edac_mc.c 32.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
/*
 * edac_mc kernel module
 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
 * This file may be distributed under the terms of the
 * GNU General Public License.
 *
 * Written by Thayne Harbaugh
 * Based on work by Dan Hollis <goemon at anime dot net> and others.
 *	http://www.anime.net/~goemon/linux-ecc/
 *
 * Modified by Dave Peterson and Doug Thompson
 *
 */

#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/ctype.h>
#include <linux/edac.h>
#include <linux/bitops.h>
#include <asm/uaccess.h>
#include <asm/page.h>
#include "edac_core.h"
#include "edac_module.h"
#include <ras/ras_event.h>

#ifdef CONFIG_EDAC_ATOMIC_SCRUB
#include <asm/edac.h>
#else
#define edac_atomic_scrub(va, size) do { } while (0)
#endif

/* lock to memory controller's control array */
static DEFINE_MUTEX(mem_ctls_mutex);
static LIST_HEAD(mc_devices);

/*
 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
 *	apei/ghes and i7core_edac to be used at the same time.
 */
static void const *edac_mc_owner;

static struct bus_type mc_bus[EDAC_MAX_MCS];

unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
			         unsigned len)
{
	struct mem_ctl_info *mci = dimm->mci;
	int i, n, count = 0;
	char *p = buf;

	for (i = 0; i < mci->n_layers; i++) {
		n = snprintf(p, len, "%s %d ",
			      edac_layer_name[mci->layers[i].type],
			      dimm->location[i]);
		p += n;
		len -= n;
		count += n;
		if (!len)
			break;
	}

	return count;
}

#ifdef CONFIG_EDAC_DEBUG

static void edac_mc_dump_channel(struct rank_info *chan)
{
	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
	edac_dbg(4, "    channel = %p\n", chan);
	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
}

static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
{
	char location[80];

	edac_dimm_info_location(dimm, location, sizeof(location));

	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
		 dimm->mci->csbased ? "rank" : "dimm",
		 number, location, dimm->csrow, dimm->cschannel);
	edac_dbg(4, "  dimm = %p\n", dimm);
	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
}

static void edac_mc_dump_csrow(struct csrow_info *csrow)
{
	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
	edac_dbg(4, "  csrow = %p\n", csrow);
	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
}

static void edac_mc_dump_mci(struct mem_ctl_info *mci)
{
	edac_dbg(3, "\tmci = %p\n", mci);
	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
		 mci->nr_csrows, mci->csrows);
	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
		 mci->tot_dimms, mci->dimms);
	edac_dbg(3, "\tdev = %p\n", mci->pdev);
	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
		 mci->mod_name, mci->ctl_name);
	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
}

#endif				/* CONFIG_EDAC_DEBUG */

const char * const edac_mem_types[] = {
	[MEM_EMPTY]	= "Empty csrow",
	[MEM_RESERVED]	= "Reserved csrow type",
	[MEM_UNKNOWN]	= "Unknown csrow type",
	[MEM_FPM]	= "Fast page mode RAM",
	[MEM_EDO]	= "Extended data out RAM",
	[MEM_BEDO]	= "Burst Extended data out RAM",
	[MEM_SDR]	= "Single data rate SDRAM",
	[MEM_RDR]	= "Registered single data rate SDRAM",
	[MEM_DDR]	= "Double data rate SDRAM",
	[MEM_RDDR]	= "Registered Double data rate SDRAM",
	[MEM_RMBS]	= "Rambus DRAM",
	[MEM_DDR2]	= "Unbuffered DDR2 RAM",
	[MEM_FB_DDR2]	= "Fully buffered DDR2",
	[MEM_RDDR2]	= "Registered DDR2 RAM",
	[MEM_XDR]	= "Rambus XDR",
	[MEM_DDR3]	= "Unbuffered DDR3 RAM",
	[MEM_RDDR3]	= "Registered DDR3 RAM",
	[MEM_LRDDR3]	= "Load-Reduced DDR3 RAM",
	[MEM_DDR4]	= "Unbuffered DDR4 RAM",
	[MEM_RDDR4]	= "Registered DDR4 RAM",
};
EXPORT_SYMBOL_GPL(edac_mem_types);

/**
 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
 * @p:		pointer to a pointer with the memory offset to be used. At
 *		return, this will be incremented to point to the next offset
 * @size:	Size of the data structure to be reserved
 * @n_elems:	Number of elements that should be reserved
 *
 * If 'size' is a constant, the compiler will optimize this whole function
 * down to either a no-op or the addition of a constant to the value of '*p'.
 *
 * The 'p' pointer is absolutely needed to keep the proper advancing
 * further in memory to the proper offsets when allocating the struct along
 * with its embedded structs, as edac_device_alloc_ctl_info() does it
 * above, for example.
 *
 * At return, the pointer 'p' will be incremented to be used on a next call
 * to this function.
 */
void *edac_align_ptr(void **p, unsigned size, int n_elems)
{
	unsigned align, r;
	void *ptr = *p;

	*p += size * n_elems;

	/*
	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
	 * 'size'.  Adjust 'p' so that its alignment is at least as
	 * stringent as what the compiler would provide for X and return
	 * the aligned result.
	 * Here we assume that the alignment of a "long long" is the most
	 * stringent alignment that the compiler will ever provide by default.
	 * As far as I know, this is a reasonable assumption.
	 */
	if (size > sizeof(long))
		align = sizeof(long long);
	else if (size > sizeof(int))
		align = sizeof(long);
	else if (size > sizeof(short))
		align = sizeof(int);
	else if (size > sizeof(char))
		align = sizeof(short);
	else
		return (char *)ptr;

	r = (unsigned long)p % align;

	if (r == 0)
		return (char *)ptr;

	*p += align - r;

	return (void *)(((unsigned long)ptr) + align - r);
}

static void _edac_mc_free(struct mem_ctl_info *mci)
{
	int i, chn, row;
	struct csrow_info *csr;
	const unsigned int tot_dimms = mci->tot_dimms;
	const unsigned int tot_channels = mci->num_cschannel;
	const unsigned int tot_csrows = mci->nr_csrows;

	if (mci->dimms) {
		for (i = 0; i < tot_dimms; i++)
			kfree(mci->dimms[i]);
		kfree(mci->dimms);
	}
	if (mci->csrows) {
		for (row = 0; row < tot_csrows; row++) {
			csr = mci->csrows[row];
			if (csr) {
				if (csr->channels) {
					for (chn = 0; chn < tot_channels; chn++)
						kfree(csr->channels[chn]);
					kfree(csr->channels);
				}
				kfree(csr);
			}
		}
		kfree(mci->csrows);
	}
	kfree(mci);
}

/**
 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
 * @mc_num:		Memory controller number
 * @n_layers:		Number of MC hierarchy layers
 * layers:		Describes each layer as seen by the Memory Controller
 * @size_pvt:		size of private storage needed
 *
 *
 * Everything is kmalloc'ed as one big chunk - more efficient.
 * Only can be used if all structures have the same lifetime - otherwise
 * you have to allocate and initialize your own structures.
 *
 * Use edac_mc_free() to free mc structures allocated by this function.
 *
 * NOTE: drivers handle multi-rank memories in different ways: in some
 * drivers, one multi-rank memory stick is mapped as one entry, while, in
 * others, a single multi-rank memory stick would be mapped into several
 * entries. Currently, this function will allocate multiple struct dimm_info
 * on such scenarios, as grouping the multiple ranks require drivers change.
 *
 * Returns:
 *	On failure: NULL
 *	On success: struct mem_ctl_info pointer
 */
struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
				   unsigned n_layers,
				   struct edac_mc_layer *layers,
				   unsigned sz_pvt)
{
	struct mem_ctl_info *mci;
	struct edac_mc_layer *layer;
	struct csrow_info *csr;
	struct rank_info *chan;
	struct dimm_info *dimm;
	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
	unsigned pos[EDAC_MAX_LAYERS];
	unsigned size, tot_dimms = 1, count = 1;
	unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
	void *pvt, *p, *ptr = NULL;
	int i, j, row, chn, n, len, off;
	bool per_rank = false;

	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
	/*
	 * Calculate the total amount of dimms and csrows/cschannels while
	 * in the old API emulation mode
	 */
	for (i = 0; i < n_layers; i++) {
		tot_dimms *= layers[i].size;
		if (layers[i].is_virt_csrow)
			tot_csrows *= layers[i].size;
		else
			tot_channels *= layers[i].size;

		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
			per_rank = true;
	}

	/* Figure out the offsets of the various items from the start of an mc
	 * structure.  We want the alignment of each item to be at least as
	 * stringent as what the compiler would provide if we could simply
	 * hardcode everything into a single struct.
	 */
	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
	for (i = 0; i < n_layers; i++) {
		count *= layers[i].size;
		edac_dbg(4, "errcount layer %d size %d\n", i, count);
		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
		tot_errcount += 2 * count;
	}

	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
	size = ((unsigned long)pvt) + sz_pvt;

	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
		 size,
		 tot_dimms,
		 per_rank ? "ranks" : "dimms",
		 tot_csrows * tot_channels);

	mci = kzalloc(size, GFP_KERNEL);
	if (mci == NULL)
		return NULL;

	/* Adjust pointers so they point within the memory we just allocated
	 * rather than an imaginary chunk of memory located at address 0.
	 */
	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
	for (i = 0; i < n_layers; i++) {
		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
	}
	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;

	/* setup index and various internal pointers */
	mci->mc_idx = mc_num;
	mci->tot_dimms = tot_dimms;
	mci->pvt_info = pvt;
	mci->n_layers = n_layers;
	mci->layers = layer;
	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
	mci->nr_csrows = tot_csrows;
	mci->num_cschannel = tot_channels;
	mci->csbased = per_rank;

	/*
	 * Alocate and fill the csrow/channels structs
	 */
	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
	if (!mci->csrows)
		goto error;
	for (row = 0; row < tot_csrows; row++) {
		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
		if (!csr)
			goto error;
		mci->csrows[row] = csr;
		csr->csrow_idx = row;
		csr->mci = mci;
		csr->nr_channels = tot_channels;
		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
					GFP_KERNEL);
		if (!csr->channels)
			goto error;

		for (chn = 0; chn < tot_channels; chn++) {
			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
			if (!chan)
				goto error;
			csr->channels[chn] = chan;
			chan->chan_idx = chn;
			chan->csrow = csr;
		}
	}

	/*
	 * Allocate and fill the dimm structs
	 */
	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
	if (!mci->dimms)
		goto error;

	memset(&pos, 0, sizeof(pos));
	row = 0;
	chn = 0;
	for (i = 0; i < tot_dimms; i++) {
		chan = mci->csrows[row]->channels[chn];
		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
		if (off < 0 || off >= tot_dimms) {
			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
			goto error;
		}

		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
		if (!dimm)
			goto error;
		mci->dimms[off] = dimm;
		dimm->mci = mci;

		/*
		 * Copy DIMM location and initialize it.
		 */
		len = sizeof(dimm->label);
		p = dimm->label;
		n = snprintf(p, len, "mc#%u", mc_num);
		p += n;
		len -= n;
		for (j = 0; j < n_layers; j++) {
			n = snprintf(p, len, "%s#%u",
				     edac_layer_name[layers[j].type],
				     pos[j]);
			p += n;
			len -= n;
			dimm->location[j] = pos[j];

			if (len <= 0)
				break;
		}

		/* Link it to the csrows old API data */
		chan->dimm = dimm;
		dimm->csrow = row;
		dimm->cschannel = chn;

		/* Increment csrow location */
		if (layers[0].is_virt_csrow) {
			chn++;
			if (chn == tot_channels) {
				chn = 0;
				row++;
			}
		} else {
			row++;
			if (row == tot_csrows) {
				row = 0;
				chn++;
			}
		}

		/* Increment dimm location */
		for (j = n_layers - 1; j >= 0; j--) {
			pos[j]++;
			if (pos[j] < layers[j].size)
				break;
			pos[j] = 0;
		}
	}

	mci->op_state = OP_ALLOC;

	return mci;

error:
	_edac_mc_free(mci);

	return NULL;
}
EXPORT_SYMBOL_GPL(edac_mc_alloc);

/**
 * edac_mc_free
 *	'Free' a previously allocated 'mci' structure
 * @mci: pointer to a struct mem_ctl_info structure
 */
void edac_mc_free(struct mem_ctl_info *mci)
{
	edac_dbg(1, "\n");

	/* If we're not yet registered with sysfs free only what was allocated
	 * in edac_mc_alloc().
	 */
	if (!device_is_registered(&mci->dev)) {
		_edac_mc_free(mci);
		return;
	}

	/* the mci instance is freed here, when the sysfs object is dropped */
	edac_unregister_sysfs(mci);
}
EXPORT_SYMBOL_GPL(edac_mc_free);


/**
 * find_mci_by_dev
 *
 *	scan list of controllers looking for the one that manages
 *	the 'dev' device
 * @dev: pointer to a struct device related with the MCI
 */
struct mem_ctl_info *find_mci_by_dev(struct device *dev)
{
	struct mem_ctl_info *mci;
	struct list_head *item;

	edac_dbg(3, "\n");

	list_for_each(item, &mc_devices) {
		mci = list_entry(item, struct mem_ctl_info, link);

		if (mci->pdev == dev)
			return mci;
	}

	return NULL;
}
EXPORT_SYMBOL_GPL(find_mci_by_dev);

/*
 * handler for EDAC to check if NMI type handler has asserted interrupt
 */
static int edac_mc_assert_error_check_and_clear(void)
{
	int old_state;

	if (edac_op_state == EDAC_OPSTATE_POLL)
		return 1;

	old_state = edac_err_assert;
	edac_err_assert = 0;

	return old_state;
}

/*
 * edac_mc_workq_function
 *	performs the operation scheduled by a workq request
 */
static void edac_mc_workq_function(struct work_struct *work_req)
{
	struct delayed_work *d_work = to_delayed_work(work_req);
	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);

	mutex_lock(&mem_ctls_mutex);

	if (mci->op_state != OP_RUNNING_POLL) {
		mutex_unlock(&mem_ctls_mutex);
		return;
	}

	if (edac_mc_assert_error_check_and_clear())
		mci->edac_check(mci);

	mutex_unlock(&mem_ctls_mutex);

	/* Queue ourselves again. */
	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
}

/*
 * edac_mc_reset_delay_period(unsigned long value)
 *
 *	user space has updated our poll period value, need to
 *	reset our workq delays
 */
void edac_mc_reset_delay_period(unsigned long value)
{
	struct mem_ctl_info *mci;
	struct list_head *item;

	mutex_lock(&mem_ctls_mutex);

	list_for_each(item, &mc_devices) {
		mci = list_entry(item, struct mem_ctl_info, link);

		if (mci->op_state == OP_RUNNING_POLL)
			edac_mod_work(&mci->work, value);
	}
	mutex_unlock(&mem_ctls_mutex);
}



/* Return 0 on success, 1 on failure.
 * Before calling this function, caller must
 * assign a unique value to mci->mc_idx.
 *
 *	locking model:
 *
 *		called with the mem_ctls_mutex lock held
 */
static int add_mc_to_global_list(struct mem_ctl_info *mci)
{
	struct list_head *item, *insert_before;
	struct mem_ctl_info *p;

	insert_before = &mc_devices;

	p = find_mci_by_dev(mci->pdev);
	if (unlikely(p != NULL))
		goto fail0;

	list_for_each(item, &mc_devices) {
		p = list_entry(item, struct mem_ctl_info, link);

		if (p->mc_idx >= mci->mc_idx) {
			if (unlikely(p->mc_idx == mci->mc_idx))
				goto fail1;

			insert_before = item;
			break;
		}
	}

	list_add_tail_rcu(&mci->link, insert_before);
	atomic_inc(&edac_handlers);
	return 0;

fail0:
	edac_printk(KERN_WARNING, EDAC_MC,
		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
	return 1;

fail1:
	edac_printk(KERN_WARNING, EDAC_MC,
		"bug in low-level driver: attempt to assign\n"
		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
	return 1;
}

static int del_mc_from_global_list(struct mem_ctl_info *mci)
{
	int handlers = atomic_dec_return(&edac_handlers);
	list_del_rcu(&mci->link);

	/* these are for safe removal of devices from global list while
	 * NMI handlers may be traversing list
	 */
	synchronize_rcu();
	INIT_LIST_HEAD(&mci->link);

	return handlers;
}

/**
 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
 *
 * If found, return a pointer to the structure.
 * Else return NULL.
 *
 * Caller must hold mem_ctls_mutex.
 */
struct mem_ctl_info *edac_mc_find(int idx)
{
	struct list_head *item;
	struct mem_ctl_info *mci;

	list_for_each(item, &mc_devices) {
		mci = list_entry(item, struct mem_ctl_info, link);

		if (mci->mc_idx >= idx) {
			if (mci->mc_idx == idx)
				return mci;

			break;
		}
	}

	return NULL;
}
EXPORT_SYMBOL(edac_mc_find);

/**
 * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci
 *	global list and create sysfs entries associated with mci structure
 * @mci: pointer to the mci structure to be added to the list
 * @groups: optional attribute groups for the driver-specific sysfs entries
 *
 * Return:
 *	0	Success
 *	!0	Failure
 */

/* FIXME - should a warning be printed if no error detection? correction? */
int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
			       const struct attribute_group **groups)
{
	int ret = -EINVAL;
	edac_dbg(0, "\n");

	if (mci->mc_idx >= EDAC_MAX_MCS) {
		pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
		return -ENODEV;
	}

#ifdef CONFIG_EDAC_DEBUG
	if (edac_debug_level >= 3)
		edac_mc_dump_mci(mci);

	if (edac_debug_level >= 4) {
		int i;

		for (i = 0; i < mci->nr_csrows; i++) {
			struct csrow_info *csrow = mci->csrows[i];
			u32 nr_pages = 0;
			int j;

			for (j = 0; j < csrow->nr_channels; j++)
				nr_pages += csrow->channels[j]->dimm->nr_pages;
			if (!nr_pages)
				continue;
			edac_mc_dump_csrow(csrow);
			for (j = 0; j < csrow->nr_channels; j++)
				if (csrow->channels[j]->dimm->nr_pages)
					edac_mc_dump_channel(csrow->channels[j]);
		}
		for (i = 0; i < mci->tot_dimms; i++)
			if (mci->dimms[i]->nr_pages)
				edac_mc_dump_dimm(mci->dimms[i], i);
	}
#endif
	mutex_lock(&mem_ctls_mutex);

	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
		ret = -EPERM;
		goto fail0;
	}

	if (add_mc_to_global_list(mci))
		goto fail0;

	/* set load time so that error rate can be tracked */
	mci->start_time = jiffies;

	mci->bus = &mc_bus[mci->mc_idx];

	if (edac_create_sysfs_mci_device(mci, groups)) {
		edac_mc_printk(mci, KERN_WARNING,
			"failed to create sysfs device\n");
		goto fail1;
	}

	if (mci->edac_check) {
		mci->op_state = OP_RUNNING_POLL;

		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));

	} else {
		mci->op_state = OP_RUNNING_INTERRUPT;
	}

	/* Report action taken */
	edac_mc_printk(mci, KERN_INFO,
		"Giving out device to module %s controller %s: DEV %s (%s)\n",
		mci->mod_name, mci->ctl_name, mci->dev_name,
		edac_op_state_to_string(mci->op_state));

	edac_mc_owner = mci->mod_name;

	mutex_unlock(&mem_ctls_mutex);
	return 0;

fail1:
	del_mc_from_global_list(mci);

fail0:
	mutex_unlock(&mem_ctls_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);

/**
 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
 *                 remove mci structure from global list
 * @pdev: Pointer to 'struct device' representing mci structure to remove.
 *
 * Return pointer to removed mci structure, or NULL if device not found.
 */
struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
{
	struct mem_ctl_info *mci;

	edac_dbg(0, "\n");

	mutex_lock(&mem_ctls_mutex);

	/* find the requested mci struct in the global list */
	mci = find_mci_by_dev(dev);
	if (mci == NULL) {
		mutex_unlock(&mem_ctls_mutex);
		return NULL;
	}

	/* mark MCI offline: */
	mci->op_state = OP_OFFLINE;

	if (!del_mc_from_global_list(mci))
		edac_mc_owner = NULL;

	mutex_unlock(&mem_ctls_mutex);

	if (mci->edac_check)
		edac_stop_work(&mci->work);

	/* remove from sysfs */
	edac_remove_sysfs_mci_device(mci);

	edac_printk(KERN_INFO, EDAC_MC,
		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
		mci->mod_name, mci->ctl_name, edac_dev_name(mci));

	return mci;
}
EXPORT_SYMBOL_GPL(edac_mc_del_mc);

static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
				u32 size)
{
	struct page *pg;
	void *virt_addr;
	unsigned long flags = 0;

	edac_dbg(3, "\n");

	/* ECC error page was not in our memory. Ignore it. */
	if (!pfn_valid(page))
		return;

	/* Find the actual page structure then map it and fix */
	pg = pfn_to_page(page);

	if (PageHighMem(pg))
		local_irq_save(flags);

	virt_addr = kmap_atomic(pg);

	/* Perform architecture specific atomic scrub operation */
	edac_atomic_scrub(virt_addr + offset, size);

	/* Unmap and complete */
	kunmap_atomic(virt_addr);

	if (PageHighMem(pg))
		local_irq_restore(flags);
}

/* FIXME - should return -1 */
int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
{
	struct csrow_info **csrows = mci->csrows;
	int row, i, j, n;

	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
	row = -1;

	for (i = 0; i < mci->nr_csrows; i++) {
		struct csrow_info *csrow = csrows[i];
		n = 0;
		for (j = 0; j < csrow->nr_channels; j++) {
			struct dimm_info *dimm = csrow->channels[j]->dimm;
			n += dimm->nr_pages;
		}
		if (n == 0)
			continue;

		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
			 mci->mc_idx,
			 csrow->first_page, page, csrow->last_page,
			 csrow->page_mask);

		if ((page >= csrow->first_page) &&
		    (page <= csrow->last_page) &&
		    ((page & csrow->page_mask) ==
		     (csrow->first_page & csrow->page_mask))) {
			row = i;
			break;
		}
	}

	if (row == -1)
		edac_mc_printk(mci, KERN_ERR,
			"could not look up page error address %lx\n",
			(unsigned long)page);

	return row;
}
EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);

const char *edac_layer_name[] = {
	[EDAC_MC_LAYER_BRANCH] = "branch",
	[EDAC_MC_LAYER_CHANNEL] = "channel",
	[EDAC_MC_LAYER_SLOT] = "slot",
	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
	[EDAC_MC_LAYER_ALL_MEM] = "memory",
};
EXPORT_SYMBOL_GPL(edac_layer_name);

static void edac_inc_ce_error(struct mem_ctl_info *mci,
			      bool enable_per_layer_report,
			      const int pos[EDAC_MAX_LAYERS],
			      const u16 count)
{
	int i, index = 0;

	mci->ce_mc += count;

	if (!enable_per_layer_report) {
		mci->ce_noinfo_count += count;
		return;
	}

	for (i = 0; i < mci->n_layers; i++) {
		if (pos[i] < 0)
			break;
		index += pos[i];
		mci->ce_per_layer[i][index] += count;

		if (i < mci->n_layers - 1)
			index *= mci->layers[i + 1].size;
	}
}

static void edac_inc_ue_error(struct mem_ctl_info *mci,
				    bool enable_per_layer_report,
				    const int pos[EDAC_MAX_LAYERS],
				    const u16 count)
{
	int i, index = 0;

	mci->ue_mc += count;

	if (!enable_per_layer_report) {
		mci->ue_noinfo_count += count;
		return;
	}

	for (i = 0; i < mci->n_layers; i++) {
		if (pos[i] < 0)
			break;
		index += pos[i];
		mci->ue_per_layer[i][index] += count;

		if (i < mci->n_layers - 1)
			index *= mci->layers[i + 1].size;
	}
}

static void edac_ce_error(struct mem_ctl_info *mci,
			  const u16 error_count,
			  const int pos[EDAC_MAX_LAYERS],
			  const char *msg,
			  const char *location,
			  const char *label,
			  const char *detail,
			  const char *other_detail,
			  const bool enable_per_layer_report,
			  const unsigned long page_frame_number,
			  const unsigned long offset_in_page,
			  long grain)
{
	unsigned long remapped_page;
	char *msg_aux = "";

	if (*msg)
		msg_aux = " ";

	if (edac_mc_get_log_ce()) {
		if (other_detail && *other_detail)
			edac_mc_printk(mci, KERN_WARNING,
				       "%d CE %s%son %s (%s %s - %s)\n",
				       error_count, msg, msg_aux, label,
				       location, detail, other_detail);
		else
			edac_mc_printk(mci, KERN_WARNING,
				       "%d CE %s%son %s (%s %s)\n",
				       error_count, msg, msg_aux, label,
				       location, detail);
	}
	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);

	if (mci->scrub_mode == SCRUB_SW_SRC) {
		/*
			* Some memory controllers (called MCs below) can remap
			* memory so that it is still available at a different
			* address when PCI devices map into memory.
			* MC's that can't do this, lose the memory where PCI
			* devices are mapped. This mapping is MC-dependent
			* and so we call back into the MC driver for it to
			* map the MC page to a physical (CPU) page which can
			* then be mapped to a virtual page - which can then
			* be scrubbed.
			*/
		remapped_page = mci->ctl_page_to_phys ?
			mci->ctl_page_to_phys(mci, page_frame_number) :
			page_frame_number;

		edac_mc_scrub_block(remapped_page,
					offset_in_page, grain);
	}
}

static void edac_ue_error(struct mem_ctl_info *mci,
			  const u16 error_count,
			  const int pos[EDAC_MAX_LAYERS],
			  const char *msg,
			  const char *location,
			  const char *label,
			  const char *detail,
			  const char *other_detail,
			  const bool enable_per_layer_report)
{
	char *msg_aux = "";

	if (*msg)
		msg_aux = " ";

	if (edac_mc_get_log_ue()) {
		if (other_detail && *other_detail)
			edac_mc_printk(mci, KERN_WARNING,
				       "%d UE %s%son %s (%s %s - %s)\n",
				       error_count, msg, msg_aux, label,
				       location, detail, other_detail);
		else
			edac_mc_printk(mci, KERN_WARNING,
				       "%d UE %s%son %s (%s %s)\n",
				       error_count, msg, msg_aux, label,
				       location, detail);
	}

	if (edac_mc_get_panic_on_ue()) {
		if (other_detail && *other_detail)
			panic("UE %s%son %s (%s%s - %s)\n",
			      msg, msg_aux, label, location, detail, other_detail);
		else
			panic("UE %s%son %s (%s%s)\n",
			      msg, msg_aux, label, location, detail);
	}

	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
}

/**
 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
 *			      anything to discover the error location
 *
 * @type:		severity of the error (CE/UE/Fatal)
 * @mci:		a struct mem_ctl_info pointer
 * @e:			error description
 *
 * This raw function is used internally by edac_mc_handle_error(). It should
 * only be called directly when the hardware error come directly from BIOS,
 * like in the case of APEI GHES driver.
 */
void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
			      struct mem_ctl_info *mci,
			      struct edac_raw_error_desc *e)
{
	char detail[80];
	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };

	/* Memory type dependent details about the error */
	if (type == HW_EVENT_ERR_CORRECTED) {
		snprintf(detail, sizeof(detail),
			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
			e->page_frame_number, e->offset_in_page,
			e->grain, e->syndrome);
		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
			      detail, e->other_detail, e->enable_per_layer_report,
			      e->page_frame_number, e->offset_in_page, e->grain);
	} else {
		snprintf(detail, sizeof(detail),
			"page:0x%lx offset:0x%lx grain:%ld",
			e->page_frame_number, e->offset_in_page, e->grain);

		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
			      detail, e->other_detail, e->enable_per_layer_report);
	}


}
EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);

/**
 * edac_mc_handle_error - reports a memory event to userspace
 *
 * @type:		severity of the error (CE/UE/Fatal)
 * @mci:		a struct mem_ctl_info pointer
 * @error_count:	Number of errors of the same type
 * @page_frame_number:	mem page where the error occurred
 * @offset_in_page:	offset of the error inside the page
 * @syndrome:		ECC syndrome
 * @top_layer:		Memory layer[0] position
 * @mid_layer:		Memory layer[1] position
 * @low_layer:		Memory layer[2] position
 * @msg:		Message meaningful to the end users that
 *			explains the event
 * @other_detail:	Technical details about the event that
 *			may help hardware manufacturers and
 *			EDAC developers to analyse the event
 */
void edac_mc_handle_error(const enum hw_event_mc_err_type type,
			  struct mem_ctl_info *mci,
			  const u16 error_count,
			  const unsigned long page_frame_number,
			  const unsigned long offset_in_page,
			  const unsigned long syndrome,
			  const int top_layer,
			  const int mid_layer,
			  const int low_layer,
			  const char *msg,
			  const char *other_detail)
{
	char *p;
	int row = -1, chan = -1;
	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
	int i, n_labels = 0;
	u8 grain_bits;
	struct edac_raw_error_desc *e = &mci->error_desc;

	edac_dbg(3, "MC%d\n", mci->mc_idx);

	/* Fills the error report buffer */
	memset(e, 0, sizeof (*e));
	e->error_count = error_count;
	e->top_layer = top_layer;
	e->mid_layer = mid_layer;
	e->low_layer = low_layer;
	e->page_frame_number = page_frame_number;
	e->offset_in_page = offset_in_page;
	e->syndrome = syndrome;
	e->msg = msg;
	e->other_detail = other_detail;

	/*
	 * Check if the event report is consistent and if the memory
	 * location is known. If it is known, enable_per_layer_report will be
	 * true, the DIMM(s) label info will be filled and the per-layer
	 * error counters will be incremented.
	 */
	for (i = 0; i < mci->n_layers; i++) {
		if (pos[i] >= (int)mci->layers[i].size) {

			edac_mc_printk(mci, KERN_ERR,
				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
				       edac_layer_name[mci->layers[i].type],
				       pos[i], mci->layers[i].size);
			/*
			 * Instead of just returning it, let's use what's
			 * known about the error. The increment routines and
			 * the DIMM filter logic will do the right thing by
			 * pointing the likely damaged DIMMs.
			 */
			pos[i] = -1;
		}
		if (pos[i] >= 0)
			e->enable_per_layer_report = true;
	}

	/*
	 * Get the dimm label/grain that applies to the match criteria.
	 * As the error algorithm may not be able to point to just one memory
	 * stick, the logic here will get all possible labels that could
	 * pottentially be affected by the error.
	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
	 * to have only the MC channel and the MC dimm (also called "branch")
	 * but the channel is not known, as the memory is arranged in pairs,
	 * where each memory belongs to a separate channel within the same
	 * branch.
	 */
	p = e->label;
	*p = '\0';

	for (i = 0; i < mci->tot_dimms; i++) {
		struct dimm_info *dimm = mci->dimms[i];

		if (top_layer >= 0 && top_layer != dimm->location[0])
			continue;
		if (mid_layer >= 0 && mid_layer != dimm->location[1])
			continue;
		if (low_layer >= 0 && low_layer != dimm->location[2])
			continue;

		/* get the max grain, over the error match range */
		if (dimm->grain > e->grain)
			e->grain = dimm->grain;

		/*
		 * If the error is memory-controller wide, there's no need to
		 * seek for the affected DIMMs because the whole
		 * channel/memory controller/...  may be affected.
		 * Also, don't show errors for empty DIMM slots.
		 */
		if (e->enable_per_layer_report && dimm->nr_pages) {
			if (n_labels >= EDAC_MAX_LABELS) {
				e->enable_per_layer_report = false;
				break;
			}
			n_labels++;
			if (p != e->label) {
				strcpy(p, OTHER_LABEL);
				p += strlen(OTHER_LABEL);
			}
			strcpy(p, dimm->label);
			p += strlen(p);
			*p = '\0';

			/*
			 * get csrow/channel of the DIMM, in order to allow
			 * incrementing the compat API counters
			 */
			edac_dbg(4, "%s csrows map: (%d,%d)\n",
				 mci->csbased ? "rank" : "dimm",
				 dimm->csrow, dimm->cschannel);
			if (row == -1)
				row = dimm->csrow;
			else if (row >= 0 && row != dimm->csrow)
				row = -2;

			if (chan == -1)
				chan = dimm->cschannel;
			else if (chan >= 0 && chan != dimm->cschannel)
				chan = -2;
		}
	}

	if (!e->enable_per_layer_report) {
		strcpy(e->label, "any memory");
	} else {
		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
		if (p == e->label)
			strcpy(e->label, "unknown memory");
		if (type == HW_EVENT_ERR_CORRECTED) {
			if (row >= 0) {
				mci->csrows[row]->ce_count += error_count;
				if (chan >= 0)
					mci->csrows[row]->channels[chan]->ce_count += error_count;
			}
		} else
			if (row >= 0)
				mci->csrows[row]->ue_count += error_count;
	}

	/* Fill the RAM location data */
	p = e->location;

	for (i = 0; i < mci->n_layers; i++) {
		if (pos[i] < 0)
			continue;

		p += sprintf(p, "%s:%d ",
			     edac_layer_name[mci->layers[i].type],
			     pos[i]);
	}
	if (p > e->location)
		*(p - 1) = '\0';

	/* Report the error via the trace interface */
	grain_bits = fls_long(e->grain) + 1;
	trace_mc_event(type, e->msg, e->label, e->error_count,
		       mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
		       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
		       grain_bits, e->syndrome, e->other_detail);

	edac_raw_mc_handle_error(type, mci, e);
}
EXPORT_SYMBOL_GPL(edac_mc_handle_error);