hpet.c 31.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/export.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/i8253.h>
#include <linux/slab.h>
#include <linux/hpet.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/pm.h>
#include <linux/io.h>

#include <asm/cpufeature.h>
#include <asm/irqdomain.h>
#include <asm/fixmap.h>
#include <asm/hpet.h>
#include <asm/time.h>

#define HPET_MASK			CLOCKSOURCE_MASK(32)

/* FSEC = 10^-15
   NSEC = 10^-9 */
#define FSEC_PER_NSEC			1000000L

#define HPET_DEV_USED_BIT		2
#define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
#define HPET_DEV_VALID			0x8
#define HPET_DEV_FSB_CAP		0x1000
#define HPET_DEV_PERI_CAP		0x2000

#define HPET_MIN_CYCLES			128
#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))

/*
 * HPET address is set in acpi/boot.c, when an ACPI entry exists
 */
unsigned long				hpet_address;
u8					hpet_blockid; /* OS timer block num */
bool					hpet_msi_disable;

#ifdef CONFIG_PCI_MSI
static unsigned int			hpet_num_timers;
#endif
static void __iomem			*hpet_virt_address;

struct hpet_dev {
	struct clock_event_device	evt;
	unsigned int			num;
	int				cpu;
	unsigned int			irq;
	unsigned int			flags;
	char				name[10];
};

static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
{
	return container_of(evtdev, struct hpet_dev, evt);
}

inline unsigned int hpet_readl(unsigned int a)
{
	return readl(hpet_virt_address + a);
}

static inline void hpet_writel(unsigned int d, unsigned int a)
{
	writel(d, hpet_virt_address + a);
}

#ifdef CONFIG_X86_64
#include <asm/pgtable.h>
#endif

static inline void hpet_set_mapping(void)
{
	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
}

static inline void hpet_clear_mapping(void)
{
	iounmap(hpet_virt_address);
	hpet_virt_address = NULL;
}

/*
 * HPET command line enable / disable
 */
bool boot_hpet_disable;
bool hpet_force_user;
static bool hpet_verbose;

static int __init hpet_setup(char *str)
{
	while (str) {
		char *next = strchr(str, ',');

		if (next)
			*next++ = 0;
		if (!strncmp("disable", str, 7))
			boot_hpet_disable = true;
		if (!strncmp("force", str, 5))
			hpet_force_user = true;
		if (!strncmp("verbose", str, 7))
			hpet_verbose = true;
		str = next;
	}
	return 1;
}
__setup("hpet=", hpet_setup);

static int __init disable_hpet(char *str)
{
	boot_hpet_disable = true;
	return 1;
}
__setup("nohpet", disable_hpet);

static inline int is_hpet_capable(void)
{
	return !boot_hpet_disable && hpet_address;
}

/*
 * HPET timer interrupt enable / disable
 */
static bool hpet_legacy_int_enabled;

/**
 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 */
int is_hpet_enabled(void)
{
	return is_hpet_capable() && hpet_legacy_int_enabled;
}
EXPORT_SYMBOL_GPL(is_hpet_enabled);

static void _hpet_print_config(const char *function, int line)
{
	u32 i, timers, l, h;
	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
	l = hpet_readl(HPET_ID);
	h = hpet_readl(HPET_PERIOD);
	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
	l = hpet_readl(HPET_CFG);
	h = hpet_readl(HPET_STATUS);
	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
	l = hpet_readl(HPET_COUNTER);
	h = hpet_readl(HPET_COUNTER+4);
	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);

	for (i = 0; i < timers; i++) {
		l = hpet_readl(HPET_Tn_CFG(i));
		h = hpet_readl(HPET_Tn_CFG(i)+4);
		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
		       i, l, h);
		l = hpet_readl(HPET_Tn_CMP(i));
		h = hpet_readl(HPET_Tn_CMP(i)+4);
		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
		       i, l, h);
		l = hpet_readl(HPET_Tn_ROUTE(i));
		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
		       i, l, h);
	}
}

#define hpet_print_config()					\
do {								\
	if (hpet_verbose)					\
		_hpet_print_config(__func__, __LINE__);	\
} while (0)

/*
 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 * timer 0 and timer 1 in case of RTC emulation.
 */
#ifdef CONFIG_HPET

static void hpet_reserve_msi_timers(struct hpet_data *hd);

static void hpet_reserve_platform_timers(unsigned int id)
{
	struct hpet __iomem *hpet = hpet_virt_address;
	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
	unsigned int nrtimers, i;
	struct hpet_data hd;

	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;

	memset(&hd, 0, sizeof(hd));
	hd.hd_phys_address	= hpet_address;
	hd.hd_address		= hpet;
	hd.hd_nirqs		= nrtimers;
	hpet_reserve_timer(&hd, 0);

#ifdef CONFIG_HPET_EMULATE_RTC
	hpet_reserve_timer(&hd, 1);
#endif

	/*
	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
	 * don't bother configuring *any* comparator interrupts.
	 */
	hd.hd_irq[0] = HPET_LEGACY_8254;
	hd.hd_irq[1] = HPET_LEGACY_RTC;

	for (i = 2; i < nrtimers; timer++, i++) {
		hd.hd_irq[i] = (readl(&timer->hpet_config) &
			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
	}

	hpet_reserve_msi_timers(&hd);

	hpet_alloc(&hd);

}
#else
static void hpet_reserve_platform_timers(unsigned int id) { }
#endif

/*
 * Common hpet info
 */
static unsigned long hpet_freq;

static struct clock_event_device hpet_clockevent;

static void hpet_stop_counter(void)
{
	u32 cfg = hpet_readl(HPET_CFG);
	cfg &= ~HPET_CFG_ENABLE;
	hpet_writel(cfg, HPET_CFG);
}

static void hpet_reset_counter(void)
{
	hpet_writel(0, HPET_COUNTER);
	hpet_writel(0, HPET_COUNTER + 4);
}

static void hpet_start_counter(void)
{
	unsigned int cfg = hpet_readl(HPET_CFG);
	cfg |= HPET_CFG_ENABLE;
	hpet_writel(cfg, HPET_CFG);
}

static void hpet_restart_counter(void)
{
	hpet_stop_counter();
	hpet_reset_counter();
	hpet_start_counter();
}

static void hpet_resume_device(void)
{
	force_hpet_resume();
}

static void hpet_resume_counter(struct clocksource *cs)
{
	hpet_resume_device();
	hpet_restart_counter();
}

static void hpet_enable_legacy_int(void)
{
	unsigned int cfg = hpet_readl(HPET_CFG);

	cfg |= HPET_CFG_LEGACY;
	hpet_writel(cfg, HPET_CFG);
	hpet_legacy_int_enabled = true;
}

static void hpet_legacy_clockevent_register(void)
{
	/* Start HPET legacy interrupts */
	hpet_enable_legacy_int();

	/*
	 * Start hpet with the boot cpu mask and make it
	 * global after the IO_APIC has been initialized.
	 */
	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
	global_clock_event = &hpet_clockevent;
	printk(KERN_DEBUG "hpet clockevent registered\n");
}

static int hpet_set_periodic(struct clock_event_device *evt, int timer)
{
	unsigned int cfg, cmp, now;
	uint64_t delta;

	hpet_stop_counter();
	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
	delta >>= evt->shift;
	now = hpet_readl(HPET_COUNTER);
	cmp = now + (unsigned int)delta;
	cfg = hpet_readl(HPET_Tn_CFG(timer));
	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
	       HPET_TN_32BIT;
	hpet_writel(cfg, HPET_Tn_CFG(timer));
	hpet_writel(cmp, HPET_Tn_CMP(timer));
	udelay(1);
	/*
	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
	 * bit is automatically cleared after the first write.
	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
	 * Publication # 24674)
	 */
	hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
	hpet_start_counter();
	hpet_print_config();

	return 0;
}

static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
{
	unsigned int cfg;

	cfg = hpet_readl(HPET_Tn_CFG(timer));
	cfg &= ~HPET_TN_PERIODIC;
	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
	hpet_writel(cfg, HPET_Tn_CFG(timer));

	return 0;
}

static int hpet_shutdown(struct clock_event_device *evt, int timer)
{
	unsigned int cfg;

	cfg = hpet_readl(HPET_Tn_CFG(timer));
	cfg &= ~HPET_TN_ENABLE;
	hpet_writel(cfg, HPET_Tn_CFG(timer));

	return 0;
}

static int hpet_resume(struct clock_event_device *evt, int timer)
{
	if (!timer) {
		hpet_enable_legacy_int();
	} else {
		struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);

		irq_domain_deactivate_irq(irq_get_irq_data(hdev->irq));
		irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
		disable_irq(hdev->irq);
		irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
		enable_irq(hdev->irq);
	}
	hpet_print_config();

	return 0;
}

static int hpet_next_event(unsigned long delta,
			   struct clock_event_device *evt, int timer)
{
	u32 cnt;
	s32 res;

	cnt = hpet_readl(HPET_COUNTER);
	cnt += (u32) delta;
	hpet_writel(cnt, HPET_Tn_CMP(timer));

	/*
	 * HPETs are a complete disaster. The compare register is
	 * based on a equal comparison and neither provides a less
	 * than or equal functionality (which would require to take
	 * the wraparound into account) nor a simple count down event
	 * mode. Further the write to the comparator register is
	 * delayed internally up to two HPET clock cycles in certain
	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
	 * longer delays. We worked around that by reading back the
	 * compare register, but that required another workaround for
	 * ICH9,10 chips where the first readout after write can
	 * return the old stale value. We already had a minimum
	 * programming delta of 5us enforced, but a NMI or SMI hitting
	 * between the counter readout and the comparator write can
	 * move us behind that point easily. Now instead of reading
	 * the compare register back several times, we make the ETIME
	 * decision based on the following: Return ETIME if the
	 * counter value after the write is less than HPET_MIN_CYCLES
	 * away from the event or if the counter is already ahead of
	 * the event. The minimum programming delta for the generic
	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
	 */
	res = (s32)(cnt - hpet_readl(HPET_COUNTER));

	return res < HPET_MIN_CYCLES ? -ETIME : 0;
}

static int hpet_legacy_shutdown(struct clock_event_device *evt)
{
	return hpet_shutdown(evt, 0);
}

static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
{
	return hpet_set_oneshot(evt, 0);
}

static int hpet_legacy_set_periodic(struct clock_event_device *evt)
{
	return hpet_set_periodic(evt, 0);
}

static int hpet_legacy_resume(struct clock_event_device *evt)
{
	return hpet_resume(evt, 0);
}

static int hpet_legacy_next_event(unsigned long delta,
			struct clock_event_device *evt)
{
	return hpet_next_event(delta, evt, 0);
}

/*
 * The hpet clock event device
 */
static struct clock_event_device hpet_clockevent = {
	.name			= "hpet",
	.features		= CLOCK_EVT_FEAT_PERIODIC |
				  CLOCK_EVT_FEAT_ONESHOT,
	.set_state_periodic	= hpet_legacy_set_periodic,
	.set_state_oneshot	= hpet_legacy_set_oneshot,
	.set_state_shutdown	= hpet_legacy_shutdown,
	.tick_resume		= hpet_legacy_resume,
	.set_next_event		= hpet_legacy_next_event,
	.irq			= 0,
	.rating			= 50,
};

/*
 * HPET MSI Support
 */
#ifdef CONFIG_PCI_MSI

static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
static struct hpet_dev	*hpet_devs;
static struct irq_domain *hpet_domain;

void hpet_msi_unmask(struct irq_data *data)
{
	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
	unsigned int cfg;

	/* unmask it */
	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
}

void hpet_msi_mask(struct irq_data *data)
{
	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
	unsigned int cfg;

	/* mask it */
	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
}

void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
{
	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
}

void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
{
	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
	msg->address_hi = 0;
}

static int hpet_msi_shutdown(struct clock_event_device *evt)
{
	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);

	return hpet_shutdown(evt, hdev->num);
}

static int hpet_msi_set_oneshot(struct clock_event_device *evt)
{
	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);

	return hpet_set_oneshot(evt, hdev->num);
}

static int hpet_msi_set_periodic(struct clock_event_device *evt)
{
	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);

	return hpet_set_periodic(evt, hdev->num);
}

static int hpet_msi_resume(struct clock_event_device *evt)
{
	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);

	return hpet_resume(evt, hdev->num);
}

static int hpet_msi_next_event(unsigned long delta,
				struct clock_event_device *evt)
{
	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
	return hpet_next_event(delta, evt, hdev->num);
}

static irqreturn_t hpet_interrupt_handler(int irq, void *data)
{
	struct hpet_dev *dev = (struct hpet_dev *)data;
	struct clock_event_device *hevt = &dev->evt;

	if (!hevt->event_handler) {
		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
				dev->num);
		return IRQ_HANDLED;
	}

	hevt->event_handler(hevt);
	return IRQ_HANDLED;
}

static int hpet_setup_irq(struct hpet_dev *dev)
{

	if (request_irq(dev->irq, hpet_interrupt_handler,
			IRQF_TIMER | IRQF_NOBALANCING,
			dev->name, dev))
		return -1;

	disable_irq(dev->irq);
	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
	enable_irq(dev->irq);

	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
			 dev->name, dev->irq);

	return 0;
}

/* This should be called in specific @cpu */
static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
{
	struct clock_event_device *evt = &hdev->evt;

	WARN_ON(cpu != smp_processor_id());
	if (!(hdev->flags & HPET_DEV_VALID))
		return;

	hdev->cpu = cpu;
	per_cpu(cpu_hpet_dev, cpu) = hdev;
	evt->name = hdev->name;
	hpet_setup_irq(hdev);
	evt->irq = hdev->irq;

	evt->rating = 110;
	evt->features = CLOCK_EVT_FEAT_ONESHOT;
	if (hdev->flags & HPET_DEV_PERI_CAP) {
		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
		evt->set_state_periodic = hpet_msi_set_periodic;
	}

	evt->set_state_shutdown = hpet_msi_shutdown;
	evt->set_state_oneshot = hpet_msi_set_oneshot;
	evt->tick_resume = hpet_msi_resume;
	evt->set_next_event = hpet_msi_next_event;
	evt->cpumask = cpumask_of(hdev->cpu);

	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
					0x7FFFFFFF);
}

#ifdef CONFIG_HPET
/* Reserve at least one timer for userspace (/dev/hpet) */
#define RESERVE_TIMERS 1
#else
#define RESERVE_TIMERS 0
#endif

static void hpet_msi_capability_lookup(unsigned int start_timer)
{
	unsigned int id;
	unsigned int num_timers;
	unsigned int num_timers_used = 0;
	int i, irq;

	if (hpet_msi_disable)
		return;

	if (boot_cpu_has(X86_FEATURE_ARAT))
		return;
	id = hpet_readl(HPET_ID);

	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
	num_timers++; /* Value read out starts from 0 */
	hpet_print_config();

	hpet_domain = hpet_create_irq_domain(hpet_blockid);
	if (!hpet_domain)
		return;

	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
	if (!hpet_devs)
		return;

	hpet_num_timers = num_timers;

	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));

		/* Only consider HPET timer with MSI support */
		if (!(cfg & HPET_TN_FSB_CAP))
			continue;

		hdev->flags = 0;
		if (cfg & HPET_TN_PERIODIC_CAP)
			hdev->flags |= HPET_DEV_PERI_CAP;
		sprintf(hdev->name, "hpet%d", i);
		hdev->num = i;

		irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
		if (irq <= 0)
			continue;

		hdev->irq = irq;
		hdev->flags |= HPET_DEV_FSB_CAP;
		hdev->flags |= HPET_DEV_VALID;
		num_timers_used++;
		if (num_timers_used == num_possible_cpus())
			break;
	}

	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
		num_timers, num_timers_used);
}

#ifdef CONFIG_HPET
static void hpet_reserve_msi_timers(struct hpet_data *hd)
{
	int i;

	if (!hpet_devs)
		return;

	for (i = 0; i < hpet_num_timers; i++) {
		struct hpet_dev *hdev = &hpet_devs[i];

		if (!(hdev->flags & HPET_DEV_VALID))
			continue;

		hd->hd_irq[hdev->num] = hdev->irq;
		hpet_reserve_timer(hd, hdev->num);
	}
}
#endif

static struct hpet_dev *hpet_get_unused_timer(void)
{
	int i;

	if (!hpet_devs)
		return NULL;

	for (i = 0; i < hpet_num_timers; i++) {
		struct hpet_dev *hdev = &hpet_devs[i];

		if (!(hdev->flags & HPET_DEV_VALID))
			continue;
		if (test_and_set_bit(HPET_DEV_USED_BIT,
			(unsigned long *)&hdev->flags))
			continue;
		return hdev;
	}
	return NULL;
}

struct hpet_work_struct {
	struct delayed_work work;
	struct completion complete;
};

static void hpet_work(struct work_struct *w)
{
	struct hpet_dev *hdev;
	int cpu = smp_processor_id();
	struct hpet_work_struct *hpet_work;

	hpet_work = container_of(w, struct hpet_work_struct, work.work);

	hdev = hpet_get_unused_timer();
	if (hdev)
		init_one_hpet_msi_clockevent(hdev, cpu);

	complete(&hpet_work->complete);
}

static int hpet_cpuhp_online(unsigned int cpu)
{
	struct hpet_work_struct work;

	INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
	init_completion(&work.complete);
	/* FIXME: add schedule_work_on() */
	schedule_delayed_work_on(cpu, &work.work, 0);
	wait_for_completion(&work.complete);
	destroy_delayed_work_on_stack(&work.work);
	return 0;
}

static int hpet_cpuhp_dead(unsigned int cpu)
{
	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);

	if (!hdev)
		return 0;
	free_irq(hdev->irq, hdev);
	hdev->flags &= ~HPET_DEV_USED;
	per_cpu(cpu_hpet_dev, cpu) = NULL;
	return 0;
}
#else

static void hpet_msi_capability_lookup(unsigned int start_timer)
{
	return;
}

#ifdef CONFIG_HPET
static void hpet_reserve_msi_timers(struct hpet_data *hd)
{
	return;
}
#endif

#define hpet_cpuhp_online	NULL
#define hpet_cpuhp_dead		NULL

#endif

/*
 * Clock source related code
 */
#if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
/*
 * Reading the HPET counter is a very slow operation. If a large number of
 * CPUs are trying to access the HPET counter simultaneously, it can cause
 * massive delay and slow down system performance dramatically. This may
 * happen when HPET is the default clock source instead of TSC. For a
 * really large system with hundreds of CPUs, the slowdown may be so
 * severe that it may actually crash the system because of a NMI watchdog
 * soft lockup, for example.
 *
 * If multiple CPUs are trying to access the HPET counter at the same time,
 * we don't actually need to read the counter multiple times. Instead, the
 * other CPUs can use the counter value read by the first CPU in the group.
 *
 * This special feature is only enabled on x86-64 systems. It is unlikely
 * that 32-bit x86 systems will have enough CPUs to require this feature
 * with its associated locking overhead. And we also need 64-bit atomic
 * read.
 *
 * The lock and the hpet value are stored together and can be read in a
 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
 * is 32 bits in size.
 */
union hpet_lock {
	struct {
		arch_spinlock_t lock;
		u32 value;
	};
	u64 lockval;
};

static union hpet_lock hpet __cacheline_aligned = {
	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
};

static cycle_t read_hpet(struct clocksource *cs)
{
	unsigned long flags;
	union hpet_lock old, new;

	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);

	/*
	 * Read HPET directly if in NMI.
	 */
	if (in_nmi())
		return (cycle_t)hpet_readl(HPET_COUNTER);

	/*
	 * Read the current state of the lock and HPET value atomically.
	 */
	old.lockval = READ_ONCE(hpet.lockval);

	if (arch_spin_is_locked(&old.lock))
		goto contended;

	local_irq_save(flags);
	if (arch_spin_trylock(&hpet.lock)) {
		new.value = hpet_readl(HPET_COUNTER);
		/*
		 * Use WRITE_ONCE() to prevent store tearing.
		 */
		WRITE_ONCE(hpet.value, new.value);
		arch_spin_unlock(&hpet.lock);
		local_irq_restore(flags);
		return (cycle_t)new.value;
	}
	local_irq_restore(flags);

contended:
	/*
	 * Contended case
	 * --------------
	 * Wait until the HPET value change or the lock is free to indicate
	 * its value is up-to-date.
	 *
	 * It is possible that old.value has already contained the latest
	 * HPET value while the lock holder was in the process of releasing
	 * the lock. Checking for lock state change will enable us to return
	 * the value immediately instead of waiting for the next HPET reader
	 * to come along.
	 */
	do {
		cpu_relax();
		new.lockval = READ_ONCE(hpet.lockval);
	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));

	return (cycle_t)new.value;
}
#else
/*
 * For UP or 32-bit.
 */
static cycle_t read_hpet(struct clocksource *cs)
{
	return (cycle_t)hpet_readl(HPET_COUNTER);
}
#endif

static struct clocksource clocksource_hpet = {
	.name		= "hpet",
	.rating		= 250,
	.read		= read_hpet,
	.mask		= HPET_MASK,
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
	.resume		= hpet_resume_counter,
};

static int hpet_clocksource_register(void)
{
	u64 start, now;
	cycle_t t1;

	/* Start the counter */
	hpet_restart_counter();

	/* Verify whether hpet counter works */
	t1 = hpet_readl(HPET_COUNTER);
	start = rdtsc();

	/*
	 * We don't know the TSC frequency yet, but waiting for
	 * 200000 TSC cycles is safe:
	 * 4 GHz == 50us
	 * 1 GHz == 200us
	 */
	do {
		rep_nop();
		now = rdtsc();
	} while ((now - start) < 200000UL);

	if (t1 == hpet_readl(HPET_COUNTER)) {
		printk(KERN_WARNING
		       "HPET counter not counting. HPET disabled\n");
		return -ENODEV;
	}

	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
	return 0;
}

static u32 *hpet_boot_cfg;

/**
 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 */
int __init hpet_enable(void)
{
	u32 hpet_period, cfg, id;
	u64 freq;
	unsigned int i, last;

	if (!is_hpet_capable())
		return 0;

	hpet_set_mapping();

	/*
	 * Read the period and check for a sane value:
	 */
	hpet_period = hpet_readl(HPET_PERIOD);

	/*
	 * AMD SB700 based systems with spread spectrum enabled use a
	 * SMM based HPET emulation to provide proper frequency
	 * setting. The SMM code is initialized with the first HPET
	 * register access and takes some time to complete. During
	 * this time the config register reads 0xffffffff. We check
	 * for max. 1000 loops whether the config register reads a non
	 * 0xffffffff value to make sure that HPET is up and running
	 * before we go further. A counting loop is safe, as the HPET
	 * access takes thousands of CPU cycles. On non SB700 based
	 * machines this check is only done once and has no side
	 * effects.
	 */
	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
		if (i == 1000) {
			printk(KERN_WARNING
			       "HPET config register value = 0xFFFFFFFF. "
			       "Disabling HPET\n");
			goto out_nohpet;
		}
	}

	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
		goto out_nohpet;

	/*
	 * The period is a femto seconds value. Convert it to a
	 * frequency.
	 */
	freq = FSEC_PER_SEC;
	do_div(freq, hpet_period);
	hpet_freq = freq;

	/*
	 * Read the HPET ID register to retrieve the IRQ routing
	 * information and the number of channels
	 */
	id = hpet_readl(HPET_ID);
	hpet_print_config();

	last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;

#ifdef CONFIG_HPET_EMULATE_RTC
	/*
	 * The legacy routing mode needs at least two channels, tick timer
	 * and the rtc emulation channel.
	 */
	if (!last)
		goto out_nohpet;
#endif

	cfg = hpet_readl(HPET_CFG);
	hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
				GFP_KERNEL);
	if (hpet_boot_cfg)
		*hpet_boot_cfg = cfg;
	else
		pr_warn("HPET initial state will not be saved\n");
	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
	hpet_writel(cfg, HPET_CFG);
	if (cfg)
		pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
			cfg);

	for (i = 0; i <= last; ++i) {
		cfg = hpet_readl(HPET_Tn_CFG(i));
		if (hpet_boot_cfg)
			hpet_boot_cfg[i + 1] = cfg;
		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
		hpet_writel(cfg, HPET_Tn_CFG(i));
		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
		if (cfg)
			pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
				cfg, i);
	}
	hpet_print_config();

	if (hpet_clocksource_register())
		goto out_nohpet;

	if (id & HPET_ID_LEGSUP) {
		hpet_legacy_clockevent_register();
		return 1;
	}
	return 0;

out_nohpet:
	hpet_clear_mapping();
	hpet_address = 0;
	return 0;
}

/*
 * Needs to be late, as the reserve_timer code calls kalloc !
 *
 * Not a problem on i386 as hpet_enable is called from late_time_init,
 * but on x86_64 it is necessary !
 */
static __init int hpet_late_init(void)
{
	int ret;

	if (boot_hpet_disable)
		return -ENODEV;

	if (!hpet_address) {
		if (!force_hpet_address)
			return -ENODEV;

		hpet_address = force_hpet_address;
		hpet_enable();
	}

	if (!hpet_virt_address)
		return -ENODEV;

	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
		hpet_msi_capability_lookup(2);
	else
		hpet_msi_capability_lookup(0);

	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
	hpet_print_config();

	if (hpet_msi_disable)
		return 0;

	if (boot_cpu_has(X86_FEATURE_ARAT))
		return 0;

	/* This notifier should be called after workqueue is ready */
	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "AP_X86_HPET_ONLINE",
				hpet_cpuhp_online, NULL);
	if (ret)
		return ret;
	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "X86_HPET_DEAD", NULL,
				hpet_cpuhp_dead);
	if (ret)
		goto err_cpuhp;
	return 0;

err_cpuhp:
	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
	return ret;
}
fs_initcall(hpet_late_init);

void hpet_disable(void)
{
	if (is_hpet_capable() && hpet_virt_address) {
		unsigned int cfg = hpet_readl(HPET_CFG), id, last;

		if (hpet_boot_cfg)
			cfg = *hpet_boot_cfg;
		else if (hpet_legacy_int_enabled) {
			cfg &= ~HPET_CFG_LEGACY;
			hpet_legacy_int_enabled = false;
		}
		cfg &= ~HPET_CFG_ENABLE;
		hpet_writel(cfg, HPET_CFG);

		if (!hpet_boot_cfg)
			return;

		id = hpet_readl(HPET_ID);
		last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);

		for (id = 0; id <= last; ++id)
			hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));

		if (*hpet_boot_cfg & HPET_CFG_ENABLE)
			hpet_writel(*hpet_boot_cfg, HPET_CFG);
	}
}

#ifdef CONFIG_HPET_EMULATE_RTC

/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 * is enabled, we support RTC interrupt functionality in software.
 * RTC has 3 kinds of interrupts:
 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 *    is updated
 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 * (1) and (2) above are implemented using polling at a frequency of
 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 * overhead. (DEFAULT_RTC_INT_FREQ)
 * For (3), we use interrupts at 64Hz or user specified periodic
 * frequency, whichever is higher.
 */
#include <linux/mc146818rtc.h>
#include <linux/rtc.h>

#define DEFAULT_RTC_INT_FREQ	64
#define DEFAULT_RTC_SHIFT	6
#define RTC_NUM_INTS		1

static unsigned long hpet_rtc_flags;
static int hpet_prev_update_sec;
static struct rtc_time hpet_alarm_time;
static unsigned long hpet_pie_count;
static u32 hpet_t1_cmp;
static u32 hpet_default_delta;
static u32 hpet_pie_delta;
static unsigned long hpet_pie_limit;

static rtc_irq_handler irq_handler;

/*
 * Check that the hpet counter c1 is ahead of the c2
 */
static inline int hpet_cnt_ahead(u32 c1, u32 c2)
{
	return (s32)(c2 - c1) < 0;
}

/*
 * Registers a IRQ handler.
 */
int hpet_register_irq_handler(rtc_irq_handler handler)
{
	if (!is_hpet_enabled())
		return -ENODEV;
	if (irq_handler)
		return -EBUSY;

	irq_handler = handler;

	return 0;
}
EXPORT_SYMBOL_GPL(hpet_register_irq_handler);

/*
 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
 * and does cleanup.
 */
void hpet_unregister_irq_handler(rtc_irq_handler handler)
{
	if (!is_hpet_enabled())
		return;

	irq_handler = NULL;
	hpet_rtc_flags = 0;
}
EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);

/*
 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
 * is not supported by all HPET implementations for timer 1.
 *
 * hpet_rtc_timer_init() is called when the rtc is initialized.
 */
int hpet_rtc_timer_init(void)
{
	unsigned int cfg, cnt, delta;
	unsigned long flags;

	if (!is_hpet_enabled())
		return 0;

	if (!hpet_default_delta) {
		uint64_t clc;

		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
		hpet_default_delta = clc;
	}

	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
		delta = hpet_default_delta;
	else
		delta = hpet_pie_delta;

	local_irq_save(flags);

	cnt = delta + hpet_readl(HPET_COUNTER);
	hpet_writel(cnt, HPET_T1_CMP);
	hpet_t1_cmp = cnt;

	cfg = hpet_readl(HPET_T1_CFG);
	cfg &= ~HPET_TN_PERIODIC;
	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
	hpet_writel(cfg, HPET_T1_CFG);

	local_irq_restore(flags);

	return 1;
}
EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);

static void hpet_disable_rtc_channel(void)
{
	u32 cfg = hpet_readl(HPET_T1_CFG);
	cfg &= ~HPET_TN_ENABLE;
	hpet_writel(cfg, HPET_T1_CFG);
}

/*
 * The functions below are called from rtc driver.
 * Return 0 if HPET is not being used.
 * Otherwise do the necessary changes and return 1.
 */
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
{
	if (!is_hpet_enabled())
		return 0;

	hpet_rtc_flags &= ~bit_mask;
	if (unlikely(!hpet_rtc_flags))
		hpet_disable_rtc_channel();

	return 1;
}
EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);

int hpet_set_rtc_irq_bit(unsigned long bit_mask)
{
	unsigned long oldbits = hpet_rtc_flags;

	if (!is_hpet_enabled())
		return 0;

	hpet_rtc_flags |= bit_mask;

	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
		hpet_prev_update_sec = -1;

	if (!oldbits)
		hpet_rtc_timer_init();

	return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);

int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
			unsigned char sec)
{
	if (!is_hpet_enabled())
		return 0;

	hpet_alarm_time.tm_hour = hrs;
	hpet_alarm_time.tm_min = min;
	hpet_alarm_time.tm_sec = sec;

	return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_alarm_time);

int hpet_set_periodic_freq(unsigned long freq)
{
	uint64_t clc;

	if (!is_hpet_enabled())
		return 0;

	if (freq <= DEFAULT_RTC_INT_FREQ)
		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
	else {
		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
		do_div(clc, freq);
		clc >>= hpet_clockevent.shift;
		hpet_pie_delta = clc;
		hpet_pie_limit = 0;
	}
	return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);

int hpet_rtc_dropped_irq(void)
{
	return is_hpet_enabled();
}
EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);

static void hpet_rtc_timer_reinit(void)
{
	unsigned int delta;
	int lost_ints = -1;

	if (unlikely(!hpet_rtc_flags))
		hpet_disable_rtc_channel();

	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
		delta = hpet_default_delta;
	else
		delta = hpet_pie_delta;

	/*
	 * Increment the comparator value until we are ahead of the
	 * current count.
	 */
	do {
		hpet_t1_cmp += delta;
		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
		lost_ints++;
	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));

	if (lost_ints) {
		if (hpet_rtc_flags & RTC_PIE)
			hpet_pie_count += lost_ints;
		if (printk_ratelimit())
			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
				lost_ints);
	}
}

irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
{
	struct rtc_time curr_time;
	unsigned long rtc_int_flag = 0;

	hpet_rtc_timer_reinit();
	memset(&curr_time, 0, sizeof(struct rtc_time));

	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
		mc146818_get_time(&curr_time);

	if (hpet_rtc_flags & RTC_UIE &&
	    curr_time.tm_sec != hpet_prev_update_sec) {
		if (hpet_prev_update_sec >= 0)
			rtc_int_flag = RTC_UF;
		hpet_prev_update_sec = curr_time.tm_sec;
	}

	if (hpet_rtc_flags & RTC_PIE &&
	    ++hpet_pie_count >= hpet_pie_limit) {
		rtc_int_flag |= RTC_PF;
		hpet_pie_count = 0;
	}

	if (hpet_rtc_flags & RTC_AIE &&
	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
			rtc_int_flag |= RTC_AF;

	if (rtc_int_flag) {
		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
		if (irq_handler)
			irq_handler(rtc_int_flag, dev_id);
	}
	return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
#endif