spi-rockchip.c 22.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
/*
 * Copyright (c) 2014, Fuzhou Rockchip Electronics Co., Ltd
 * Author: Addy Ke <addy.ke@rock-chips.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 */

#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/pm_runtime.h>
#include <linux/scatterlist.h>

#define DRIVER_NAME "rockchip-spi"

/* SPI register offsets */
#define ROCKCHIP_SPI_CTRLR0			0x0000
#define ROCKCHIP_SPI_CTRLR1			0x0004
#define ROCKCHIP_SPI_SSIENR			0x0008
#define ROCKCHIP_SPI_SER			0x000c
#define ROCKCHIP_SPI_BAUDR			0x0010
#define ROCKCHIP_SPI_TXFTLR			0x0014
#define ROCKCHIP_SPI_RXFTLR			0x0018
#define ROCKCHIP_SPI_TXFLR			0x001c
#define ROCKCHIP_SPI_RXFLR			0x0020
#define ROCKCHIP_SPI_SR				0x0024
#define ROCKCHIP_SPI_IPR			0x0028
#define ROCKCHIP_SPI_IMR			0x002c
#define ROCKCHIP_SPI_ISR			0x0030
#define ROCKCHIP_SPI_RISR			0x0034
#define ROCKCHIP_SPI_ICR			0x0038
#define ROCKCHIP_SPI_DMACR			0x003c
#define ROCKCHIP_SPI_DMATDLR		0x0040
#define ROCKCHIP_SPI_DMARDLR		0x0044
#define ROCKCHIP_SPI_TXDR			0x0400
#define ROCKCHIP_SPI_RXDR			0x0800

/* Bit fields in CTRLR0 */
#define CR0_DFS_OFFSET				0

#define CR0_CFS_OFFSET				2

#define CR0_SCPH_OFFSET				6

#define CR0_SCPOL_OFFSET			7

#define CR0_CSM_OFFSET				8
#define CR0_CSM_KEEP				0x0
/* ss_n be high for half sclk_out cycles */
#define CR0_CSM_HALF				0X1
/* ss_n be high for one sclk_out cycle */
#define CR0_CSM_ONE					0x2

/* ss_n to sclk_out delay */
#define CR0_SSD_OFFSET				10
/*
 * The period between ss_n active and
 * sclk_out active is half sclk_out cycles
 */
#define CR0_SSD_HALF				0x0
/*
 * The period between ss_n active and
 * sclk_out active is one sclk_out cycle
 */
#define CR0_SSD_ONE					0x1

#define CR0_EM_OFFSET				11
#define CR0_EM_LITTLE				0x0
#define CR0_EM_BIG					0x1

#define CR0_FBM_OFFSET				12
#define CR0_FBM_MSB					0x0
#define CR0_FBM_LSB					0x1

#define CR0_BHT_OFFSET				13
#define CR0_BHT_16BIT				0x0
#define CR0_BHT_8BIT				0x1

#define CR0_RSD_OFFSET				14

#define CR0_FRF_OFFSET				16
#define CR0_FRF_SPI					0x0
#define CR0_FRF_SSP					0x1
#define CR0_FRF_MICROWIRE			0x2

#define CR0_XFM_OFFSET				18
#define CR0_XFM_MASK				(0x03 << SPI_XFM_OFFSET)
#define CR0_XFM_TR					0x0
#define CR0_XFM_TO					0x1
#define CR0_XFM_RO					0x2

#define CR0_OPM_OFFSET				20
#define CR0_OPM_MASTER				0x0
#define CR0_OPM_SLAVE				0x1

#define CR0_MTM_OFFSET				0x21

/* Bit fields in SER, 2bit */
#define SER_MASK					0x3

/* Bit fields in SR, 5bit */
#define SR_MASK						0x1f
#define SR_BUSY						(1 << 0)
#define SR_TF_FULL					(1 << 1)
#define SR_TF_EMPTY					(1 << 2)
#define SR_RF_EMPTY					(1 << 3)
#define SR_RF_FULL					(1 << 4)

/* Bit fields in ISR, IMR, ISR, RISR, 5bit */
#define INT_MASK					0x1f
#define INT_TF_EMPTY				(1 << 0)
#define INT_TF_OVERFLOW				(1 << 1)
#define INT_RF_UNDERFLOW			(1 << 2)
#define INT_RF_OVERFLOW				(1 << 3)
#define INT_RF_FULL					(1 << 4)

/* Bit fields in ICR, 4bit */
#define ICR_MASK					0x0f
#define ICR_ALL						(1 << 0)
#define ICR_RF_UNDERFLOW			(1 << 1)
#define ICR_RF_OVERFLOW				(1 << 2)
#define ICR_TF_OVERFLOW				(1 << 3)

/* Bit fields in DMACR */
#define RF_DMA_EN					(1 << 0)
#define TF_DMA_EN					(1 << 1)

#define RXBUSY						(1 << 0)
#define TXBUSY						(1 << 1)

/* sclk_out: spi master internal logic in rk3x can support 50Mhz */
#define MAX_SCLK_OUT		50000000

/*
 * SPI_CTRLR1 is 16-bits, so we should support lengths of 0xffff + 1. However,
 * the controller seems to hang when given 0x10000, so stick with this for now.
 */
#define ROCKCHIP_SPI_MAX_TRANLEN		0xffff

enum rockchip_ssi_type {
	SSI_MOTO_SPI = 0,
	SSI_TI_SSP,
	SSI_NS_MICROWIRE,
};

struct rockchip_spi_dma_data {
	struct dma_chan *ch;
	enum dma_transfer_direction direction;
	dma_addr_t addr;
};

struct rockchip_spi {
	struct device *dev;
	struct spi_master *master;

	struct clk *spiclk;
	struct clk *apb_pclk;

	void __iomem *regs;
	/*depth of the FIFO buffer */
	u32 fifo_len;
	/* max bus freq supported */
	u32 max_freq;
	/* supported slave numbers */
	enum rockchip_ssi_type type;

	u16 mode;
	u8 tmode;
	u8 bpw;
	u8 n_bytes;
	u32 rsd_nsecs;
	unsigned len;
	u32 speed;

	const void *tx;
	const void *tx_end;
	void *rx;
	void *rx_end;

	u32 state;
	/* protect state */
	spinlock_t lock;

	u32 use_dma;
	struct sg_table tx_sg;
	struct sg_table rx_sg;
	struct rockchip_spi_dma_data dma_rx;
	struct rockchip_spi_dma_data dma_tx;
	struct dma_slave_caps dma_caps;
};

static inline void spi_enable_chip(struct rockchip_spi *rs, int enable)
{
	writel_relaxed((enable ? 1 : 0), rs->regs + ROCKCHIP_SPI_SSIENR);
}

static inline void spi_set_clk(struct rockchip_spi *rs, u16 div)
{
	writel_relaxed(div, rs->regs + ROCKCHIP_SPI_BAUDR);
}

static inline void flush_fifo(struct rockchip_spi *rs)
{
	while (readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR))
		readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
}

static inline void wait_for_idle(struct rockchip_spi *rs)
{
	unsigned long timeout = jiffies + msecs_to_jiffies(5);

	do {
		if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY))
			return;
	} while (!time_after(jiffies, timeout));

	dev_warn(rs->dev, "spi controller is in busy state!\n");
}

static u32 get_fifo_len(struct rockchip_spi *rs)
{
	u32 fifo;

	for (fifo = 2; fifo < 32; fifo++) {
		writel_relaxed(fifo, rs->regs + ROCKCHIP_SPI_TXFTLR);
		if (fifo != readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFTLR))
			break;
	}

	writel_relaxed(0, rs->regs + ROCKCHIP_SPI_TXFTLR);

	return (fifo == 31) ? 0 : fifo;
}

static inline u32 tx_max(struct rockchip_spi *rs)
{
	u32 tx_left, tx_room;

	tx_left = (rs->tx_end - rs->tx) / rs->n_bytes;
	tx_room = rs->fifo_len - readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFLR);

	return min(tx_left, tx_room);
}

static inline u32 rx_max(struct rockchip_spi *rs)
{
	u32 rx_left = (rs->rx_end - rs->rx) / rs->n_bytes;
	u32 rx_room = (u32)readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);

	return min(rx_left, rx_room);
}

static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
{
	u32 ser;
	struct spi_master *master = spi->master;
	struct rockchip_spi *rs = spi_master_get_devdata(master);

	pm_runtime_get_sync(rs->dev);

	ser = readl_relaxed(rs->regs + ROCKCHIP_SPI_SER) & SER_MASK;

	/*
	 * drivers/spi/spi.c:
	 * static void spi_set_cs(struct spi_device *spi, bool enable)
	 * {
	 *		if (spi->mode & SPI_CS_HIGH)
	 *			enable = !enable;
	 *
	 *		if (spi->cs_gpio >= 0)
	 *			gpio_set_value(spi->cs_gpio, !enable);
	 *		else if (spi->master->set_cs)
	 *		spi->master->set_cs(spi, !enable);
	 * }
	 *
	 * Note: enable(rockchip_spi_set_cs) = !enable(spi_set_cs)
	 */
	if (!enable)
		ser |= 1 << spi->chip_select;
	else
		ser &= ~(1 << spi->chip_select);

	writel_relaxed(ser, rs->regs + ROCKCHIP_SPI_SER);

	pm_runtime_put_sync(rs->dev);
}

static int rockchip_spi_prepare_message(struct spi_master *master,
					struct spi_message *msg)
{
	struct rockchip_spi *rs = spi_master_get_devdata(master);
	struct spi_device *spi = msg->spi;

	rs->mode = spi->mode;

	return 0;
}

static void rockchip_spi_handle_err(struct spi_master *master,
				    struct spi_message *msg)
{
	unsigned long flags;
	struct rockchip_spi *rs = spi_master_get_devdata(master);

	spin_lock_irqsave(&rs->lock, flags);

	/*
	 * For DMA mode, we need terminate DMA channel and flush
	 * fifo for the next transfer if DMA thansfer timeout.
	 * handle_err() was called by core if transfer failed.
	 * Maybe it is reasonable for error handling here.
	 */
	if (rs->use_dma) {
		if (rs->state & RXBUSY) {
			dmaengine_terminate_async(rs->dma_rx.ch);
			flush_fifo(rs);
		}

		if (rs->state & TXBUSY)
			dmaengine_terminate_async(rs->dma_tx.ch);
	}

	spin_unlock_irqrestore(&rs->lock, flags);
}

static int rockchip_spi_unprepare_message(struct spi_master *master,
					  struct spi_message *msg)
{
	struct rockchip_spi *rs = spi_master_get_devdata(master);

	spi_enable_chip(rs, 0);

	return 0;
}

static void rockchip_spi_pio_writer(struct rockchip_spi *rs)
{
	u32 max = tx_max(rs);
	u32 txw = 0;

	while (max--) {
		if (rs->n_bytes == 1)
			txw = *(u8 *)(rs->tx);
		else
			txw = *(u16 *)(rs->tx);

		writel_relaxed(txw, rs->regs + ROCKCHIP_SPI_TXDR);
		rs->tx += rs->n_bytes;
	}
}

static void rockchip_spi_pio_reader(struct rockchip_spi *rs)
{
	u32 max = rx_max(rs);
	u32 rxw;

	while (max--) {
		rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
		if (rs->n_bytes == 1)
			*(u8 *)(rs->rx) = (u8)rxw;
		else
			*(u16 *)(rs->rx) = (u16)rxw;
		rs->rx += rs->n_bytes;
	}
}

static int rockchip_spi_pio_transfer(struct rockchip_spi *rs)
{
	int remain = 0;

	do {
		if (rs->tx) {
			remain = rs->tx_end - rs->tx;
			rockchip_spi_pio_writer(rs);
		}

		if (rs->rx) {
			remain = rs->rx_end - rs->rx;
			rockchip_spi_pio_reader(rs);
		}

		cpu_relax();
	} while (remain);

	/* If tx, wait until the FIFO data completely. */
	if (rs->tx)
		wait_for_idle(rs);

	spi_enable_chip(rs, 0);

	return 0;
}

static void rockchip_spi_dma_rxcb(void *data)
{
	unsigned long flags;
	struct rockchip_spi *rs = data;

	spin_lock_irqsave(&rs->lock, flags);

	rs->state &= ~RXBUSY;
	if (!(rs->state & TXBUSY)) {
		spi_enable_chip(rs, 0);
		spi_finalize_current_transfer(rs->master);
	}

	spin_unlock_irqrestore(&rs->lock, flags);
}

static void rockchip_spi_dma_txcb(void *data)
{
	unsigned long flags;
	struct rockchip_spi *rs = data;

	/* Wait until the FIFO data completely. */
	wait_for_idle(rs);

	spin_lock_irqsave(&rs->lock, flags);

	rs->state &= ~TXBUSY;
	if (!(rs->state & RXBUSY)) {
		spi_enable_chip(rs, 0);
		spi_finalize_current_transfer(rs->master);
	}

	spin_unlock_irqrestore(&rs->lock, flags);
}

static int rockchip_spi_prepare_dma(struct rockchip_spi *rs)
{
	unsigned long flags;
	struct dma_slave_config rxconf, txconf;
	struct dma_async_tx_descriptor *rxdesc, *txdesc;

	spin_lock_irqsave(&rs->lock, flags);
	rs->state &= ~RXBUSY;
	rs->state &= ~TXBUSY;
	spin_unlock_irqrestore(&rs->lock, flags);

	rxdesc = NULL;
	if (rs->rx) {
		rxconf.direction = rs->dma_rx.direction;
		rxconf.src_addr = rs->dma_rx.addr;
		rxconf.src_addr_width = rs->n_bytes;
		if (rs->dma_caps.max_burst > 4)
			rxconf.src_maxburst = 4;
		else
			rxconf.src_maxburst = 1;
		dmaengine_slave_config(rs->dma_rx.ch, &rxconf);

		rxdesc = dmaengine_prep_slave_sg(
				rs->dma_rx.ch,
				rs->rx_sg.sgl, rs->rx_sg.nents,
				rs->dma_rx.direction, DMA_PREP_INTERRUPT);
		if (!rxdesc)
			return -EINVAL;

		rxdesc->callback = rockchip_spi_dma_rxcb;
		rxdesc->callback_param = rs;
	}

	txdesc = NULL;
	if (rs->tx) {
		txconf.direction = rs->dma_tx.direction;
		txconf.dst_addr = rs->dma_tx.addr;
		txconf.dst_addr_width = rs->n_bytes;
		if (rs->dma_caps.max_burst > 4)
			txconf.dst_maxburst = 4;
		else
			txconf.dst_maxburst = 1;
		dmaengine_slave_config(rs->dma_tx.ch, &txconf);

		txdesc = dmaengine_prep_slave_sg(
				rs->dma_tx.ch,
				rs->tx_sg.sgl, rs->tx_sg.nents,
				rs->dma_tx.direction, DMA_PREP_INTERRUPT);
		if (!txdesc) {
			if (rxdesc)
				dmaengine_terminate_sync(rs->dma_rx.ch);
			return -EINVAL;
		}

		txdesc->callback = rockchip_spi_dma_txcb;
		txdesc->callback_param = rs;
	}

	/* rx must be started before tx due to spi instinct */
	if (rxdesc) {
		spin_lock_irqsave(&rs->lock, flags);
		rs->state |= RXBUSY;
		spin_unlock_irqrestore(&rs->lock, flags);
		dmaengine_submit(rxdesc);
		dma_async_issue_pending(rs->dma_rx.ch);
	}

	if (txdesc) {
		spin_lock_irqsave(&rs->lock, flags);
		rs->state |= TXBUSY;
		spin_unlock_irqrestore(&rs->lock, flags);
		dmaengine_submit(txdesc);
		dma_async_issue_pending(rs->dma_tx.ch);
	}

	return 0;
}

static void rockchip_spi_config(struct rockchip_spi *rs)
{
	u32 div = 0;
	u32 dmacr = 0;
	int rsd = 0;

	u32 cr0 = (CR0_BHT_8BIT << CR0_BHT_OFFSET)
		| (CR0_SSD_ONE << CR0_SSD_OFFSET)
		| (CR0_EM_BIG << CR0_EM_OFFSET);

	cr0 |= (rs->n_bytes << CR0_DFS_OFFSET);
	cr0 |= ((rs->mode & 0x3) << CR0_SCPH_OFFSET);
	cr0 |= (rs->tmode << CR0_XFM_OFFSET);
	cr0 |= (rs->type << CR0_FRF_OFFSET);

	if (rs->use_dma) {
		if (rs->tx)
			dmacr |= TF_DMA_EN;
		if (rs->rx)
			dmacr |= RF_DMA_EN;
	}

	if (WARN_ON(rs->speed > MAX_SCLK_OUT))
		rs->speed = MAX_SCLK_OUT;

	/* the minimum divisor is 2 */
	if (rs->max_freq < 2 * rs->speed) {
		clk_set_rate(rs->spiclk, 2 * rs->speed);
		rs->max_freq = clk_get_rate(rs->spiclk);
	}

	/* div doesn't support odd number */
	div = DIV_ROUND_UP(rs->max_freq, rs->speed);
	div = (div + 1) & 0xfffe;

	/* Rx sample delay is expressed in parent clock cycles (max 3) */
	rsd = DIV_ROUND_CLOSEST(rs->rsd_nsecs * (rs->max_freq >> 8),
				1000000000 >> 8);
	if (!rsd && rs->rsd_nsecs) {
		pr_warn_once("rockchip-spi: %u Hz are too slow to express %u ns delay\n",
			     rs->max_freq, rs->rsd_nsecs);
	} else if (rsd > 3) {
		rsd = 3;
		pr_warn_once("rockchip-spi: %u Hz are too fast to express %u ns delay, clamping at %u ns\n",
			     rs->max_freq, rs->rsd_nsecs,
			     rsd * 1000000000U / rs->max_freq);
	}
	cr0 |= rsd << CR0_RSD_OFFSET;

	writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);

	writel_relaxed(rs->len - 1, rs->regs + ROCKCHIP_SPI_CTRLR1);
	writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_TXFTLR);
	writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);

	writel_relaxed(0, rs->regs + ROCKCHIP_SPI_DMATDLR);
	writel_relaxed(0, rs->regs + ROCKCHIP_SPI_DMARDLR);
	writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR);

	spi_set_clk(rs, div);

	dev_dbg(rs->dev, "cr0 0x%x, div %d\n", cr0, div);
}

static size_t rockchip_spi_max_transfer_size(struct spi_device *spi)
{
	return ROCKCHIP_SPI_MAX_TRANLEN;
}

static int rockchip_spi_transfer_one(
		struct spi_master *master,
		struct spi_device *spi,
		struct spi_transfer *xfer)
{
	int ret = 0;
	struct rockchip_spi *rs = spi_master_get_devdata(master);

	WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) &&
		(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY));

	if (!xfer->tx_buf && !xfer->rx_buf) {
		dev_err(rs->dev, "No buffer for transfer\n");
		return -EINVAL;
	}

	if (xfer->len > ROCKCHIP_SPI_MAX_TRANLEN) {
		dev_err(rs->dev, "Transfer is too long (%d)\n", xfer->len);
		return -EINVAL;
	}

	rs->speed = xfer->speed_hz;
	rs->bpw = xfer->bits_per_word;
	rs->n_bytes = rs->bpw >> 3;

	rs->tx = xfer->tx_buf;
	rs->tx_end = rs->tx + xfer->len;
	rs->rx = xfer->rx_buf;
	rs->rx_end = rs->rx + xfer->len;
	rs->len = xfer->len;

	rs->tx_sg = xfer->tx_sg;
	rs->rx_sg = xfer->rx_sg;

	if (rs->tx && rs->rx)
		rs->tmode = CR0_XFM_TR;
	else if (rs->tx)
		rs->tmode = CR0_XFM_TO;
	else if (rs->rx)
		rs->tmode = CR0_XFM_RO;

	/* we need prepare dma before spi was enabled */
	if (master->can_dma && master->can_dma(master, spi, xfer))
		rs->use_dma = 1;
	else
		rs->use_dma = 0;

	rockchip_spi_config(rs);

	if (rs->use_dma) {
		if (rs->tmode == CR0_XFM_RO) {
			/* rx: dma must be prepared first */
			ret = rockchip_spi_prepare_dma(rs);
			spi_enable_chip(rs, 1);
		} else {
			/* tx or tr: spi must be enabled first */
			spi_enable_chip(rs, 1);
			ret = rockchip_spi_prepare_dma(rs);
		}
		/* successful DMA prepare means the transfer is in progress */
		ret = ret ? ret : 1;
	} else {
		spi_enable_chip(rs, 1);
		ret = rockchip_spi_pio_transfer(rs);
	}

	return ret;
}

static bool rockchip_spi_can_dma(struct spi_master *master,
				 struct spi_device *spi,
				 struct spi_transfer *xfer)
{
	struct rockchip_spi *rs = spi_master_get_devdata(master);

	return (xfer->len > rs->fifo_len);
}

static int rockchip_spi_probe(struct platform_device *pdev)
{
	int ret = 0;
	struct rockchip_spi *rs;
	struct spi_master *master;
	struct resource *mem;
	u32 rsd_nsecs;

	master = spi_alloc_master(&pdev->dev, sizeof(struct rockchip_spi));
	if (!master)
		return -ENOMEM;

	platform_set_drvdata(pdev, master);

	rs = spi_master_get_devdata(master);

	/* Get basic io resource and map it */
	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	rs->regs = devm_ioremap_resource(&pdev->dev, mem);
	if (IS_ERR(rs->regs)) {
		ret =  PTR_ERR(rs->regs);
		goto err_ioremap_resource;
	}

	rs->apb_pclk = devm_clk_get(&pdev->dev, "apb_pclk");
	if (IS_ERR(rs->apb_pclk)) {
		dev_err(&pdev->dev, "Failed to get apb_pclk\n");
		ret = PTR_ERR(rs->apb_pclk);
		goto err_ioremap_resource;
	}

	rs->spiclk = devm_clk_get(&pdev->dev, "spiclk");
	if (IS_ERR(rs->spiclk)) {
		dev_err(&pdev->dev, "Failed to get spi_pclk\n");
		ret = PTR_ERR(rs->spiclk);
		goto err_ioremap_resource;
	}

	ret = clk_prepare_enable(rs->apb_pclk);
	if (ret) {
		dev_err(&pdev->dev, "Failed to enable apb_pclk\n");
		goto err_ioremap_resource;
	}

	ret = clk_prepare_enable(rs->spiclk);
	if (ret) {
		dev_err(&pdev->dev, "Failed to enable spi_clk\n");
		goto err_spiclk_enable;
	}

	spi_enable_chip(rs, 0);

	rs->type = SSI_MOTO_SPI;
	rs->master = master;
	rs->dev = &pdev->dev;
	rs->max_freq = clk_get_rate(rs->spiclk);

	if (!of_property_read_u32(pdev->dev.of_node, "rx-sample-delay-ns",
				  &rsd_nsecs))
		rs->rsd_nsecs = rsd_nsecs;

	rs->fifo_len = get_fifo_len(rs);
	if (!rs->fifo_len) {
		dev_err(&pdev->dev, "Failed to get fifo length\n");
		ret = -EINVAL;
		goto err_get_fifo_len;
	}

	spin_lock_init(&rs->lock);

	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

	master->auto_runtime_pm = true;
	master->bus_num = pdev->id;
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
	master->num_chipselect = 2;
	master->dev.of_node = pdev->dev.of_node;
	master->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8);

	master->set_cs = rockchip_spi_set_cs;
	master->prepare_message = rockchip_spi_prepare_message;
	master->unprepare_message = rockchip_spi_unprepare_message;
	master->transfer_one = rockchip_spi_transfer_one;
	master->max_transfer_size = rockchip_spi_max_transfer_size;
	master->handle_err = rockchip_spi_handle_err;

	rs->dma_tx.ch = dma_request_chan(rs->dev, "tx");
	if (IS_ERR(rs->dma_tx.ch)) {
		/* Check tx to see if we need defer probing driver */
		if (PTR_ERR(rs->dma_tx.ch) == -EPROBE_DEFER) {
			ret = -EPROBE_DEFER;
			goto err_get_fifo_len;
		}
		dev_warn(rs->dev, "Failed to request TX DMA channel\n");
		rs->dma_tx.ch = NULL;
	}

	rs->dma_rx.ch = dma_request_chan(rs->dev, "rx");
	if (IS_ERR(rs->dma_rx.ch)) {
		if (PTR_ERR(rs->dma_rx.ch) == -EPROBE_DEFER) {
			ret = -EPROBE_DEFER;
			goto err_free_dma_tx;
		}
		dev_warn(rs->dev, "Failed to request RX DMA channel\n");
		rs->dma_rx.ch = NULL;
	}

	if (rs->dma_tx.ch && rs->dma_rx.ch) {
		dma_get_slave_caps(rs->dma_rx.ch, &(rs->dma_caps));
		rs->dma_tx.addr = (dma_addr_t)(mem->start + ROCKCHIP_SPI_TXDR);
		rs->dma_rx.addr = (dma_addr_t)(mem->start + ROCKCHIP_SPI_RXDR);
		rs->dma_tx.direction = DMA_MEM_TO_DEV;
		rs->dma_rx.direction = DMA_DEV_TO_MEM;

		master->can_dma = rockchip_spi_can_dma;
		master->dma_tx = rs->dma_tx.ch;
		master->dma_rx = rs->dma_rx.ch;
	}

	ret = devm_spi_register_master(&pdev->dev, master);
	if (ret) {
		dev_err(&pdev->dev, "Failed to register master\n");
		goto err_register_master;
	}

	return 0;

err_register_master:
	pm_runtime_disable(&pdev->dev);
	if (rs->dma_rx.ch)
		dma_release_channel(rs->dma_rx.ch);
err_free_dma_tx:
	if (rs->dma_tx.ch)
		dma_release_channel(rs->dma_tx.ch);
err_get_fifo_len:
	clk_disable_unprepare(rs->spiclk);
err_spiclk_enable:
	clk_disable_unprepare(rs->apb_pclk);
err_ioremap_resource:
	spi_master_put(master);

	return ret;
}

static int rockchip_spi_remove(struct platform_device *pdev)
{
	struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
	struct rockchip_spi *rs = spi_master_get_devdata(master);

	pm_runtime_disable(&pdev->dev);

	clk_disable_unprepare(rs->spiclk);
	clk_disable_unprepare(rs->apb_pclk);

	if (rs->dma_tx.ch)
		dma_release_channel(rs->dma_tx.ch);
	if (rs->dma_rx.ch)
		dma_release_channel(rs->dma_rx.ch);

	spi_master_put(master);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int rockchip_spi_suspend(struct device *dev)
{
	int ret = 0;
	struct spi_master *master = dev_get_drvdata(dev);
	struct rockchip_spi *rs = spi_master_get_devdata(master);

	ret = spi_master_suspend(rs->master);
	if (ret)
		return ret;

	if (!pm_runtime_suspended(dev)) {
		clk_disable_unprepare(rs->spiclk);
		clk_disable_unprepare(rs->apb_pclk);
	}

	return ret;
}

static int rockchip_spi_resume(struct device *dev)
{
	int ret = 0;
	struct spi_master *master = dev_get_drvdata(dev);
	struct rockchip_spi *rs = spi_master_get_devdata(master);

	if (!pm_runtime_suspended(dev)) {
		ret = clk_prepare_enable(rs->apb_pclk);
		if (ret < 0)
			return ret;

		ret = clk_prepare_enable(rs->spiclk);
		if (ret < 0) {
			clk_disable_unprepare(rs->apb_pclk);
			return ret;
		}
	}

	ret = spi_master_resume(rs->master);
	if (ret < 0) {
		clk_disable_unprepare(rs->spiclk);
		clk_disable_unprepare(rs->apb_pclk);
	}

	return ret;
}
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM
static int rockchip_spi_runtime_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct rockchip_spi *rs = spi_master_get_devdata(master);

	clk_disable_unprepare(rs->spiclk);
	clk_disable_unprepare(rs->apb_pclk);

	return 0;
}

static int rockchip_spi_runtime_resume(struct device *dev)
{
	int ret;
	struct spi_master *master = dev_get_drvdata(dev);
	struct rockchip_spi *rs = spi_master_get_devdata(master);

	ret = clk_prepare_enable(rs->apb_pclk);
	if (ret)
		return ret;

	ret = clk_prepare_enable(rs->spiclk);
	if (ret)
		clk_disable_unprepare(rs->apb_pclk);

	return ret;
}
#endif /* CONFIG_PM */

static const struct dev_pm_ops rockchip_spi_pm = {
	SET_SYSTEM_SLEEP_PM_OPS(rockchip_spi_suspend, rockchip_spi_resume)
	SET_RUNTIME_PM_OPS(rockchip_spi_runtime_suspend,
			   rockchip_spi_runtime_resume, NULL)
};

static const struct of_device_id rockchip_spi_dt_match[] = {
	{ .compatible = "rockchip,rk3036-spi", },
	{ .compatible = "rockchip,rk3066-spi", },
	{ .compatible = "rockchip,rk3188-spi", },
	{ .compatible = "rockchip,rk3228-spi", },
	{ .compatible = "rockchip,rk3288-spi", },
	{ .compatible = "rockchip,rk3368-spi", },
	{ .compatible = "rockchip,rk3399-spi", },
	{ },
};
MODULE_DEVICE_TABLE(of, rockchip_spi_dt_match);

static struct platform_driver rockchip_spi_driver = {
	.driver = {
		.name	= DRIVER_NAME,
		.pm = &rockchip_spi_pm,
		.of_match_table = of_match_ptr(rockchip_spi_dt_match),
	},
	.probe = rockchip_spi_probe,
	.remove = rockchip_spi_remove,
};

module_platform_driver(rockchip_spi_driver);

MODULE_AUTHOR("Addy Ke <addy.ke@rock-chips.com>");
MODULE_DESCRIPTION("ROCKCHIP SPI Controller Driver");
MODULE_LICENSE("GPL v2");