_nomem;
	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
						      rpc_buffer_slabp);
	if (!rpc_buffer_mempool)
		goto err_nomem;
	return 0;
err_nomem:
	rpc_destroy_mempool();
	return -ENOMEM;
}