dma-default.c 11.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
 * Copyright (C) 2000, 2001, 06	 Ralf Baechle <ralf@linux-mips.org>
 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
 */

#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/mm.h>
#include <linux/export.h>
#include <linux/scatterlist.h>
#include <linux/string.h>
#include <linux/gfp.h>
#include <linux/highmem.h>
#include <linux/dma-contiguous.h>

#include <asm/cache.h>
#include <asm/cpu-type.h>
#include <asm/io.h>

#include <dma-coherence.h>

#if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT)
/* User defined DMA coherency from command line. */
enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
EXPORT_SYMBOL_GPL(coherentio);
int hw_coherentio = 0;	/* Actual hardware supported DMA coherency setting. */

static int __init setcoherentio(char *str)
{
	coherentio = IO_COHERENCE_ENABLED;
	pr_info("Hardware DMA cache coherency (command line)\n");
	return 0;
}
early_param("coherentio", setcoherentio);

static int __init setnocoherentio(char *str)
{
	coherentio = IO_COHERENCE_DISABLED;
	pr_info("Software DMA cache coherency (command line)\n");
	return 0;
}
early_param("nocoherentio", setnocoherentio);
#endif

static inline struct page *dma_addr_to_page(struct device *dev,
	dma_addr_t dma_addr)
{
	return pfn_to_page(
		plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
}

/*
 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
 * speculatively fill random cachelines with stale data at any time,
 * requiring an extra flush post-DMA.
 *
 * Warning on the terminology - Linux calls an uncached area coherent;
 * MIPS terminology calls memory areas with hardware maintained coherency
 * coherent.
 *
 * Note that the R14000 and R16000 should also be checked for in this
 * condition.  However this function is only called on non-I/O-coherent
 * systems and only the R10000 and R12000 are used in such systems, the
 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
 */
static inline bool cpu_needs_post_dma_flush(struct device *dev)
{
	if (plat_device_is_coherent(dev))
		return false;

	switch (boot_cpu_type()) {
	case CPU_R10000:
	case CPU_R12000:
	case CPU_BMIPS5000:
		return true;

	default:
		/*
		 * Presence of MAARs suggests that the CPU supports
		 * speculatively prefetching data, and therefore requires
		 * the post-DMA flush/invalidate.
		 */
		return cpu_has_maar;
	}
}

static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
{
	gfp_t dma_flag;

	/* ignore region specifiers */
	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);

#ifdef CONFIG_ISA
	if (dev == NULL)
		dma_flag = __GFP_DMA;
	else
#endif
#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
	     if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(32))
			dma_flag = __GFP_DMA;
	else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
			dma_flag = __GFP_DMA32;
	else
#endif
#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
	     if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(64))
		dma_flag = __GFP_DMA32;
	else
#endif
#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
	     if (dev == NULL ||
		 dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
		dma_flag = __GFP_DMA;
	else
#endif
		dma_flag = 0;

	/* Don't invoke OOM killer */
	gfp |= __GFP_NORETRY;

	return gfp | dma_flag;
}

static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
	dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
	void *ret;
	struct page *page = NULL;
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;

	gfp = massage_gfp_flags(dev, gfp);

	if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
		page = dma_alloc_from_contiguous(dev, count, get_order(size),
						 gfp);
	if (!page)
		page = alloc_pages(gfp, get_order(size));

	if (!page)
		return NULL;

	ret = page_address(page);
	memset(ret, 0, size);
	*dma_handle = plat_map_dma_mem(dev, ret, size);
	if (!(attrs & DMA_ATTR_NON_CONSISTENT) &&
	    !plat_device_is_coherent(dev)) {
		dma_cache_wback_inv((unsigned long) ret, size);
		ret = UNCAC_ADDR(ret);
	}

	return ret;
}

static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
	dma_addr_t dma_handle, unsigned long attrs)
{
	unsigned long addr = (unsigned long) vaddr;
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct page *page = NULL;

	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);

	if (!(attrs & DMA_ATTR_NON_CONSISTENT) && !plat_device_is_coherent(dev))
		addr = CAC_ADDR(addr);

	page = virt_to_page((void *) addr);

	if (!dma_release_from_contiguous(dev, page, count))
		__free_pages(page, get_order(size));
}

static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
	void *cpu_addr, dma_addr_t dma_addr, size_t size,
	unsigned long attrs)
{
	unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	unsigned long addr = (unsigned long)cpu_addr;
	unsigned long off = vma->vm_pgoff;
	unsigned long pfn;
	int ret = -ENXIO;

	if (!plat_device_is_coherent(dev))
		addr = CAC_ADDR(addr);

	pfn = page_to_pfn(virt_to_page((void *)addr));

	if (attrs & DMA_ATTR_WRITE_COMBINE)
		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
	else
		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);

	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

	if (off < count && user_count <= (count - off)) {
		ret = remap_pfn_range(vma, vma->vm_start,
				      pfn + off,
				      user_count << PAGE_SHIFT,
				      vma->vm_page_prot);
	}

	return ret;
}

static inline void __dma_sync_virtual(void *addr, size_t size,
	enum dma_data_direction direction)
{
	switch (direction) {
	case DMA_TO_DEVICE:
		dma_cache_wback((unsigned long)addr, size);
		break;

	case DMA_FROM_DEVICE:
		dma_cache_inv((unsigned long)addr, size);
		break;

	case DMA_BIDIRECTIONAL:
		dma_cache_wback_inv((unsigned long)addr, size);
		break;

	default:
		BUG();
	}
}

/*
 * A single sg entry may refer to multiple physically contiguous
 * pages. But we still need to process highmem pages individually.
 * If highmem is not configured then the bulk of this loop gets
 * optimized out.
 */
static inline void __dma_sync(struct page *page,
	unsigned long offset, size_t size, enum dma_data_direction direction)
{
	size_t left = size;

	do {
		size_t len = left;

		if (PageHighMem(page)) {
			void *addr;

			if (offset + len > PAGE_SIZE) {
				if (offset >= PAGE_SIZE) {
					page += offset >> PAGE_SHIFT;
					offset &= ~PAGE_MASK;
				}
				len = PAGE_SIZE - offset;
			}

			addr = kmap_atomic(page);
			__dma_sync_virtual(addr + offset, len, direction);
			kunmap_atomic(addr);
		} else
			__dma_sync_virtual(page_address(page) + offset,
					   size, direction);
		offset = 0;
		page++;
		left -= len;
	} while (left);
}

static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
	size_t size, enum dma_data_direction direction, unsigned long attrs)
{
	if (cpu_needs_post_dma_flush(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
		__dma_sync(dma_addr_to_page(dev, dma_addr),
			   dma_addr & ~PAGE_MASK, size, direction);
	plat_post_dma_flush(dev);
	plat_unmap_dma_mem(dev, dma_addr, size, direction);
}

static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
	int nents, enum dma_data_direction direction, unsigned long attrs)
{
	int i;
	struct scatterlist *sg;

	for_each_sg(sglist, sg, nents, i) {
		if (!plat_device_is_coherent(dev) &&
		    !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
			__dma_sync(sg_page(sg), sg->offset, sg->length,
				   direction);
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		sg->dma_length = sg->length;
#endif
		sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
				  sg->offset;
	}

	return nents;
}

static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
	unsigned long offset, size_t size, enum dma_data_direction direction,
	unsigned long attrs)
{
	if (!plat_device_is_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
		__dma_sync(page, offset, size, direction);

	return plat_map_dma_mem_page(dev, page) + offset;
}

static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
	int nhwentries, enum dma_data_direction direction,
	unsigned long attrs)
{
	int i;
	struct scatterlist *sg;

	for_each_sg(sglist, sg, nhwentries, i) {
		if (!plat_device_is_coherent(dev) &&
		    !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
		    direction != DMA_TO_DEVICE)
			__dma_sync(sg_page(sg), sg->offset, sg->length,
				   direction);
		plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
	}
}

static void mips_dma_sync_single_for_cpu(struct device *dev,
	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
{
	if (cpu_needs_post_dma_flush(dev))
		__dma_sync(dma_addr_to_page(dev, dma_handle),
			   dma_handle & ~PAGE_MASK, size, direction);
	plat_post_dma_flush(dev);
}

static void mips_dma_sync_single_for_device(struct device *dev,
	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
{
	if (!plat_device_is_coherent(dev))
		__dma_sync(dma_addr_to_page(dev, dma_handle),
			   dma_handle & ~PAGE_MASK, size, direction);
}

static void mips_dma_sync_sg_for_cpu(struct device *dev,
	struct scatterlist *sglist, int nelems,
	enum dma_data_direction direction)
{
	int i;
	struct scatterlist *sg;

	if (cpu_needs_post_dma_flush(dev)) {
		for_each_sg(sglist, sg, nelems, i) {
			__dma_sync(sg_page(sg), sg->offset, sg->length,
				   direction);
		}
	}
	plat_post_dma_flush(dev);
}

static void mips_dma_sync_sg_for_device(struct device *dev,
	struct scatterlist *sglist, int nelems,
	enum dma_data_direction direction)
{
	int i;
	struct scatterlist *sg;

	if (!plat_device_is_coherent(dev)) {
		for_each_sg(sglist, sg, nelems, i) {
			__dma_sync(sg_page(sg), sg->offset, sg->length,
				   direction);
		}
	}
}

static int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return 0;
}

static int mips_dma_supported(struct device *dev, u64 mask)
{
	return plat_dma_supported(dev, mask);
}

void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
			 enum dma_data_direction direction)
{
	BUG_ON(direction == DMA_NONE);

	if (!plat_device_is_coherent(dev))
		__dma_sync_virtual(vaddr, size, direction);
}

EXPORT_SYMBOL(dma_cache_sync);

static const struct dma_map_ops mips_default_dma_map_ops = {
	.alloc = mips_dma_alloc_coherent,
	.free = mips_dma_free_coherent,
	.mmap = mips_dma_mmap,
	.map_page = mips_dma_map_page,
	.unmap_page = mips_dma_unmap_page,
	.map_sg = mips_dma_map_sg,
	.unmap_sg = mips_dma_unmap_sg,
	.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
	.sync_single_for_device = mips_dma_sync_single_for_device,
	.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
	.sync_sg_for_device = mips_dma_sync_sg_for_device,
	.mapping_error = mips_dma_mapping_error,
	.dma_supported = mips_dma_supported
};

const struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
EXPORT_SYMBOL(mips_dma_map_ops);

#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)

static int __init mips_dma_init(void)
{
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);

	return 0;
}
fs_initcall(mips_dma_init);