rtc-omap.c 25.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
/*
 * TI OMAP Real Time Clock interface for Linux
 *
 * Copyright (C) 2003 MontaVista Software, Inc.
 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
 *
 * Copyright (C) 2006 David Brownell (new RTC framework)
 * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <dt-bindings/gpio/gpio.h>
#include <linux/bcd.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/pinconf.h>
#include <linux/pinctrl/pinconf-generic.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/rtc.h>

/*
 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
 * with century-range alarm matching, driven by the 32kHz clock.
 *
 * The main user-visible ways it differs from PC RTCs are by omitting
 * "don't care" alarm fields and sub-second periodic IRQs, and having
 * an autoadjust mechanism to calibrate to the true oscillator rate.
 *
 * Board-specific wiring options include using split power mode with
 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
 */

/* RTC registers */
#define OMAP_RTC_SECONDS_REG		0x00
#define OMAP_RTC_MINUTES_REG		0x04
#define OMAP_RTC_HOURS_REG		0x08
#define OMAP_RTC_DAYS_REG		0x0C
#define OMAP_RTC_MONTHS_REG		0x10
#define OMAP_RTC_YEARS_REG		0x14
#define OMAP_RTC_WEEKS_REG		0x18

#define OMAP_RTC_ALARM_SECONDS_REG	0x20
#define OMAP_RTC_ALARM_MINUTES_REG	0x24
#define OMAP_RTC_ALARM_HOURS_REG	0x28
#define OMAP_RTC_ALARM_DAYS_REG		0x2c
#define OMAP_RTC_ALARM_MONTHS_REG	0x30
#define OMAP_RTC_ALARM_YEARS_REG	0x34

#define OMAP_RTC_CTRL_REG		0x40
#define OMAP_RTC_STATUS_REG		0x44
#define OMAP_RTC_INTERRUPTS_REG		0x48

#define OMAP_RTC_COMP_LSB_REG		0x4c
#define OMAP_RTC_COMP_MSB_REG		0x50
#define OMAP_RTC_OSC_REG		0x54

#define OMAP_RTC_KICK0_REG		0x6c
#define OMAP_RTC_KICK1_REG		0x70

#define OMAP_RTC_IRQWAKEEN		0x7c

#define OMAP_RTC_ALARM2_SECONDS_REG	0x80
#define OMAP_RTC_ALARM2_MINUTES_REG	0x84
#define OMAP_RTC_ALARM2_HOURS_REG	0x88
#define OMAP_RTC_ALARM2_DAYS_REG	0x8c
#define OMAP_RTC_ALARM2_MONTHS_REG	0x90
#define OMAP_RTC_ALARM2_YEARS_REG	0x94

#define OMAP_RTC_PMIC_REG		0x98

/* OMAP_RTC_CTRL_REG bit fields: */
#define OMAP_RTC_CTRL_SPLIT		BIT(7)
#define OMAP_RTC_CTRL_DISABLE		BIT(6)
#define OMAP_RTC_CTRL_SET_32_COUNTER	BIT(5)
#define OMAP_RTC_CTRL_TEST		BIT(4)
#define OMAP_RTC_CTRL_MODE_12_24	BIT(3)
#define OMAP_RTC_CTRL_AUTO_COMP		BIT(2)
#define OMAP_RTC_CTRL_ROUND_30S		BIT(1)
#define OMAP_RTC_CTRL_STOP		BIT(0)

/* OMAP_RTC_STATUS_REG bit fields: */
#define OMAP_RTC_STATUS_POWER_UP	BIT(7)
#define OMAP_RTC_STATUS_ALARM2		BIT(7)
#define OMAP_RTC_STATUS_ALARM		BIT(6)
#define OMAP_RTC_STATUS_1D_EVENT	BIT(5)
#define OMAP_RTC_STATUS_1H_EVENT	BIT(4)
#define OMAP_RTC_STATUS_1M_EVENT	BIT(3)
#define OMAP_RTC_STATUS_1S_EVENT	BIT(2)
#define OMAP_RTC_STATUS_RUN		BIT(1)
#define OMAP_RTC_STATUS_BUSY		BIT(0)

/* OMAP_RTC_INTERRUPTS_REG bit fields: */
#define OMAP_RTC_INTERRUPTS_IT_ALARM2	BIT(4)
#define OMAP_RTC_INTERRUPTS_IT_ALARM	BIT(3)
#define OMAP_RTC_INTERRUPTS_IT_TIMER	BIT(2)

/* OMAP_RTC_OSC_REG bit fields: */
#define OMAP_RTC_OSC_32KCLK_EN		BIT(6)
#define OMAP_RTC_OSC_SEL_32KCLK_SRC	BIT(3)
#define OMAP_RTC_OSC_OSC32K_GZ_DISABLE	BIT(4)

/* OMAP_RTC_IRQWAKEEN bit fields: */
#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN	BIT(1)

/* OMAP_RTC_PMIC bit fields: */
#define OMAP_RTC_PMIC_POWER_EN_EN	BIT(16)
#define OMAP_RTC_PMIC_EXT_WKUP_EN(x)	BIT(x)
#define OMAP_RTC_PMIC_EXT_WKUP_POL(x)	BIT(4 + x)

/* OMAP_RTC_KICKER values */
#define	KICK0_VALUE			0x83e70b13
#define	KICK1_VALUE			0x95a4f1e0

struct omap_rtc;

struct omap_rtc_device_type {
	bool has_32kclk_en;
	bool has_irqwakeen;
	bool has_pmic_mode;
	bool has_power_up_reset;
	void (*lock)(struct omap_rtc *rtc);
	void (*unlock)(struct omap_rtc *rtc);
};

struct omap_rtc {
	struct rtc_device *rtc;
	void __iomem *base;
	struct clk *clk;
	int irq_alarm;
	int irq_timer;
	u8 interrupts_reg;
	bool is_pmic_controller;
	bool has_ext_clk;
	bool is_suspending;
	const struct omap_rtc_device_type *type;
	struct pinctrl_dev *pctldev;
};

static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
{
	return readb(rtc->base + reg);
}

static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
{
	return readl(rtc->base + reg);
}

static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
{
	writeb(val, rtc->base + reg);
}

static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
{
	writel(val, rtc->base + reg);
}

static void am3352_rtc_unlock(struct omap_rtc *rtc)
{
	rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
	rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
}

static void am3352_rtc_lock(struct omap_rtc *rtc)
{
	rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
	rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
}

static void default_rtc_unlock(struct omap_rtc *rtc)
{
}

static void default_rtc_lock(struct omap_rtc *rtc)
{
}

/*
 * We rely on the rtc framework to handle locking (rtc->ops_lock),
 * so the only other requirement is that register accesses which
 * require BUSY to be clear are made with IRQs locally disabled
 */
static void rtc_wait_not_busy(struct omap_rtc *rtc)
{
	int count;
	u8 status;

	/* BUSY may stay active for 1/32768 second (~30 usec) */
	for (count = 0; count < 50; count++) {
		status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
		if (!(status & OMAP_RTC_STATUS_BUSY))
			break;
		udelay(1);
	}
	/* now we have ~15 usec to read/write various registers */
}

static irqreturn_t rtc_irq(int irq, void *dev_id)
{
	struct omap_rtc	*rtc = dev_id;
	unsigned long events = 0;
	u8 irq_data;

	irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);

	/* alarm irq? */
	if (irq_data & OMAP_RTC_STATUS_ALARM) {
		rtc->type->unlock(rtc);
		rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
		rtc->type->lock(rtc);
		events |= RTC_IRQF | RTC_AF;
	}

	/* 1/sec periodic/update irq? */
	if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
		events |= RTC_IRQF | RTC_UF;

	rtc_update_irq(rtc->rtc, 1, events);

	return IRQ_HANDLED;
}

static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
	struct omap_rtc *rtc = dev_get_drvdata(dev);
	u8 reg, irqwake_reg = 0;

	local_irq_disable();
	rtc_wait_not_busy(rtc);
	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
	if (rtc->type->has_irqwakeen)
		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);

	if (enabled) {
		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
	} else {
		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
	}
	rtc_wait_not_busy(rtc);
	rtc->type->unlock(rtc);
	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
	if (rtc->type->has_irqwakeen)
		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
	rtc->type->lock(rtc);
	local_irq_enable();

	return 0;
}

/* this hardware doesn't support "don't care" alarm fields */
static int tm2bcd(struct rtc_time *tm)
{
	if (rtc_valid_tm(tm) != 0)
		return -EINVAL;

	tm->tm_sec = bin2bcd(tm->tm_sec);
	tm->tm_min = bin2bcd(tm->tm_min);
	tm->tm_hour = bin2bcd(tm->tm_hour);
	tm->tm_mday = bin2bcd(tm->tm_mday);

	tm->tm_mon = bin2bcd(tm->tm_mon + 1);

	/* epoch == 1900 */
	if (tm->tm_year < 100 || tm->tm_year > 199)
		return -EINVAL;
	tm->tm_year = bin2bcd(tm->tm_year - 100);

	return 0;
}

static void bcd2tm(struct rtc_time *tm)
{
	tm->tm_sec = bcd2bin(tm->tm_sec);
	tm->tm_min = bcd2bin(tm->tm_min);
	tm->tm_hour = bcd2bin(tm->tm_hour);
	tm->tm_mday = bcd2bin(tm->tm_mday);
	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
	/* epoch == 1900 */
	tm->tm_year = bcd2bin(tm->tm_year) + 100;
}

static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
{
	tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
	tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
	tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
	tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
	tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
	tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
}

static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	struct omap_rtc *rtc = dev_get_drvdata(dev);

	/* we don't report wday/yday/isdst ... */
	local_irq_disable();
	rtc_wait_not_busy(rtc);
	omap_rtc_read_time_raw(rtc, tm);
	local_irq_enable();

	bcd2tm(tm);

	return 0;
}

static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct omap_rtc *rtc = dev_get_drvdata(dev);

	if (tm2bcd(tm) < 0)
		return -EINVAL;

	local_irq_disable();
	rtc_wait_not_busy(rtc);

	rtc->type->unlock(rtc);
	rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
	rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
	rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
	rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
	rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
	rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
	rtc->type->lock(rtc);

	local_irq_enable();

	return 0;
}

static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
	struct omap_rtc *rtc = dev_get_drvdata(dev);
	u8 interrupts;

	local_irq_disable();
	rtc_wait_not_busy(rtc);

	alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
	alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
	alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
	alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
	alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
	alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);

	local_irq_enable();

	bcd2tm(&alm->time);

	interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
	alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);

	return 0;
}

static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
	struct omap_rtc *rtc = dev_get_drvdata(dev);
	u8 reg, irqwake_reg = 0;

	if (tm2bcd(&alm->time) < 0)
		return -EINVAL;

	local_irq_disable();
	rtc_wait_not_busy(rtc);

	rtc->type->unlock(rtc);
	rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
	rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
	rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
	rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
	rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
	rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);

	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
	if (rtc->type->has_irqwakeen)
		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);

	if (alm->enabled) {
		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
	} else {
		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
	}
	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
	if (rtc->type->has_irqwakeen)
		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
	rtc->type->lock(rtc);

	local_irq_enable();

	return 0;
}

static struct omap_rtc *omap_rtc_power_off_rtc;

/*
 * omap_rtc_poweroff: RTC-controlled power off
 *
 * The RTC can be used to control an external PMIC via the pmic_power_en pin,
 * which can be configured to transition to OFF on ALARM2 events.
 *
 * Notes:
 * The two-second alarm offset is the shortest offset possible as the alarm
 * registers must be set before the next timer update and the offset
 * calculation is too heavy for everything to be done within a single access
 * period (~15 us).
 *
 * Called with local interrupts disabled.
 */
static void omap_rtc_power_off(void)
{
	struct omap_rtc *rtc = omap_rtc_power_off_rtc;
	struct rtc_time tm;
	unsigned long now;
	u32 val;

	rtc->type->unlock(rtc);
	/* enable pmic_power_en control */
	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);

	/* set alarm two seconds from now */
	omap_rtc_read_time_raw(rtc, &tm);
	bcd2tm(&tm);
	rtc_tm_to_time(&tm, &now);
	rtc_time_to_tm(now + 2, &tm);

	if (tm2bcd(&tm) < 0) {
		dev_err(&rtc->rtc->dev, "power off failed\n");
		return;
	}

	rtc_wait_not_busy(rtc);

	rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
	rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
	rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
	rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
	rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
	rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);

	/*
	 * enable ALARM2 interrupt
	 *
	 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
	 */
	val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
			val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
	rtc->type->lock(rtc);

	/*
	 * Wait for alarm to trigger (within two seconds) and external PMIC to
	 * power off the system. Add a 500 ms margin for external latencies
	 * (e.g. debounce circuits).
	 */
	mdelay(2500);
}

static const struct rtc_class_ops omap_rtc_ops = {
	.read_time	= omap_rtc_read_time,
	.set_time	= omap_rtc_set_time,
	.read_alarm	= omap_rtc_read_alarm,
	.set_alarm	= omap_rtc_set_alarm,
	.alarm_irq_enable = omap_rtc_alarm_irq_enable,
};

static const struct omap_rtc_device_type omap_rtc_default_type = {
	.has_power_up_reset = true,
	.lock		= default_rtc_lock,
	.unlock		= default_rtc_unlock,
};

static const struct omap_rtc_device_type omap_rtc_am3352_type = {
	.has_32kclk_en	= true,
	.has_irqwakeen	= true,
	.has_pmic_mode	= true,
	.lock		= am3352_rtc_lock,
	.unlock		= am3352_rtc_unlock,
};

static const struct omap_rtc_device_type omap_rtc_da830_type = {
	.lock		= am3352_rtc_lock,
	.unlock		= am3352_rtc_unlock,
};

static const struct platform_device_id omap_rtc_id_table[] = {
	{
		.name	= "omap_rtc",
		.driver_data = (kernel_ulong_t)&omap_rtc_default_type,
	}, {
		.name	= "am3352-rtc",
		.driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
	}, {
		.name	= "da830-rtc",
		.driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);

static const struct of_device_id omap_rtc_of_match[] = {
	{
		.compatible	= "ti,am3352-rtc",
		.data		= &omap_rtc_am3352_type,
	}, {
		.compatible	= "ti,da830-rtc",
		.data		= &omap_rtc_da830_type,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(of, omap_rtc_of_match);

static const struct pinctrl_pin_desc rtc_pins_desc[] = {
	PINCTRL_PIN(0, "ext_wakeup0"),
	PINCTRL_PIN(1, "ext_wakeup1"),
	PINCTRL_PIN(2, "ext_wakeup2"),
	PINCTRL_PIN(3, "ext_wakeup3"),
};

static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev)
{
	return 0;
}

static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
					unsigned int group)
{
	return NULL;
}

static const struct pinctrl_ops rtc_pinctrl_ops = {
	.get_groups_count = rtc_pinctrl_get_groups_count,
	.get_group_name = rtc_pinctrl_get_group_name,
	.dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
	.dt_free_map = pinconf_generic_dt_free_map,
};

enum rtc_pin_config_param {
	PIN_CONFIG_ACTIVE_HIGH = PIN_CONFIG_END + 1,
};

static const struct pinconf_generic_params rtc_params[] = {
	{"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0},
};

#ifdef CONFIG_DEBUG_FS
static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = {
	PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false),
};
#endif

static int rtc_pinconf_get(struct pinctrl_dev *pctldev,
			unsigned int pin, unsigned long *config)
{
	struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
	unsigned int param = pinconf_to_config_param(*config);
	u32 val;
	u16 arg = 0;

	rtc->type->unlock(rtc);
	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
	rtc->type->lock(rtc);

	switch (param) {
	case PIN_CONFIG_INPUT_ENABLE:
		if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin)))
			return -EINVAL;
		break;
	case PIN_CONFIG_ACTIVE_HIGH:
		if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin))
			return -EINVAL;
		break;
	default:
		return -ENOTSUPP;
	};

	*config = pinconf_to_config_packed(param, arg);

	return 0;
}

static int rtc_pinconf_set(struct pinctrl_dev *pctldev,
			unsigned int pin, unsigned long *configs,
			unsigned int num_configs)
{
	struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
	u32 val;
	unsigned int param;
	u16 param_val;
	int i;

	rtc->type->unlock(rtc);
	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
	rtc->type->lock(rtc);

	/* active low by default */
	val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin);

	for (i = 0; i < num_configs; i++) {
		param = pinconf_to_config_param(configs[i]);
		param_val = pinconf_to_config_argument(configs[i]);

		switch (param) {
		case PIN_CONFIG_INPUT_ENABLE:
			if (param_val)
				val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
			else
				val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
			break;
		case PIN_CONFIG_ACTIVE_HIGH:
			val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
			break;
		default:
			dev_err(&rtc->rtc->dev, "Property %u not supported\n",
				param);
			return -ENOTSUPP;
		}
	}

	rtc->type->unlock(rtc);
	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val);
	rtc->type->lock(rtc);

	return 0;
}

static const struct pinconf_ops rtc_pinconf_ops = {
	.is_generic = true,
	.pin_config_get = rtc_pinconf_get,
	.pin_config_set = rtc_pinconf_set,
};

static struct pinctrl_desc rtc_pinctrl_desc = {
	.pins = rtc_pins_desc,
	.npins = ARRAY_SIZE(rtc_pins_desc),
	.pctlops = &rtc_pinctrl_ops,
	.confops = &rtc_pinconf_ops,
	.custom_params = rtc_params,
	.num_custom_params = ARRAY_SIZE(rtc_params),
#ifdef CONFIG_DEBUG_FS
	.custom_conf_items = rtc_conf_items,
#endif
	.owner = THIS_MODULE,
};

static int omap_rtc_probe(struct platform_device *pdev)
{
	struct omap_rtc	*rtc;
	struct resource	*res;
	u8 reg, mask, new_ctrl;
	const struct platform_device_id *id_entry;
	const struct of_device_id *of_id;
	int ret;

	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
	if (!rtc)
		return -ENOMEM;

	of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
	if (of_id) {
		rtc->type = of_id->data;
		rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
				of_property_read_bool(pdev->dev.of_node,
						"system-power-controller");
	} else {
		id_entry = platform_get_device_id(pdev);
		rtc->type = (void *)id_entry->driver_data;
	}

	rtc->irq_timer = platform_get_irq(pdev, 0);
	if (rtc->irq_timer <= 0)
		return -ENOENT;

	rtc->irq_alarm = platform_get_irq(pdev, 1);
	if (rtc->irq_alarm <= 0)
		return -ENOENT;

	rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
	if (!IS_ERR(rtc->clk))
		rtc->has_ext_clk = true;
	else
		rtc->clk = devm_clk_get(&pdev->dev, "int-clk");

	if (!IS_ERR(rtc->clk))
		clk_prepare_enable(rtc->clk);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	rtc->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(rtc->base))
		return PTR_ERR(rtc->base);

	platform_set_drvdata(pdev, rtc);

	/* Enable the clock/module so that we can access the registers */
	pm_runtime_enable(&pdev->dev);
	pm_runtime_get_sync(&pdev->dev);

	rtc->type->unlock(rtc);

	/*
	 * disable interrupts
	 *
	 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
	 */
	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);

	/* enable RTC functional clock */
	if (rtc->type->has_32kclk_en) {
		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
		rtc_writel(rtc, OMAP_RTC_OSC_REG,
				reg | OMAP_RTC_OSC_32KCLK_EN);
	}

	/* clear old status */
	reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);

	mask = OMAP_RTC_STATUS_ALARM;

	if (rtc->type->has_pmic_mode)
		mask |= OMAP_RTC_STATUS_ALARM2;

	if (rtc->type->has_power_up_reset) {
		mask |= OMAP_RTC_STATUS_POWER_UP;
		if (reg & OMAP_RTC_STATUS_POWER_UP)
			dev_info(&pdev->dev, "RTC power up reset detected\n");
	}

	if (reg & mask)
		rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);

	/* On boards with split power, RTC_ON_NOFF won't reset the RTC */
	reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
	if (reg & OMAP_RTC_CTRL_STOP)
		dev_info(&pdev->dev, "already running\n");

	/* force to 24 hour mode */
	new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
	new_ctrl |= OMAP_RTC_CTRL_STOP;

	/*
	 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
	 *
	 *  - Device wake-up capability setting should come through chip
	 *    init logic. OMAP1 boards should initialize the "wakeup capable"
	 *    flag in the platform device if the board is wired right for
	 *    being woken up by RTC alarm. For OMAP-L138, this capability
	 *    is built into the SoC by the "Deep Sleep" capability.
	 *
	 *  - Boards wired so RTC_ON_nOFF is used as the reset signal,
	 *    rather than nPWRON_RESET, should forcibly enable split
	 *    power mode.  (Some chip errata report that RTC_CTRL_SPLIT
	 *    is write-only, and always reads as zero...)
	 */

	if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
		dev_info(&pdev->dev, "split power mode\n");

	if (reg != new_ctrl)
		rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);

	/*
	 * If we have the external clock then switch to it so we can keep
	 * ticking across suspend.
	 */
	if (rtc->has_ext_clk) {
		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
		reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE;
		reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC;
		rtc_writel(rtc, OMAP_RTC_OSC_REG, reg);
	}

	rtc->type->lock(rtc);

	device_init_wakeup(&pdev->dev, true);

	rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
			&omap_rtc_ops, THIS_MODULE);
	if (IS_ERR(rtc->rtc)) {
		ret = PTR_ERR(rtc->rtc);
		goto err;
	}

	/* handle periodic and alarm irqs */
	ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
			dev_name(&rtc->rtc->dev), rtc);
	if (ret)
		goto err;

	if (rtc->irq_timer != rtc->irq_alarm) {
		ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
				dev_name(&rtc->rtc->dev), rtc);
		if (ret)
			goto err;
	}

	if (rtc->is_pmic_controller) {
		if (!pm_power_off) {
			omap_rtc_power_off_rtc = rtc;
			pm_power_off = omap_rtc_power_off;
		}
	}

	/* Support ext_wakeup pinconf */
	rtc_pinctrl_desc.name = dev_name(&pdev->dev);

	rtc->pctldev = pinctrl_register(&rtc_pinctrl_desc, &pdev->dev, rtc);
	if (IS_ERR(rtc->pctldev)) {
		dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
		return PTR_ERR(rtc->pctldev);
	}

	return 0;

err:
	device_init_wakeup(&pdev->dev, false);
	rtc->type->lock(rtc);
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

	return ret;
}

static int __exit omap_rtc_remove(struct platform_device *pdev)
{
	struct omap_rtc *rtc = platform_get_drvdata(pdev);
	u8 reg;

	if (pm_power_off == omap_rtc_power_off &&
			omap_rtc_power_off_rtc == rtc) {
		pm_power_off = NULL;
		omap_rtc_power_off_rtc = NULL;
	}

	device_init_wakeup(&pdev->dev, 0);

	if (!IS_ERR(rtc->clk))
		clk_disable_unprepare(rtc->clk);

	rtc->type->unlock(rtc);
	/* leave rtc running, but disable irqs */
	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);

	if (rtc->has_ext_clk) {
		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
		reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
		rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
	}

	rtc->type->lock(rtc);

	/* Disable the clock/module */
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

	/* Remove ext_wakeup pinconf */
	pinctrl_unregister(rtc->pctldev);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int omap_rtc_suspend(struct device *dev)
{
	struct omap_rtc *rtc = dev_get_drvdata(dev);

	rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);

	rtc->type->unlock(rtc);
	/*
	 * FIXME: the RTC alarm is not currently acting as a wakeup event
	 * source on some platforms, and in fact this enable() call is just
	 * saving a flag that's never used...
	 */
	if (device_may_wakeup(dev))
		enable_irq_wake(rtc->irq_alarm);
	else
		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
	rtc->type->lock(rtc);

	rtc->is_suspending = true;

	return 0;
}

static int omap_rtc_resume(struct device *dev)
{
	struct omap_rtc *rtc = dev_get_drvdata(dev);

	rtc->type->unlock(rtc);
	if (device_may_wakeup(dev))
		disable_irq_wake(rtc->irq_alarm);
	else
		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
	rtc->type->lock(rtc);

	rtc->is_suspending = false;

	return 0;
}
#endif

#ifdef CONFIG_PM
static int omap_rtc_runtime_suspend(struct device *dev)
{
	struct omap_rtc *rtc = dev_get_drvdata(dev);

	if (rtc->is_suspending && !rtc->has_ext_clk)
		return -EBUSY;

	return 0;
}

static int omap_rtc_runtime_resume(struct device *dev)
{
	return 0;
}
#endif

static const struct dev_pm_ops omap_rtc_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume)
	SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend,
			   omap_rtc_runtime_resume, NULL)
};

static void omap_rtc_shutdown(struct platform_device *pdev)
{
	struct omap_rtc *rtc = platform_get_drvdata(pdev);
	u8 mask;

	/*
	 * Keep the ALARM interrupt enabled to allow the system to power up on
	 * alarm events.
	 */
	rtc->type->unlock(rtc);
	mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
	mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
	rtc->type->lock(rtc);
}

static struct platform_driver omap_rtc_driver = {
	.probe		= omap_rtc_probe,
	.remove		= __exit_p(omap_rtc_remove),
	.shutdown	= omap_rtc_shutdown,
	.driver		= {
		.name	= "omap_rtc",
		.pm	= &omap_rtc_pm_ops,
		.of_match_table = omap_rtc_of_match,
	},
	.id_table	= omap_rtc_id_table,
};

module_platform_driver(omap_rtc_driver);

MODULE_ALIAS("platform:omap_rtc");
MODULE_AUTHOR("George G. Davis (and others)");
MODULE_LICENSE("GPL");