sun4i-ss-hash.c 13.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
/*
 * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
 *
 * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
 *
 * This file add support for MD5 and SHA1.
 *
 * You could find the datasheet in Documentation/arm/sunxi/README
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */
#include "sun4i-ss.h"
#include <linux/scatterlist.h>

/* This is a totally arbitrary value */
#define SS_TIMEOUT 100

int sun4i_hash_crainit(struct crypto_tfm *tfm)
{
	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
	struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
	struct sun4i_ss_alg_template *algt;

	memset(op, 0, sizeof(struct sun4i_tfm_ctx));

	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
	op->ss = algt->ss;

	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct sun4i_req_ctx));
	return 0;
}

/* sun4i_hash_init: initialize request context */
int sun4i_hash_init(struct ahash_request *areq)
{
	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
	struct sun4i_ss_alg_template *algt;

	memset(op, 0, sizeof(struct sun4i_req_ctx));

	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
	op->mode = algt->mode;

	return 0;
}

int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
{
	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
	struct md5_state *octx = out;
	int i;

	octx->byte_count = op->byte_count + op->len;

	memcpy(octx->block, op->buf, op->len);

	if (op->byte_count > 0) {
		for (i = 0; i < 4; i++)
			octx->hash[i] = op->hash[i];
	} else {
		octx->hash[0] = SHA1_H0;
		octx->hash[1] = SHA1_H1;
		octx->hash[2] = SHA1_H2;
		octx->hash[3] = SHA1_H3;
	}

	return 0;
}

int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
{
	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
	const struct md5_state *ictx = in;
	int i;

	sun4i_hash_init(areq);

	op->byte_count = ictx->byte_count & ~0x3F;
	op->len = ictx->byte_count & 0x3F;

	memcpy(op->buf, ictx->block, op->len);

	for (i = 0; i < 4; i++)
		op->hash[i] = ictx->hash[i];

	return 0;
}

int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
{
	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
	struct sha1_state *octx = out;
	int i;

	octx->count = op->byte_count + op->len;

	memcpy(octx->buffer, op->buf, op->len);

	if (op->byte_count > 0) {
		for (i = 0; i < 5; i++)
			octx->state[i] = op->hash[i];
	} else {
		octx->state[0] = SHA1_H0;
		octx->state[1] = SHA1_H1;
		octx->state[2] = SHA1_H2;
		octx->state[3] = SHA1_H3;
		octx->state[4] = SHA1_H4;
	}

	return 0;
}

int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
{
	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
	const struct sha1_state *ictx = in;
	int i;

	sun4i_hash_init(areq);

	op->byte_count = ictx->count & ~0x3F;
	op->len = ictx->count & 0x3F;

	memcpy(op->buf, ictx->buffer, op->len);

	for (i = 0; i < 5; i++)
		op->hash[i] = ictx->state[i];

	return 0;
}

#define SS_HASH_UPDATE 1
#define SS_HASH_FINAL 2

/*
 * sun4i_hash_update: update hash engine
 *
 * Could be used for both SHA1 and MD5
 * Write data by step of 32bits and put then in the SS.
 *
 * Since we cannot leave partial data and hash state in the engine,
 * we need to get the hash state at the end of this function.
 * We can get the hash state every 64 bytes
 *
 * So the first work is to get the number of bytes to write to SS modulo 64
 * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
 *
 * So at the begin of update()
 * if op->len + areq->nbytes < 64
 * => all data will be written to wait buffer (op->buf) and end=0
 * if not, write all data from op->buf to the device and position end to
 * complete to 64bytes
 *
 * example 1:
 * update1 60o => op->len=60
 * update2 60o => need one more word to have 64 bytes
 * end=4
 * so write all data from op->buf and one word of SGs
 * write remaining data in op->buf
 * final state op->len=56
 */
static int sun4i_hash(struct ahash_request *areq)
{
	u32 v, ivmode = 0;
	unsigned int i = 0;
	/*
	 * i is the total bytes read from SGs, to be compared to areq->nbytes
	 * i is important because we cannot rely on SG length since the sum of
	 * SG->length could be greater than areq->nbytes
	 */

	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
	struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
	struct sun4i_ss_ctx *ss = tfmctx->ss;
	unsigned int in_i = 0; /* advancement in the current SG */
	unsigned int end;
	/*
	 * end is the position when we need to stop writing to the device,
	 * to be compared to i
	 */
	int in_r, err = 0;
	unsigned int todo;
	u32 spaces, rx_cnt = SS_RX_DEFAULT;
	size_t copied = 0;
	struct sg_mapping_iter mi;
	unsigned int j = 0;
	int zeros;
	unsigned int index, padlen;
	__be64 bits;
	u32 bf[32];
	u32 wb = 0;
	unsigned int nwait, nbw = 0;
	struct scatterlist *in_sg = areq->src;

	dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
		__func__, crypto_tfm_alg_name(areq->base.tfm),
		op->byte_count, areq->nbytes, op->mode,
		op->len, op->hash[0]);

	if (unlikely(areq->nbytes == 0) && (op->flags & SS_HASH_FINAL) == 0)
		return 0;

	/* protect against overflow */
	if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
		dev_err(ss->dev, "Cannot process too large request\n");
		return -EINVAL;
	}

	if (op->len + areq->nbytes < 64 && (op->flags & SS_HASH_FINAL) == 0) {
		/* linearize data to op->buf */
		copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
					    op->buf + op->len, areq->nbytes, 0);
		op->len += copied;
		return 0;
	}

	spin_lock_bh(&ss->slock);

	/*
	 * if some data have been processed before,
	 * we need to restore the partial hash state
	 */
	if (op->byte_count > 0) {
		ivmode = SS_IV_ARBITRARY;
		for (i = 0; i < 5; i++)
			writel(op->hash[i], ss->base + SS_IV0 + i * 4);
	}
	/* Enable the device */
	writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);

	if ((op->flags & SS_HASH_UPDATE) == 0)
		goto hash_final;

	/* start of handling data */
	if ((op->flags & SS_HASH_FINAL) == 0) {
		end = ((areq->nbytes + op->len) / 64) * 64 - op->len;

		if (end > areq->nbytes || areq->nbytes - end > 63) {
			dev_err(ss->dev, "ERROR: Bound error %u %u\n",
				end, areq->nbytes);
			err = -EINVAL;
			goto release_ss;
		}
	} else {
		/* Since we have the flag final, we can go up to modulo 4 */
		end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
	}

	/* TODO if SGlen % 4 and op->len == 0 then DMA */
	i = 1;
	while (in_sg && i == 1) {
		if ((in_sg->length % 4) != 0)
			i = 0;
		in_sg = sg_next(in_sg);
	}
	if (i == 1 && op->len == 0)
		dev_dbg(ss->dev, "We can DMA\n");

	i = 0;
	sg_miter_start(&mi, areq->src, sg_nents(areq->src),
		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
	sg_miter_next(&mi);
	in_i = 0;

	do {
		/*
		 * we need to linearize in two case:
		 * - the buffer is already used
		 * - the SG does not have enough byte remaining ( < 4)
		 */
		if (op->len > 0 || (mi.length - in_i) < 4) {
			/*
			 * if we have entered here we have two reason to stop
			 * - the buffer is full
			 * - reach the end
			 */
			while (op->len < 64 && i < end) {
				/* how many bytes we can read from current SG */
				in_r = min3(mi.length - in_i, end - i,
					    64 - op->len);
				memcpy(op->buf + op->len, mi.addr + in_i, in_r);
				op->len += in_r;
				i += in_r;
				in_i += in_r;
				if (in_i == mi.length) {
					sg_miter_next(&mi);
					in_i = 0;
				}
			}
			if (op->len > 3 && (op->len % 4) == 0) {
				/* write buf to the device */
				writesl(ss->base + SS_RXFIFO, op->buf,
					op->len / 4);
				op->byte_count += op->len;
				op->len = 0;
			}
		}
		if (mi.length - in_i > 3 && i < end) {
			/* how many bytes we can read from current SG */
			in_r = min3(mi.length - in_i, areq->nbytes - i,
				    ((mi.length - in_i) / 4) * 4);
			/* how many bytes we can write in the device*/
			todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
			writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
			op->byte_count += todo * 4;
			i += todo * 4;
			in_i += todo * 4;
			rx_cnt -= todo;
			if (rx_cnt == 0) {
				spaces = readl(ss->base + SS_FCSR);
				rx_cnt = SS_RXFIFO_SPACES(spaces);
			}
			if (in_i == mi.length) {
				sg_miter_next(&mi);
				in_i = 0;
			}
		}
	} while (i < end);

	/*
	 * Now we have written to the device all that we can,
	 * store the remaining bytes in op->buf
	 */
	if ((areq->nbytes - i) < 64) {
		while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
			/* how many bytes we can read from current SG */
			in_r = min3(mi.length - in_i, areq->nbytes - i,
				    64 - op->len);
			memcpy(op->buf + op->len, mi.addr + in_i, in_r);
			op->len += in_r;
			i += in_r;
			in_i += in_r;
			if (in_i == mi.length) {
				sg_miter_next(&mi);
				in_i = 0;
			}
		}
	}

	sg_miter_stop(&mi);

	/*
	 * End of data process
	 * Now if we have the flag final go to finalize part
	 * If not, store the partial hash
	 */
	if ((op->flags & SS_HASH_FINAL) > 0)
		goto hash_final;

	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
	i = 0;
	do {
		v = readl(ss->base + SS_CTL);
		i++;
	} while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0);
	if (unlikely(i >= SS_TIMEOUT)) {
		dev_err_ratelimited(ss->dev,
				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
				    i, SS_TIMEOUT, v, areq->nbytes);
		err = -EIO;
		goto release_ss;
	}

	for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
		op->hash[i] = readl(ss->base + SS_MD0 + i * 4);

	goto release_ss;

/*
 * hash_final: finalize hashing operation
 *
 * If we have some remaining bytes, we write them.
 * Then ask the SS for finalizing the hashing operation
 *
 * I do not check RX FIFO size in this function since the size is 32
 * after each enabling and this function neither write more than 32 words.
 * If we come from the update part, we cannot have more than
 * 3 remaining bytes to write and SS is fast enough to not care about it.
 */

hash_final:

	/* write the remaining words of the wait buffer */
	if (op->len > 0) {
		nwait = op->len / 4;
		if (nwait > 0) {
			writesl(ss->base + SS_RXFIFO, op->buf, nwait);
			op->byte_count += 4 * nwait;
		}
		nbw = op->len - 4 * nwait;
		wb = *(u32 *)(op->buf + nwait * 4);
		wb &= (0xFFFFFFFF >> (4 - nbw) * 8);
	}

	/* write the remaining bytes of the nbw buffer */
	if (nbw > 0) {
		wb |= ((1 << 7) << (nbw * 8));
		bf[j++] = wb;
	} else {
		bf[j++] = 1 << 7;
	}

	/*
	 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
	 * I take the operations from other MD5/SHA1 implementations
	 */

	/* we have already send 4 more byte of which nbw data */
	if (op->mode == SS_OP_MD5) {
		index = (op->byte_count + 4) & 0x3f;
		op->byte_count += nbw;
		if (index > 56)
			zeros = (120 - index) / 4;
		else
			zeros = (56 - index) / 4;
	} else {
		op->byte_count += nbw;
		index = op->byte_count & 0x3f;
		padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
		zeros = (padlen - 1) / 4;
	}

	memset(bf + j, 0, 4 * zeros);
	j += zeros;

	/* write the length of data */
	if (op->mode == SS_OP_SHA1) {
		bits = cpu_to_be64(op->byte_count << 3);
		bf[j++] = bits & 0xffffffff;
		bf[j++] = (bits >> 32) & 0xffffffff;
	} else {
		bf[j++] = (op->byte_count << 3) & 0xffffffff;
		bf[j++] = (op->byte_count >> 29) & 0xffffffff;
	}
	writesl(ss->base + SS_RXFIFO, bf, j);

	/* Tell the SS to stop the hashing */
	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);

	/*
	 * Wait for SS to finish the hash.
	 * The timeout could happen only in case of bad overclocking
	 * or driver bug.
	 */
	i = 0;
	do {
		v = readl(ss->base + SS_CTL);
		i++;
	} while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0);
	if (unlikely(i >= SS_TIMEOUT)) {
		dev_err_ratelimited(ss->dev,
				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
				    i, SS_TIMEOUT, v, areq->nbytes);
		err = -EIO;
		goto release_ss;
	}

	/* Get the hash from the device */
	if (op->mode == SS_OP_SHA1) {
		for (i = 0; i < 5; i++) {
			v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
			memcpy(areq->result + i * 4, &v, 4);
		}
	} else {
		for (i = 0; i < 4; i++) {
			v = readl(ss->base + SS_MD0 + i * 4);
			memcpy(areq->result + i * 4, &v, 4);
		}
	}

release_ss:
	writel(0, ss->base + SS_CTL);
	spin_unlock_bh(&ss->slock);
	return err;
}

int sun4i_hash_final(struct ahash_request *areq)
{
	struct sun4i_req_ctx *op = ahash_request_ctx(areq);

	op->flags = SS_HASH_FINAL;
	return sun4i_hash(areq);
}

int sun4i_hash_update(struct ahash_request *areq)
{
	struct sun4i_req_ctx *op = ahash_request_ctx(areq);

	op->flags = SS_HASH_UPDATE;
	return sun4i_hash(areq);
}

/* sun4i_hash_finup: finalize hashing operation after an update */
int sun4i_hash_finup(struct ahash_request *areq)
{
	struct sun4i_req_ctx *op = ahash_request_ctx(areq);

	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
	return sun4i_hash(areq);
}

/* combo of init/update/final functions */
int sun4i_hash_digest(struct ahash_request *areq)
{
	int err;
	struct sun4i_req_ctx *op = ahash_request_ctx(areq);

	err = sun4i_hash_init(areq);
	if (err != 0)
		return err;

	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
	return sun4i_hash(areq);
}