sirf-dma.c 33 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
/*
 * DMA controller driver for CSR SiRFprimaII
 *
 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
 *
 * Licensed under GPLv2 or later.
 */

#include <linux/module.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/pm_runtime.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/clk.h>
#include <linux/of_dma.h>
#include <linux/sirfsoc_dma.h>

#include "dmaengine.h"

#define SIRFSOC_DMA_VER_A7V1                    1
#define SIRFSOC_DMA_VER_A7V2                    2
#define SIRFSOC_DMA_VER_A6                      4

#define SIRFSOC_DMA_DESCRIPTORS                 16
#define SIRFSOC_DMA_CHANNELS                    16
#define SIRFSOC_DMA_TABLE_NUM                   256

#define SIRFSOC_DMA_CH_ADDR                     0x00
#define SIRFSOC_DMA_CH_XLEN                     0x04
#define SIRFSOC_DMA_CH_YLEN                     0x08
#define SIRFSOC_DMA_CH_CTRL                     0x0C

#define SIRFSOC_DMA_WIDTH_0                     0x100
#define SIRFSOC_DMA_CH_VALID                    0x140
#define SIRFSOC_DMA_CH_INT                      0x144
#define SIRFSOC_DMA_INT_EN                      0x148
#define SIRFSOC_DMA_INT_EN_CLR                  0x14C
#define SIRFSOC_DMA_CH_LOOP_CTRL                0x150
#define SIRFSOC_DMA_CH_LOOP_CTRL_CLR            0x154
#define SIRFSOC_DMA_WIDTH_ATLAS7                0x10
#define SIRFSOC_DMA_VALID_ATLAS7                0x14
#define SIRFSOC_DMA_INT_ATLAS7                  0x18
#define SIRFSOC_DMA_INT_EN_ATLAS7               0x1c
#define SIRFSOC_DMA_LOOP_CTRL_ATLAS7            0x20
#define SIRFSOC_DMA_CUR_DATA_ADDR               0x34
#define SIRFSOC_DMA_MUL_ATLAS7                  0x38
#define SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7         0x158
#define SIRFSOC_DMA_CH_LOOP_CTRL_CLR_ATLAS7     0x15C
#define SIRFSOC_DMA_IOBG_SCMD_EN		0x800
#define SIRFSOC_DMA_EARLY_RESP_SET		0x818
#define SIRFSOC_DMA_EARLY_RESP_CLR		0x81C

#define SIRFSOC_DMA_MODE_CTRL_BIT               4
#define SIRFSOC_DMA_DIR_CTRL_BIT                5
#define SIRFSOC_DMA_MODE_CTRL_BIT_ATLAS7        2
#define SIRFSOC_DMA_CHAIN_CTRL_BIT_ATLAS7       3
#define SIRFSOC_DMA_DIR_CTRL_BIT_ATLAS7         4
#define SIRFSOC_DMA_TAB_NUM_ATLAS7              7
#define SIRFSOC_DMA_CHAIN_INT_BIT_ATLAS7        5
#define SIRFSOC_DMA_CHAIN_FLAG_SHIFT_ATLAS7     25
#define SIRFSOC_DMA_CHAIN_ADDR_SHIFT            32

#define SIRFSOC_DMA_INT_FINI_INT_ATLAS7         BIT(0)
#define SIRFSOC_DMA_INT_CNT_INT_ATLAS7          BIT(1)
#define SIRFSOC_DMA_INT_PAU_INT_ATLAS7          BIT(2)
#define SIRFSOC_DMA_INT_LOOP_INT_ATLAS7         BIT(3)
#define SIRFSOC_DMA_INT_INV_INT_ATLAS7          BIT(4)
#define SIRFSOC_DMA_INT_END_INT_ATLAS7          BIT(5)
#define SIRFSOC_DMA_INT_ALL_ATLAS7              0x3F

/* xlen and dma_width register is in 4 bytes boundary */
#define SIRFSOC_DMA_WORD_LEN			4
#define SIRFSOC_DMA_XLEN_MAX_V1         0x800
#define SIRFSOC_DMA_XLEN_MAX_V2         0x1000

struct sirfsoc_dma_desc {
	struct dma_async_tx_descriptor	desc;
	struct list_head		node;

	/* SiRFprimaII 2D-DMA parameters */

	int             xlen;           /* DMA xlen */
	int             ylen;           /* DMA ylen */
	int             width;          /* DMA width */
	int             dir;
	bool            cyclic;         /* is loop DMA? */
	bool            chain;          /* is chain DMA? */
	u32             addr;		/* DMA buffer address */
	u64 chain_table[SIRFSOC_DMA_TABLE_NUM]; /* chain tbl */
};

struct sirfsoc_dma_chan {
	struct dma_chan			chan;
	struct list_head		free;
	struct list_head		prepared;
	struct list_head		queued;
	struct list_head		active;
	struct list_head		completed;
	unsigned long			happened_cyclic;
	unsigned long			completed_cyclic;

	/* Lock for this structure */
	spinlock_t			lock;

	int				mode;
};

struct sirfsoc_dma_regs {
	u32				ctrl[SIRFSOC_DMA_CHANNELS];
	u32				interrupt_en;
};

struct sirfsoc_dma {
	struct dma_device		dma;
	struct tasklet_struct		tasklet;
	struct sirfsoc_dma_chan		channels[SIRFSOC_DMA_CHANNELS];
	void __iomem			*base;
	int				irq;
	struct clk			*clk;
	int				type;
	void (*exec_desc)(struct sirfsoc_dma_desc *sdesc,
		int cid, int burst_mode, void __iomem *base);
	struct sirfsoc_dma_regs		regs_save;
};

struct sirfsoc_dmadata {
	void (*exec)(struct sirfsoc_dma_desc *sdesc,
		int cid, int burst_mode, void __iomem *base);
	int type;
};

enum sirfsoc_dma_chain_flag {
	SIRFSOC_DMA_CHAIN_NORMAL = 0x01,
	SIRFSOC_DMA_CHAIN_PAUSE = 0x02,
	SIRFSOC_DMA_CHAIN_LOOP = 0x03,
	SIRFSOC_DMA_CHAIN_END = 0x04
};

#define DRV_NAME	"sirfsoc_dma"

static int sirfsoc_dma_runtime_suspend(struct device *dev);

/* Convert struct dma_chan to struct sirfsoc_dma_chan */
static inline
struct sirfsoc_dma_chan *dma_chan_to_sirfsoc_dma_chan(struct dma_chan *c)
{
	return container_of(c, struct sirfsoc_dma_chan, chan);
}

/* Convert struct dma_chan to struct sirfsoc_dma */
static inline struct sirfsoc_dma *dma_chan_to_sirfsoc_dma(struct dma_chan *c)
{
	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(c);
	return container_of(schan, struct sirfsoc_dma, channels[c->chan_id]);
}

static void sirfsoc_dma_execute_hw_a7v2(struct sirfsoc_dma_desc *sdesc,
		int cid, int burst_mode, void __iomem *base)
{
	if (sdesc->chain) {
		/* DMA v2 HW chain mode */
		writel_relaxed((sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT_ATLAS7) |
			       (sdesc->chain <<
				SIRFSOC_DMA_CHAIN_CTRL_BIT_ATLAS7) |
			       (0x8 << SIRFSOC_DMA_TAB_NUM_ATLAS7) | 0x3,
			       base + SIRFSOC_DMA_CH_CTRL);
	} else {
		/* DMA v2 legacy mode */
		writel_relaxed(sdesc->xlen, base + SIRFSOC_DMA_CH_XLEN);
		writel_relaxed(sdesc->ylen, base + SIRFSOC_DMA_CH_YLEN);
		writel_relaxed(sdesc->width, base + SIRFSOC_DMA_WIDTH_ATLAS7);
		writel_relaxed((sdesc->width*((sdesc->ylen+1)>>1)),
				base + SIRFSOC_DMA_MUL_ATLAS7);
		writel_relaxed((sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT_ATLAS7) |
			       (sdesc->chain <<
				SIRFSOC_DMA_CHAIN_CTRL_BIT_ATLAS7) |
			       0x3, base + SIRFSOC_DMA_CH_CTRL);
	}
	writel_relaxed(sdesc->chain ? SIRFSOC_DMA_INT_END_INT_ATLAS7 :
		       (SIRFSOC_DMA_INT_FINI_INT_ATLAS7 |
			SIRFSOC_DMA_INT_LOOP_INT_ATLAS7),
		       base + SIRFSOC_DMA_INT_EN_ATLAS7);
	writel(sdesc->addr, base + SIRFSOC_DMA_CH_ADDR);
	if (sdesc->cyclic)
		writel(0x10001, base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
}

static void sirfsoc_dma_execute_hw_a7v1(struct sirfsoc_dma_desc *sdesc,
		int cid, int burst_mode, void __iomem *base)
{
	writel_relaxed(1, base + SIRFSOC_DMA_IOBG_SCMD_EN);
	writel_relaxed((1 << cid), base + SIRFSOC_DMA_EARLY_RESP_SET);
	writel_relaxed(sdesc->width, base + SIRFSOC_DMA_WIDTH_0 + cid * 4);
	writel_relaxed(cid | (burst_mode << SIRFSOC_DMA_MODE_CTRL_BIT) |
		       (sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT),
		       base + cid * 0x10 + SIRFSOC_DMA_CH_CTRL);
	writel_relaxed(sdesc->xlen, base + cid * 0x10 + SIRFSOC_DMA_CH_XLEN);
	writel_relaxed(sdesc->ylen, base + cid * 0x10 + SIRFSOC_DMA_CH_YLEN);
	writel_relaxed(readl_relaxed(base + SIRFSOC_DMA_INT_EN) |
		       (1 << cid), base + SIRFSOC_DMA_INT_EN);
	writel(sdesc->addr >> 2, base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR);
	if (sdesc->cyclic) {
		writel((1 << cid) | 1 << (cid + 16) |
		       readl_relaxed(base + SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7),
		       base + SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7);
	}

}

static void sirfsoc_dma_execute_hw_a6(struct sirfsoc_dma_desc *sdesc,
		int cid, int burst_mode, void __iomem *base)
{
	writel_relaxed(sdesc->width, base + SIRFSOC_DMA_WIDTH_0 + cid * 4);
	writel_relaxed(cid | (burst_mode << SIRFSOC_DMA_MODE_CTRL_BIT) |
		       (sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT),
		       base + cid * 0x10 + SIRFSOC_DMA_CH_CTRL);
	writel_relaxed(sdesc->xlen, base + cid * 0x10 + SIRFSOC_DMA_CH_XLEN);
	writel_relaxed(sdesc->ylen, base + cid * 0x10 + SIRFSOC_DMA_CH_YLEN);
	writel_relaxed(readl_relaxed(base + SIRFSOC_DMA_INT_EN) |
		       (1 << cid), base + SIRFSOC_DMA_INT_EN);
	writel(sdesc->addr >> 2, base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR);
	if (sdesc->cyclic) {
		writel((1 << cid) | 1 << (cid + 16) |
		       readl_relaxed(base + SIRFSOC_DMA_CH_LOOP_CTRL),
		       base + SIRFSOC_DMA_CH_LOOP_CTRL);
	}

}

/* Execute all queued DMA descriptors */
static void sirfsoc_dma_execute(struct sirfsoc_dma_chan *schan)
{
	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
	int cid = schan->chan.chan_id;
	struct sirfsoc_dma_desc *sdesc = NULL;
	void __iomem *base;

	/*
	 * lock has been held by functions calling this, so we don't hold
	 * lock again
	 */
	base = sdma->base;
	sdesc = list_first_entry(&schan->queued, struct sirfsoc_dma_desc,
				 node);
	/* Move the first queued descriptor to active list */
	list_move_tail(&sdesc->node, &schan->active);

	if (sdma->type == SIRFSOC_DMA_VER_A7V2)
		cid = 0;

	/* Start the DMA transfer */
	sdma->exec_desc(sdesc, cid, schan->mode, base);

	if (sdesc->cyclic)
		schan->happened_cyclic = schan->completed_cyclic = 0;
}

/* Interrupt handler */
static irqreturn_t sirfsoc_dma_irq(int irq, void *data)
{
	struct sirfsoc_dma *sdma = data;
	struct sirfsoc_dma_chan *schan;
	struct sirfsoc_dma_desc *sdesc = NULL;
	u32 is;
	bool chain;
	int ch;
	void __iomem *reg;

	switch (sdma->type) {
	case SIRFSOC_DMA_VER_A6:
	case SIRFSOC_DMA_VER_A7V1:
		is = readl(sdma->base + SIRFSOC_DMA_CH_INT);
		reg = sdma->base + SIRFSOC_DMA_CH_INT;
		while ((ch = fls(is) - 1) >= 0) {
			is &= ~(1 << ch);
			writel_relaxed(1 << ch, reg);
			schan = &sdma->channels[ch];
			spin_lock(&schan->lock);
			sdesc = list_first_entry(&schan->active,
						 struct sirfsoc_dma_desc, node);
			if (!sdesc->cyclic) {
				/* Execute queued descriptors */
				list_splice_tail_init(&schan->active,
						      &schan->completed);
				dma_cookie_complete(&sdesc->desc);
				if (!list_empty(&schan->queued))
					sirfsoc_dma_execute(schan);
			} else
				schan->happened_cyclic++;
			spin_unlock(&schan->lock);
		}
		break;

	case SIRFSOC_DMA_VER_A7V2:
		is = readl(sdma->base + SIRFSOC_DMA_INT_ATLAS7);

		reg = sdma->base + SIRFSOC_DMA_INT_ATLAS7;
		writel_relaxed(SIRFSOC_DMA_INT_ALL_ATLAS7, reg);
		schan = &sdma->channels[0];
		spin_lock(&schan->lock);
		sdesc = list_first_entry(&schan->active,
					 struct sirfsoc_dma_desc, node);
		if (!sdesc->cyclic) {
			chain = sdesc->chain;
			if ((chain && (is & SIRFSOC_DMA_INT_END_INT_ATLAS7)) ||
				(!chain &&
				(is & SIRFSOC_DMA_INT_FINI_INT_ATLAS7))) {
				/* Execute queued descriptors */
				list_splice_tail_init(&schan->active,
						      &schan->completed);
				dma_cookie_complete(&sdesc->desc);
				if (!list_empty(&schan->queued))
					sirfsoc_dma_execute(schan);
			}
		} else if (sdesc->cyclic && (is &
					SIRFSOC_DMA_INT_LOOP_INT_ATLAS7))
			schan->happened_cyclic++;

		spin_unlock(&schan->lock);
		break;

	default:
		break;
	}

	/* Schedule tasklet */
	tasklet_schedule(&sdma->tasklet);

	return IRQ_HANDLED;
}

/* process completed descriptors */
static void sirfsoc_dma_process_completed(struct sirfsoc_dma *sdma)
{
	dma_cookie_t last_cookie = 0;
	struct sirfsoc_dma_chan *schan;
	struct sirfsoc_dma_desc *sdesc;
	struct dma_async_tx_descriptor *desc;
	unsigned long flags;
	unsigned long happened_cyclic;
	LIST_HEAD(list);
	int i;

	for (i = 0; i < sdma->dma.chancnt; i++) {
		schan = &sdma->channels[i];

		/* Get all completed descriptors */
		spin_lock_irqsave(&schan->lock, flags);
		if (!list_empty(&schan->completed)) {
			list_splice_tail_init(&schan->completed, &list);
			spin_unlock_irqrestore(&schan->lock, flags);

			/* Execute callbacks and run dependencies */
			list_for_each_entry(sdesc, &list, node) {
				desc = &sdesc->desc;

				dmaengine_desc_get_callback_invoke(desc, NULL);
				last_cookie = desc->cookie;
				dma_run_dependencies(desc);
			}

			/* Free descriptors */
			spin_lock_irqsave(&schan->lock, flags);
			list_splice_tail_init(&list, &schan->free);
			schan->chan.completed_cookie = last_cookie;
			spin_unlock_irqrestore(&schan->lock, flags);
		} else {
			if (list_empty(&schan->active)) {
				spin_unlock_irqrestore(&schan->lock, flags);
				continue;
			}

			/* for cyclic channel, desc is always in active list */
			sdesc = list_first_entry(&schan->active,
				struct sirfsoc_dma_desc, node);

			/* cyclic DMA */
			happened_cyclic = schan->happened_cyclic;
			spin_unlock_irqrestore(&schan->lock, flags);

			desc = &sdesc->desc;
			while (happened_cyclic != schan->completed_cyclic) {
				dmaengine_desc_get_callback_invoke(desc, NULL);
				schan->completed_cyclic++;
			}
		}
	}
}

/* DMA Tasklet */
static void sirfsoc_dma_tasklet(unsigned long data)
{
	struct sirfsoc_dma *sdma = (void *)data;

	sirfsoc_dma_process_completed(sdma);
}

/* Submit descriptor to hardware */
static dma_cookie_t sirfsoc_dma_tx_submit(struct dma_async_tx_descriptor *txd)
{
	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(txd->chan);
	struct sirfsoc_dma_desc *sdesc;
	unsigned long flags;
	dma_cookie_t cookie;

	sdesc = container_of(txd, struct sirfsoc_dma_desc, desc);

	spin_lock_irqsave(&schan->lock, flags);

	/* Move descriptor to queue */
	list_move_tail(&sdesc->node, &schan->queued);

	cookie = dma_cookie_assign(txd);

	spin_unlock_irqrestore(&schan->lock, flags);

	return cookie;
}

static int sirfsoc_dma_slave_config(struct dma_chan *chan,
				    struct dma_slave_config *config)
{
	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
	unsigned long flags;

	if ((config->src_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES) ||
		(config->dst_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES))
		return -EINVAL;

	spin_lock_irqsave(&schan->lock, flags);
	schan->mode = (config->src_maxburst == 4 ? 1 : 0);
	spin_unlock_irqrestore(&schan->lock, flags);

	return 0;
}

static int sirfsoc_dma_terminate_all(struct dma_chan *chan)
{
	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
	int cid = schan->chan.chan_id;
	unsigned long flags;

	spin_lock_irqsave(&schan->lock, flags);

	switch (sdma->type) {
	case SIRFSOC_DMA_VER_A7V1:
		writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_INT_EN_CLR);
		writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_INT);
		writel_relaxed((1 << cid) | 1 << (cid + 16),
			       sdma->base +
			       SIRFSOC_DMA_CH_LOOP_CTRL_CLR_ATLAS7);
		writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_VALID);
		break;
	case SIRFSOC_DMA_VER_A7V2:
		writel_relaxed(0, sdma->base + SIRFSOC_DMA_INT_EN_ATLAS7);
		writel_relaxed(SIRFSOC_DMA_INT_ALL_ATLAS7,
			       sdma->base + SIRFSOC_DMA_INT_ATLAS7);
		writel_relaxed(0, sdma->base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
		writel_relaxed(0, sdma->base + SIRFSOC_DMA_VALID_ATLAS7);
		break;
	case SIRFSOC_DMA_VER_A6:
		writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_INT_EN) &
			       ~(1 << cid), sdma->base + SIRFSOC_DMA_INT_EN);
		writel_relaxed(readl_relaxed(sdma->base +
					     SIRFSOC_DMA_CH_LOOP_CTRL) &
			       ~((1 << cid) | 1 << (cid + 16)),
			       sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
		writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_VALID);
		break;
	default:
		break;
	}

	list_splice_tail_init(&schan->active, &schan->free);
	list_splice_tail_init(&schan->queued, &schan->free);

	spin_unlock_irqrestore(&schan->lock, flags);

	return 0;
}

static int sirfsoc_dma_pause_chan(struct dma_chan *chan)
{
	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
	int cid = schan->chan.chan_id;
	unsigned long flags;

	spin_lock_irqsave(&schan->lock, flags);

	switch (sdma->type) {
	case SIRFSOC_DMA_VER_A7V1:
		writel_relaxed((1 << cid) | 1 << (cid + 16),
			       sdma->base +
			       SIRFSOC_DMA_CH_LOOP_CTRL_CLR_ATLAS7);
		break;
	case SIRFSOC_DMA_VER_A7V2:
		writel_relaxed(0, sdma->base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
		break;
	case SIRFSOC_DMA_VER_A6:
		writel_relaxed(readl_relaxed(sdma->base +
					     SIRFSOC_DMA_CH_LOOP_CTRL) &
			       ~((1 << cid) | 1 << (cid + 16)),
			       sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
		break;

	default:
		break;
	}

	spin_unlock_irqrestore(&schan->lock, flags);

	return 0;
}

static int sirfsoc_dma_resume_chan(struct dma_chan *chan)
{
	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
	int cid = schan->chan.chan_id;
	unsigned long flags;

	spin_lock_irqsave(&schan->lock, flags);
	switch (sdma->type) {
	case SIRFSOC_DMA_VER_A7V1:
		writel_relaxed((1 << cid) | 1 << (cid + 16),
			       sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7);
		break;
	case SIRFSOC_DMA_VER_A7V2:
		writel_relaxed(0x10001,
			       sdma->base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
		break;
	case SIRFSOC_DMA_VER_A6:
		writel_relaxed(readl_relaxed(sdma->base +
					     SIRFSOC_DMA_CH_LOOP_CTRL) |
			       ((1 << cid) | 1 << (cid + 16)),
			       sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
		break;

	default:
		break;
	}

	spin_unlock_irqrestore(&schan->lock, flags);

	return 0;
}

/* Alloc channel resources */
static int sirfsoc_dma_alloc_chan_resources(struct dma_chan *chan)
{
	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
	struct sirfsoc_dma_desc *sdesc;
	unsigned long flags;
	LIST_HEAD(descs);
	int i;

	pm_runtime_get_sync(sdma->dma.dev);

	/* Alloc descriptors for this channel */
	for (i = 0; i < SIRFSOC_DMA_DESCRIPTORS; i++) {
		sdesc = kzalloc(sizeof(*sdesc), GFP_KERNEL);
		if (!sdesc) {
			dev_notice(sdma->dma.dev, "Memory allocation error. "
				"Allocated only %u descriptors\n", i);
			break;
		}

		dma_async_tx_descriptor_init(&sdesc->desc, chan);
		sdesc->desc.flags = DMA_CTRL_ACK;
		sdesc->desc.tx_submit = sirfsoc_dma_tx_submit;

		list_add_tail(&sdesc->node, &descs);
	}

	/* Return error only if no descriptors were allocated */
	if (i == 0)
		return -ENOMEM;

	spin_lock_irqsave(&schan->lock, flags);

	list_splice_tail_init(&descs, &schan->free);
	spin_unlock_irqrestore(&schan->lock, flags);

	return i;
}

/* Free channel resources */
static void sirfsoc_dma_free_chan_resources(struct dma_chan *chan)
{
	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
	struct sirfsoc_dma_desc *sdesc, *tmp;
	unsigned long flags;
	LIST_HEAD(descs);

	spin_lock_irqsave(&schan->lock, flags);

	/* Channel must be idle */
	BUG_ON(!list_empty(&schan->prepared));
	BUG_ON(!list_empty(&schan->queued));
	BUG_ON(!list_empty(&schan->active));
	BUG_ON(!list_empty(&schan->completed));

	/* Move data */
	list_splice_tail_init(&schan->free, &descs);

	spin_unlock_irqrestore(&schan->lock, flags);

	/* Free descriptors */
	list_for_each_entry_safe(sdesc, tmp, &descs, node)
		kfree(sdesc);

	pm_runtime_put(sdma->dma.dev);
}

/* Send pending descriptor to hardware */
static void sirfsoc_dma_issue_pending(struct dma_chan *chan)
{
	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&schan->lock, flags);

	if (list_empty(&schan->active) && !list_empty(&schan->queued))
		sirfsoc_dma_execute(schan);

	spin_unlock_irqrestore(&schan->lock, flags);
}

/* Check request completion status */
static enum dma_status
sirfsoc_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
	struct dma_tx_state *txstate)
{
	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
	unsigned long flags;
	enum dma_status ret;
	struct sirfsoc_dma_desc *sdesc;
	int cid = schan->chan.chan_id;
	unsigned long dma_pos;
	unsigned long dma_request_bytes;
	unsigned long residue;

	spin_lock_irqsave(&schan->lock, flags);

	if (list_empty(&schan->active)) {
		ret = dma_cookie_status(chan, cookie, txstate);
		dma_set_residue(txstate, 0);
		spin_unlock_irqrestore(&schan->lock, flags);
		return ret;
	}
	sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc, node);
	if (sdesc->cyclic)
		dma_request_bytes = (sdesc->xlen + 1) * (sdesc->ylen + 1) *
			(sdesc->width * SIRFSOC_DMA_WORD_LEN);
	else
		dma_request_bytes = sdesc->xlen * SIRFSOC_DMA_WORD_LEN;

	ret = dma_cookie_status(chan, cookie, txstate);

	if (sdma->type == SIRFSOC_DMA_VER_A7V2)
		cid = 0;

	if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
		dma_pos = readl_relaxed(sdma->base + SIRFSOC_DMA_CUR_DATA_ADDR);
	} else {
		dma_pos = readl_relaxed(
			sdma->base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR) << 2;
	}

	residue = dma_request_bytes - (dma_pos - sdesc->addr);
	dma_set_residue(txstate, residue);

	spin_unlock_irqrestore(&schan->lock, flags);

	return ret;
}

static struct dma_async_tx_descriptor *sirfsoc_dma_prep_interleaved(
	struct dma_chan *chan, struct dma_interleaved_template *xt,
	unsigned long flags)
{
	struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
	struct sirfsoc_dma_desc *sdesc = NULL;
	unsigned long iflags;
	int ret;

	if ((xt->dir != DMA_MEM_TO_DEV) && (xt->dir != DMA_DEV_TO_MEM)) {
		ret = -EINVAL;
		goto err_dir;
	}

	/* Get free descriptor */
	spin_lock_irqsave(&schan->lock, iflags);
	if (!list_empty(&schan->free)) {
		sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc,
			node);
		list_del(&sdesc->node);
	}
	spin_unlock_irqrestore(&schan->lock, iflags);

	if (!sdesc) {
		/* try to free completed descriptors */
		sirfsoc_dma_process_completed(sdma);
		ret = 0;
		goto no_desc;
	}

	/* Place descriptor in prepared list */
	spin_lock_irqsave(&schan->lock, iflags);

	/*
	 * Number of chunks in a frame can only be 1 for prima2
	 * and ylen (number of frame - 1) must be at least 0
	 */
	if ((xt->frame_size == 1) && (xt->numf > 0)) {
		sdesc->cyclic = 0;
		sdesc->xlen = xt->sgl[0].size / SIRFSOC_DMA_WORD_LEN;
		sdesc->width = (xt->sgl[0].size + xt->sgl[0].icg) /
				SIRFSOC_DMA_WORD_LEN;
		sdesc->ylen = xt->numf - 1;
		if (xt->dir == DMA_MEM_TO_DEV) {
			sdesc->addr = xt->src_start;
			sdesc->dir = 1;
		} else {
			sdesc->addr = xt->dst_start;
			sdesc->dir = 0;
		}

		list_add_tail(&sdesc->node, &schan->prepared);
	} else {
		pr_err("sirfsoc DMA Invalid xfer\n");
		ret = -EINVAL;
		goto err_xfer;
	}
	spin_unlock_irqrestore(&schan->lock, iflags);

	return &sdesc->desc;
err_xfer:
	spin_unlock_irqrestore(&schan->lock, iflags);
no_desc:
err_dir:
	return ERR_PTR(ret);
}

static struct dma_async_tx_descriptor *
sirfsoc_dma_prep_cyclic(struct dma_chan *chan, dma_addr_t addr,
	size_t buf_len, size_t period_len,
	enum dma_transfer_direction direction, unsigned long flags)
{
	struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
	struct sirfsoc_dma_desc *sdesc = NULL;
	unsigned long iflags;

	/*
	 * we only support cycle transfer with 2 period
	 * If the X-length is set to 0, it would be the loop mode.
	 * The DMA address keeps increasing until reaching the end of a loop
	 * area whose size is defined by (DMA_WIDTH x (Y_LENGTH + 1)). Then
	 * the DMA address goes back to the beginning of this area.
	 * In loop mode, the DMA data region is divided into two parts, BUFA
	 * and BUFB. DMA controller generates interrupts twice in each loop:
	 * when the DMA address reaches the end of BUFA or the end of the
	 * BUFB
	 */
	if (buf_len !=  2 * period_len)
		return ERR_PTR(-EINVAL);

	/* Get free descriptor */
	spin_lock_irqsave(&schan->lock, iflags);
	if (!list_empty(&schan->free)) {
		sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc,
			node);
		list_del(&sdesc->node);
	}
	spin_unlock_irqrestore(&schan->lock, iflags);

	if (!sdesc)
		return NULL;

	/* Place descriptor in prepared list */
	spin_lock_irqsave(&schan->lock, iflags);
	sdesc->addr = addr;
	sdesc->cyclic = 1;
	sdesc->xlen = 0;
	sdesc->ylen = buf_len / SIRFSOC_DMA_WORD_LEN - 1;
	sdesc->width = 1;
	list_add_tail(&sdesc->node, &schan->prepared);
	spin_unlock_irqrestore(&schan->lock, iflags);

	return &sdesc->desc;
}

/*
 * The DMA controller consists of 16 independent DMA channels.
 * Each channel is allocated to a different function
 */
bool sirfsoc_dma_filter_id(struct dma_chan *chan, void *chan_id)
{
	unsigned int ch_nr = (unsigned int) chan_id;

	if (ch_nr == chan->chan_id +
		chan->device->dev_id * SIRFSOC_DMA_CHANNELS)
		return true;

	return false;
}
EXPORT_SYMBOL(sirfsoc_dma_filter_id);

#define SIRFSOC_DMA_BUSWIDTHS \
	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))

static struct dma_chan *of_dma_sirfsoc_xlate(struct of_phandle_args *dma_spec,
	struct of_dma *ofdma)
{
	struct sirfsoc_dma *sdma = ofdma->of_dma_data;
	unsigned int request = dma_spec->args[0];

	if (request >= SIRFSOC_DMA_CHANNELS)
		return NULL;

	return dma_get_slave_channel(&sdma->channels[request].chan);
}

static int sirfsoc_dma_probe(struct platform_device *op)
{
	struct device_node *dn = op->dev.of_node;
	struct device *dev = &op->dev;
	struct dma_device *dma;
	struct sirfsoc_dma *sdma;
	struct sirfsoc_dma_chan *schan;
	struct sirfsoc_dmadata *data;
	struct resource res;
	ulong regs_start, regs_size;
	u32 id;
	int ret, i;

	sdma = devm_kzalloc(dev, sizeof(*sdma), GFP_KERNEL);
	if (!sdma)
		return -ENOMEM;

	data = (struct sirfsoc_dmadata *)
		(of_match_device(op->dev.driver->of_match_table,
				 &op->dev)->data);
	sdma->exec_desc = data->exec;
	sdma->type = data->type;

	if (of_property_read_u32(dn, "cell-index", &id)) {
		dev_err(dev, "Fail to get DMAC index\n");
		return -ENODEV;
	}

	sdma->irq = irq_of_parse_and_map(dn, 0);
	if (!sdma->irq) {
		dev_err(dev, "Error mapping IRQ!\n");
		return -EINVAL;
	}

	sdma->clk = devm_clk_get(dev, NULL);
	if (IS_ERR(sdma->clk)) {
		dev_err(dev, "failed to get a clock.\n");
		return PTR_ERR(sdma->clk);
	}

	ret = of_address_to_resource(dn, 0, &res);
	if (ret) {
		dev_err(dev, "Error parsing memory region!\n");
		goto irq_dispose;
	}

	regs_start = res.start;
	regs_size = resource_size(&res);

	sdma->base = devm_ioremap(dev, regs_start, regs_size);
	if (!sdma->base) {
		dev_err(dev, "Error mapping memory region!\n");
		ret = -ENOMEM;
		goto irq_dispose;
	}

	ret = request_irq(sdma->irq, &sirfsoc_dma_irq, 0, DRV_NAME, sdma);
	if (ret) {
		dev_err(dev, "Error requesting IRQ!\n");
		ret = -EINVAL;
		goto irq_dispose;
	}

	dma = &sdma->dma;
	dma->dev = dev;

	dma->device_alloc_chan_resources = sirfsoc_dma_alloc_chan_resources;
	dma->device_free_chan_resources = sirfsoc_dma_free_chan_resources;
	dma->device_issue_pending = sirfsoc_dma_issue_pending;
	dma->device_config = sirfsoc_dma_slave_config;
	dma->device_pause = sirfsoc_dma_pause_chan;
	dma->device_resume = sirfsoc_dma_resume_chan;
	dma->device_terminate_all = sirfsoc_dma_terminate_all;
	dma->device_tx_status = sirfsoc_dma_tx_status;
	dma->device_prep_interleaved_dma = sirfsoc_dma_prep_interleaved;
	dma->device_prep_dma_cyclic = sirfsoc_dma_prep_cyclic;
	dma->src_addr_widths = SIRFSOC_DMA_BUSWIDTHS;
	dma->dst_addr_widths = SIRFSOC_DMA_BUSWIDTHS;
	dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);

	INIT_LIST_HEAD(&dma->channels);
	dma_cap_set(DMA_SLAVE, dma->cap_mask);
	dma_cap_set(DMA_CYCLIC, dma->cap_mask);
	dma_cap_set(DMA_INTERLEAVE, dma->cap_mask);
	dma_cap_set(DMA_PRIVATE, dma->cap_mask);

	for (i = 0; i < SIRFSOC_DMA_CHANNELS; i++) {
		schan = &sdma->channels[i];

		schan->chan.device = dma;
		dma_cookie_init(&schan->chan);

		INIT_LIST_HEAD(&schan->free);
		INIT_LIST_HEAD(&schan->prepared);
		INIT_LIST_HEAD(&schan->queued);
		INIT_LIST_HEAD(&schan->active);
		INIT_LIST_HEAD(&schan->completed);

		spin_lock_init(&schan->lock);
		list_add_tail(&schan->chan.device_node, &dma->channels);
	}

	tasklet_init(&sdma->tasklet, sirfsoc_dma_tasklet, (unsigned long)sdma);

	/* Register DMA engine */
	dev_set_drvdata(dev, sdma);

	ret = dma_async_device_register(dma);
	if (ret)
		goto free_irq;

	/* Device-tree DMA controller registration */
	ret = of_dma_controller_register(dn, of_dma_sirfsoc_xlate, sdma);
	if (ret) {
		dev_err(dev, "failed to register DMA controller\n");
		goto unreg_dma_dev;
	}

	pm_runtime_enable(&op->dev);
	dev_info(dev, "initialized SIRFSOC DMAC driver\n");

	return 0;

unreg_dma_dev:
	dma_async_device_unregister(dma);
free_irq:
	free_irq(sdma->irq, sdma);
irq_dispose:
	irq_dispose_mapping(sdma->irq);
	return ret;
}

static int sirfsoc_dma_remove(struct platform_device *op)
{
	struct device *dev = &op->dev;
	struct sirfsoc_dma *sdma = dev_get_drvdata(dev);

	of_dma_controller_free(op->dev.of_node);
	dma_async_device_unregister(&sdma->dma);
	free_irq(sdma->irq, sdma);
	tasklet_kill(&sdma->tasklet);
	irq_dispose_mapping(sdma->irq);
	pm_runtime_disable(&op->dev);
	if (!pm_runtime_status_suspended(&op->dev))
		sirfsoc_dma_runtime_suspend(&op->dev);

	return 0;
}

static int __maybe_unused sirfsoc_dma_runtime_suspend(struct device *dev)
{
	struct sirfsoc_dma *sdma = dev_get_drvdata(dev);

	clk_disable_unprepare(sdma->clk);
	return 0;
}

static int __maybe_unused sirfsoc_dma_runtime_resume(struct device *dev)
{
	struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
	int ret;

	ret = clk_prepare_enable(sdma->clk);
	if (ret < 0) {
		dev_err(dev, "clk_enable failed: %d\n", ret);
		return ret;
	}
	return 0;
}

static int __maybe_unused sirfsoc_dma_pm_suspend(struct device *dev)
{
	struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
	struct sirfsoc_dma_regs *save = &sdma->regs_save;
	struct sirfsoc_dma_desc *sdesc;
	struct sirfsoc_dma_chan *schan;
	int ch;
	int ret;
	int count;
	u32 int_offset;

	/*
	 * if we were runtime-suspended before, resume to enable clock
	 * before accessing register
	 */
	if (pm_runtime_status_suspended(dev)) {
		ret = sirfsoc_dma_runtime_resume(dev);
		if (ret < 0)
			return ret;
	}

	if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
		count = 1;
		int_offset = SIRFSOC_DMA_INT_EN_ATLAS7;
	} else {
		count = SIRFSOC_DMA_CHANNELS;
		int_offset = SIRFSOC_DMA_INT_EN;
	}

	/*
	 * DMA controller will lose all registers while suspending
	 * so we need to save registers for active channels
	 */
	for (ch = 0; ch < count; ch++) {
		schan = &sdma->channels[ch];
		if (list_empty(&schan->active))
			continue;
		sdesc = list_first_entry(&schan->active,
			struct sirfsoc_dma_desc,
			node);
		save->ctrl[ch] = readl_relaxed(sdma->base +
			ch * 0x10 + SIRFSOC_DMA_CH_CTRL);
	}
	save->interrupt_en = readl_relaxed(sdma->base + int_offset);

	/* Disable clock */
	sirfsoc_dma_runtime_suspend(dev);

	return 0;
}

static int __maybe_unused sirfsoc_dma_pm_resume(struct device *dev)
{
	struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
	struct sirfsoc_dma_regs *save = &sdma->regs_save;
	struct sirfsoc_dma_desc *sdesc;
	struct sirfsoc_dma_chan *schan;
	int ch;
	int ret;
	int count;
	u32 int_offset;
	u32 width_offset;

	/* Enable clock before accessing register */
	ret = sirfsoc_dma_runtime_resume(dev);
	if (ret < 0)
		return ret;

	if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
		count = 1;
		int_offset = SIRFSOC_DMA_INT_EN_ATLAS7;
		width_offset = SIRFSOC_DMA_WIDTH_ATLAS7;
	} else {
		count = SIRFSOC_DMA_CHANNELS;
		int_offset = SIRFSOC_DMA_INT_EN;
		width_offset = SIRFSOC_DMA_WIDTH_0;
	}

	writel_relaxed(save->interrupt_en, sdma->base + int_offset);
	for (ch = 0; ch < count; ch++) {
		schan = &sdma->channels[ch];
		if (list_empty(&schan->active))
			continue;
		sdesc = list_first_entry(&schan->active,
			struct sirfsoc_dma_desc,
			node);
		writel_relaxed(sdesc->width,
			sdma->base + width_offset + ch * 4);
		writel_relaxed(sdesc->xlen,
			sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_XLEN);
		writel_relaxed(sdesc->ylen,
			sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_YLEN);
		writel_relaxed(save->ctrl[ch],
			sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_CTRL);
		if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
			writel_relaxed(sdesc->addr,
				sdma->base + SIRFSOC_DMA_CH_ADDR);
		} else {
			writel_relaxed(sdesc->addr >> 2,
				sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_ADDR);

		}
	}

	/* if we were runtime-suspended before, suspend again */
	if (pm_runtime_status_suspended(dev))
		sirfsoc_dma_runtime_suspend(dev);

	return 0;
}

static const struct dev_pm_ops sirfsoc_dma_pm_ops = {
	SET_RUNTIME_PM_OPS(sirfsoc_dma_runtime_suspend, sirfsoc_dma_runtime_resume, NULL)
	SET_SYSTEM_SLEEP_PM_OPS(sirfsoc_dma_pm_suspend, sirfsoc_dma_pm_resume)
};

static struct sirfsoc_dmadata sirfsoc_dmadata_a6 = {
	.exec = sirfsoc_dma_execute_hw_a6,
	.type = SIRFSOC_DMA_VER_A6,
};

static struct sirfsoc_dmadata sirfsoc_dmadata_a7v1 = {
	.exec = sirfsoc_dma_execute_hw_a7v1,
	.type = SIRFSOC_DMA_VER_A7V1,
};

static struct sirfsoc_dmadata sirfsoc_dmadata_a7v2 = {
	.exec = sirfsoc_dma_execute_hw_a7v2,
	.type = SIRFSOC_DMA_VER_A7V2,
};

static const struct of_device_id sirfsoc_dma_match[] = {
	{ .compatible = "sirf,prima2-dmac", .data = &sirfsoc_dmadata_a6,},
	{ .compatible = "sirf,atlas7-dmac", .data = &sirfsoc_dmadata_a7v1,},
	{ .compatible = "sirf,atlas7-dmac-v2", .data = &sirfsoc_dmadata_a7v2,},
	{},
};
MODULE_DEVICE_TABLE(of, sirfsoc_dma_match);

static struct platform_driver sirfsoc_dma_driver = {
	.probe		= sirfsoc_dma_probe,
	.remove		= sirfsoc_dma_remove,
	.driver = {
		.name = DRV_NAME,
		.pm = &sirfsoc_dma_pm_ops,
		.of_match_table	= sirfsoc_dma_match,
	},
};

static __init int sirfsoc_dma_init(void)
{
	return platform_driver_register(&sirfsoc_dma_driver);
}

static void __exit sirfsoc_dma_exit(void)
{
	platform_driver_unregister(&sirfsoc_dma_driver);
}

subsys_initcall(sirfsoc_dma_init);
module_exit(sirfsoc_dma_exit);

MODULE_AUTHOR("Rongjun Ying <rongjun.ying@csr.com>");
MODULE_AUTHOR("Barry Song <baohua.song@csr.com>");
MODULE_DESCRIPTION("SIRFSOC DMA control driver");
MODULE_LICENSE("GPL v2");