disk-io.c 127 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/fs.h>
#include <linux/blkdev.h>
#include <linux/scatterlist.h>
#include <linux/swap.h>
#include <linux/radix-tree.h>
#include <linux/writeback.h>
#include <linux/buffer_head.h>
#include <linux/workqueue.h>
#include <linux/kthread.h>
#include <linux/slab.h>
#include <linux/migrate.h>
#include <linux/ratelimit.h>
#include <linux/uuid.h>
#include <linux/semaphore.h>
#include <asm/unaligned.h>
#include "ctree.h"
#include "disk-io.h"
#include "hash.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "print-tree.h"
#include "locking.h"
#include "tree-log.h"
#include "free-space-cache.h"
#include "free-space-tree.h"
#include "inode-map.h"
#include "check-integrity.h"
#include "rcu-string.h"
#include "dev-replace.h"
#include "raid56.h"
#include "sysfs.h"
#include "qgroup.h"
#include "compression.h"

#ifdef CONFIG_X86
#include <asm/cpufeature.h>
#endif

#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
				 BTRFS_HEADER_FLAG_RELOC |\
				 BTRFS_SUPER_FLAG_ERROR |\
				 BTRFS_SUPER_FLAG_SEEDING |\
				 BTRFS_SUPER_FLAG_METADUMP)

static const struct extent_io_ops btree_extent_io_ops;
static void end_workqueue_fn(struct btrfs_work *work);
static void free_fs_root(struct btrfs_root *root);
static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
				    int read_only);
static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
				      struct btrfs_root *root);
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
static int btrfs_destroy_marked_extents(struct btrfs_root *root,
					struct extent_io_tree *dirty_pages,
					int mark);
static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
				       struct extent_io_tree *pinned_extents);
static int btrfs_cleanup_transaction(struct btrfs_root *root);
static void btrfs_error_commit_super(struct btrfs_root *root);

/*
 * btrfs_end_io_wq structs are used to do processing in task context when an IO
 * is complete.  This is used during reads to verify checksums, and it is used
 * by writes to insert metadata for new file extents after IO is complete.
 */
struct btrfs_end_io_wq {
	struct bio *bio;
	bio_end_io_t *end_io;
	void *private;
	struct btrfs_fs_info *info;
	int error;
	enum btrfs_wq_endio_type metadata;
	struct list_head list;
	struct btrfs_work work;
};

static struct kmem_cache *btrfs_end_io_wq_cache;

int __init btrfs_end_io_wq_init(void)
{
	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
					sizeof(struct btrfs_end_io_wq),
					0,
					SLAB_MEM_SPREAD,
					NULL);
	if (!btrfs_end_io_wq_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_end_io_wq_exit(void)
{
	kmem_cache_destroy(btrfs_end_io_wq_cache);
}

/*
 * async submit bios are used to offload expensive checksumming
 * onto the worker threads.  They checksum file and metadata bios
 * just before they are sent down the IO stack.
 */
struct async_submit_bio {
	struct inode *inode;
	struct bio *bio;
	struct list_head list;
	extent_submit_bio_hook_t *submit_bio_start;
	extent_submit_bio_hook_t *submit_bio_done;
	int mirror_num;
	unsigned long bio_flags;
	/*
	 * bio_offset is optional, can be used if the pages in the bio
	 * can't tell us where in the file the bio should go
	 */
	u64 bio_offset;
	struct btrfs_work work;
	int error;
};

/*
 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 * the level the eb occupies in the tree.
 *
 * Different roots are used for different purposes and may nest inside each
 * other and they require separate keysets.  As lockdep keys should be
 * static, assign keysets according to the purpose of the root as indicated
 * by btrfs_root->objectid.  This ensures that all special purpose roots
 * have separate keysets.
 *
 * Lock-nesting across peer nodes is always done with the immediate parent
 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 * subclass to avoid triggering lockdep warning in such cases.
 *
 * The key is set by the readpage_end_io_hook after the buffer has passed
 * csum validation but before the pages are unlocked.  It is also set by
 * btrfs_init_new_buffer on freshly allocated blocks.
 *
 * We also add a check to make sure the highest level of the tree is the
 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 * needs update as well.
 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
# if BTRFS_MAX_LEVEL != 8
#  error
# endif

static struct btrfs_lockdep_keyset {
	u64			id;		/* root objectid */
	const char		*name_stem;	/* lock name stem */
	char			names[BTRFS_MAX_LEVEL + 1][20];
	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
} btrfs_lockdep_keysets[] = {
	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
	{ .id = 0,				.name_stem = "tree"	},
};

void __init btrfs_init_lockdep(void)
{
	int i, j;

	/* initialize lockdep class names */
	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];

		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
			snprintf(ks->names[j], sizeof(ks->names[j]),
				 "btrfs-%s-%02d", ks->name_stem, j);
	}
}

void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
				    int level)
{
	struct btrfs_lockdep_keyset *ks;

	BUG_ON(level >= ARRAY_SIZE(ks->keys));

	/* find the matching keyset, id 0 is the default entry */
	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
		if (ks->id == objectid)
			break;

	lockdep_set_class_and_name(&eb->lock,
				   &ks->keys[level], ks->names[level]);
}

#endif

/*
 * extents on the btree inode are pretty simple, there's one extent
 * that covers the entire device
 */
static struct extent_map *btree_get_extent(struct inode *inode,
		struct page *page, size_t pg_offset, u64 start, u64 len,
		int create)
{
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
	struct extent_map *em;
	int ret;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, len);
	if (em) {
		em->bdev =
			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
		read_unlock(&em_tree->lock);
		goto out;
	}
	read_unlock(&em_tree->lock);

	em = alloc_extent_map();
	if (!em) {
		em = ERR_PTR(-ENOMEM);
		goto out;
	}
	em->start = 0;
	em->len = (u64)-1;
	em->block_len = (u64)-1;
	em->block_start = 0;
	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;

	write_lock(&em_tree->lock);
	ret = add_extent_mapping(em_tree, em, 0);
	if (ret == -EEXIST) {
		free_extent_map(em);
		em = lookup_extent_mapping(em_tree, start, len);
		if (!em)
			em = ERR_PTR(-EIO);
	} else if (ret) {
		free_extent_map(em);
		em = ERR_PTR(ret);
	}
	write_unlock(&em_tree->lock);

out:
	return em;
}

u32 btrfs_csum_data(char *data, u32 seed, size_t len)
{
	return btrfs_crc32c(seed, data, len);
}

void btrfs_csum_final(u32 crc, char *result)
{
	put_unaligned_le32(~crc, result);
}

/*
 * compute the csum for a btree block, and either verify it or write it
 * into the csum field of the block.
 */
static int csum_tree_block(struct btrfs_fs_info *fs_info,
			   struct extent_buffer *buf,
			   int verify)
{
	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
	char *result = NULL;
	unsigned long len;
	unsigned long cur_len;
	unsigned long offset = BTRFS_CSUM_SIZE;
	char *kaddr;
	unsigned long map_start;
	unsigned long map_len;
	int err;
	u32 crc = ~(u32)0;
	unsigned long inline_result;

	len = buf->len - offset;
	while (len > 0) {
		err = map_private_extent_buffer(buf, offset, 32,
					&kaddr, &map_start, &map_len);
		if (err)
			return err;
		cur_len = min(len, map_len - (offset - map_start));
		crc = btrfs_csum_data(kaddr + offset - map_start,
				      crc, cur_len);
		len -= cur_len;
		offset += cur_len;
	}
	if (csum_size > sizeof(inline_result)) {
		result = kzalloc(csum_size, GFP_NOFS);
		if (!result)
			return -ENOMEM;
	} else {
		result = (char *)&inline_result;
	}

	btrfs_csum_final(crc, result);

	if (verify) {
		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
			u32 val;
			u32 found = 0;
			memcpy(&found, result, csum_size);

			read_extent_buffer(buf, &val, 0, csum_size);
			btrfs_warn_rl(fs_info,
				"%s checksum verify failed on %llu wanted %X found %X level %d",
				fs_info->sb->s_id, buf->start,
				val, found, btrfs_header_level(buf));
			if (result != (char *)&inline_result)
				kfree(result);
			return -EUCLEAN;
		}
	} else {
		write_extent_buffer(buf, result, 0, csum_size);
	}
	if (result != (char *)&inline_result)
		kfree(result);
	return 0;
}

/*
 * we can't consider a given block up to date unless the transid of the
 * block matches the transid in the parent node's pointer.  This is how we
 * detect blocks that either didn't get written at all or got written
 * in the wrong place.
 */
static int verify_parent_transid(struct extent_io_tree *io_tree,
				 struct extent_buffer *eb, u64 parent_transid,
				 int atomic)
{
	struct extent_state *cached_state = NULL;
	int ret;
	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);

	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
		return 0;

	if (atomic)
		return -EAGAIN;

	if (need_lock) {
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
	}

	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
			 &cached_state);
	if (extent_buffer_uptodate(eb) &&
	    btrfs_header_generation(eb) == parent_transid) {
		ret = 0;
		goto out;
	}
	btrfs_err_rl(eb->fs_info,
		"parent transid verify failed on %llu wanted %llu found %llu",
			eb->start,
			parent_transid, btrfs_header_generation(eb));
	ret = 1;

	/*
	 * Things reading via commit roots that don't have normal protection,
	 * like send, can have a really old block in cache that may point at a
	 * block that has been freed and re-allocated.  So don't clear uptodate
	 * if we find an eb that is under IO (dirty/writeback) because we could
	 * end up reading in the stale data and then writing it back out and
	 * making everybody very sad.
	 */
	if (!extent_buffer_under_io(eb))
		clear_extent_buffer_uptodate(eb);
out:
	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
			     &cached_state, GFP_NOFS);
	if (need_lock)
		btrfs_tree_read_unlock_blocking(eb);
	return ret;
}

/*
 * Return 0 if the superblock checksum type matches the checksum value of that
 * algorithm. Pass the raw disk superblock data.
 */
static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
				  char *raw_disk_sb)
{
	struct btrfs_super_block *disk_sb =
		(struct btrfs_super_block *)raw_disk_sb;
	u16 csum_type = btrfs_super_csum_type(disk_sb);
	int ret = 0;

	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
		u32 crc = ~(u32)0;
		const int csum_size = sizeof(crc);
		char result[csum_size];

		/*
		 * The super_block structure does not span the whole
		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
		 * is filled with zeros and is included in the checksum.
		 */
		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
		btrfs_csum_final(crc, result);

		if (memcmp(raw_disk_sb, result, csum_size))
			ret = 1;
	}

	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
		btrfs_err(fs_info, "unsupported checksum algorithm %u",
				csum_type);
		ret = 1;
	}

	return ret;
}

/*
 * helper to read a given tree block, doing retries as required when
 * the checksums don't match and we have alternate mirrors to try.
 */
static int btree_read_extent_buffer_pages(struct btrfs_root *root,
					  struct extent_buffer *eb,
					  u64 parent_transid)
{
	struct extent_io_tree *io_tree;
	int failed = 0;
	int ret;
	int num_copies = 0;
	int mirror_num = 0;
	int failed_mirror = 0;

	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
	while (1) {
		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
					       btree_get_extent, mirror_num);
		if (!ret) {
			if (!verify_parent_transid(io_tree, eb,
						   parent_transid, 0))
				break;
			else
				ret = -EIO;
		}

		/*
		 * This buffer's crc is fine, but its contents are corrupted, so
		 * there is no reason to read the other copies, they won't be
		 * any less wrong.
		 */
		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
			break;

		num_copies = btrfs_num_copies(root->fs_info,
					      eb->start, eb->len);
		if (num_copies == 1)
			break;

		if (!failed_mirror) {
			failed = 1;
			failed_mirror = eb->read_mirror;
		}

		mirror_num++;
		if (mirror_num == failed_mirror)
			mirror_num++;

		if (mirror_num > num_copies)
			break;
	}

	if (failed && !ret && failed_mirror)
		repair_eb_io_failure(root, eb, failed_mirror);

	return ret;
}

/*
 * checksum a dirty tree block before IO.  This has extra checks to make sure
 * we only fill in the checksum field in the first page of a multi-page block
 */

static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
{
	u64 start = page_offset(page);
	u64 found_start;
	struct extent_buffer *eb;

	eb = (struct extent_buffer *)page->private;
	if (page != eb->pages[0])
		return 0;

	found_start = btrfs_header_bytenr(eb);
	/*
	 * Please do not consolidate these warnings into a single if.
	 * It is useful to know what went wrong.
	 */
	if (WARN_ON(found_start != start))
		return -EUCLEAN;
	if (WARN_ON(!PageUptodate(page)))
		return -EUCLEAN;

	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);

	return csum_tree_block(fs_info, eb, 0);
}

static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
				 struct extent_buffer *eb)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	u8 fsid[BTRFS_UUID_SIZE];
	int ret = 1;

	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
	while (fs_devices) {
		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
			ret = 0;
			break;
		}
		fs_devices = fs_devices->seed;
	}
	return ret;
}

#define CORRUPT(reason, eb, root, slot)				\
	btrfs_crit(root->fs_info, "corrupt %s, %s: block=%llu,"	\
		   " root=%llu, slot=%d",			\
		   btrfs_header_level(eb) == 0 ? "leaf" : "node",\
		   reason, btrfs_header_bytenr(eb), root->objectid, slot)

static noinline int check_leaf(struct btrfs_root *root,
			       struct extent_buffer *leaf)
{
	struct btrfs_key key;
	struct btrfs_key leaf_key;
	u32 nritems = btrfs_header_nritems(leaf);
	int slot;

	/*
	 * Extent buffers from a relocation tree have a owner field that
	 * corresponds to the subvolume tree they are based on. So just from an
	 * extent buffer alone we can not find out what is the id of the
	 * corresponding subvolume tree, so we can not figure out if the extent
	 * buffer corresponds to the root of the relocation tree or not. So skip
	 * this check for relocation trees.
	 */
	if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
		struct btrfs_root *check_root;

		key.objectid = btrfs_header_owner(leaf);
		key.type = BTRFS_ROOT_ITEM_KEY;
		key.offset = (u64)-1;

		check_root = btrfs_get_fs_root(root->fs_info, &key, false);
		/*
		 * The only reason we also check NULL here is that during
		 * open_ctree() some roots has not yet been set up.
		 */
		if (!IS_ERR_OR_NULL(check_root)) {
			struct extent_buffer *eb;

			eb = btrfs_root_node(check_root);
			/* if leaf is the root, then it's fine */
			if (leaf != eb) {
				CORRUPT("non-root leaf's nritems is 0",
					leaf, check_root, 0);
				free_extent_buffer(eb);
				return -EIO;
			}
			free_extent_buffer(eb);
		}
		return 0;
	}

	if (nritems == 0)
		return 0;

	/* Check the 0 item */
	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
	    BTRFS_LEAF_DATA_SIZE(root)) {
		CORRUPT("invalid item offset size pair", leaf, root, 0);
		return -EIO;
	}

	/*
	 * Check to make sure each items keys are in the correct order and their
	 * offsets make sense.  We only have to loop through nritems-1 because
	 * we check the current slot against the next slot, which verifies the
	 * next slot's offset+size makes sense and that the current's slot
	 * offset is correct.
	 */
	for (slot = 0; slot < nritems - 1; slot++) {
		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
		btrfs_item_key_to_cpu(leaf, &key, slot + 1);

		/* Make sure the keys are in the right order */
		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
			CORRUPT("bad key order", leaf, root, slot);
			return -EIO;
		}

		/*
		 * Make sure the offset and ends are right, remember that the
		 * item data starts at the end of the leaf and grows towards the
		 * front.
		 */
		if (btrfs_item_offset_nr(leaf, slot) !=
			btrfs_item_end_nr(leaf, slot + 1)) {
			CORRUPT("slot offset bad", leaf, root, slot);
			return -EIO;
		}

		/*
		 * Check to make sure that we don't point outside of the leaf,
		 * just in case all the items are consistent to each other, but
		 * all point outside of the leaf.
		 */
		if (btrfs_item_end_nr(leaf, slot) >
		    BTRFS_LEAF_DATA_SIZE(root)) {
			CORRUPT("slot end outside of leaf", leaf, root, slot);
			return -EIO;
		}
	}

	return 0;
}

static int check_node(struct btrfs_root *root, struct extent_buffer *node)
{
	unsigned long nr = btrfs_header_nritems(node);
	struct btrfs_key key, next_key;
	int slot;
	u64 bytenr;
	int ret = 0;

	if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) {
		btrfs_crit(root->fs_info,
			   "corrupt node: block %llu root %llu nritems %lu",
			   node->start, root->objectid, nr);
		return -EIO;
	}

	for (slot = 0; slot < nr - 1; slot++) {
		bytenr = btrfs_node_blockptr(node, slot);
		btrfs_node_key_to_cpu(node, &key, slot);
		btrfs_node_key_to_cpu(node, &next_key, slot + 1);

		if (!bytenr) {
			CORRUPT("invalid item slot", node, root, slot);
			ret = -EIO;
			goto out;
		}

		if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
			CORRUPT("bad key order", node, root, slot);
			ret = -EIO;
			goto out;
		}
	}
out:
	return ret;
}

static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
				      u64 phy_offset, struct page *page,
				      u64 start, u64 end, int mirror)
{
	u64 found_start;
	int found_level;
	struct extent_buffer *eb;
	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
	struct btrfs_fs_info *fs_info = root->fs_info;
	int ret = 0;
	int reads_done;

	if (!page->private)
		goto out;

	eb = (struct extent_buffer *)page->private;

	/* the pending IO might have been the only thing that kept this buffer
	 * in memory.  Make sure we have a ref for all this other checks
	 */
	extent_buffer_get(eb);

	reads_done = atomic_dec_and_test(&eb->io_pages);
	if (!reads_done)
		goto err;

	eb->read_mirror = mirror;
	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
		ret = -EIO;
		goto err;
	}

	found_start = btrfs_header_bytenr(eb);
	if (found_start != eb->start) {
		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
			     found_start, eb->start);
		ret = -EIO;
		goto err;
	}
	if (check_tree_block_fsid(fs_info, eb)) {
		btrfs_err_rl(fs_info, "bad fsid on block %llu",
			     eb->start);
		ret = -EIO;
		goto err;
	}
	found_level = btrfs_header_level(eb);
	if (found_level >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "bad tree block level %d",
			  (int)btrfs_header_level(eb));
		ret = -EIO;
		goto err;
	}

	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
				       eb, found_level);

	ret = csum_tree_block(fs_info, eb, 1);
	if (ret)
		goto err;

	/*
	 * If this is a leaf block and it is corrupt, set the corrupt bit so
	 * that we don't try and read the other copies of this block, just
	 * return -EIO.
	 */
	if (found_level == 0 && check_leaf(root, eb)) {
		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
		ret = -EIO;
	}

	if (found_level > 0 && check_node(root, eb))
		ret = -EIO;

	if (!ret)
		set_extent_buffer_uptodate(eb);
err:
	if (reads_done &&
	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
		btree_readahead_hook(fs_info, eb, eb->start, ret);

	if (ret) {
		/*
		 * our io error hook is going to dec the io pages
		 * again, we have to make sure it has something
		 * to decrement
		 */
		atomic_inc(&eb->io_pages);
		clear_extent_buffer_uptodate(eb);
	}
	free_extent_buffer(eb);
out:
	return ret;
}

static int btree_io_failed_hook(struct page *page, int failed_mirror)
{
	struct extent_buffer *eb;

	eb = (struct extent_buffer *)page->private;
	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = failed_mirror;
	atomic_dec(&eb->io_pages);
	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
		btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
	return -EIO;	/* we fixed nothing */
}

static void end_workqueue_bio(struct bio *bio)
{
	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
	struct btrfs_fs_info *fs_info;
	struct btrfs_workqueue *wq;
	btrfs_work_func_t func;

	fs_info = end_io_wq->info;
	end_io_wq->error = bio->bi_error;

	if (bio_op(bio) == REQ_OP_WRITE) {
		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
			wq = fs_info->endio_meta_write_workers;
			func = btrfs_endio_meta_write_helper;
		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
			wq = fs_info->endio_freespace_worker;
			func = btrfs_freespace_write_helper;
		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
			wq = fs_info->endio_raid56_workers;
			func = btrfs_endio_raid56_helper;
		} else {
			wq = fs_info->endio_write_workers;
			func = btrfs_endio_write_helper;
		}
	} else {
		if (unlikely(end_io_wq->metadata ==
			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
			wq = fs_info->endio_repair_workers;
			func = btrfs_endio_repair_helper;
		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
			wq = fs_info->endio_raid56_workers;
			func = btrfs_endio_raid56_helper;
		} else if (end_io_wq->metadata) {
			wq = fs_info->endio_meta_workers;
			func = btrfs_endio_meta_helper;
		} else {
			wq = fs_info->endio_workers;
			func = btrfs_endio_helper;
		}
	}

	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
	btrfs_queue_work(wq, &end_io_wq->work);
}

int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
			enum btrfs_wq_endio_type metadata)
{
	struct btrfs_end_io_wq *end_io_wq;

	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
	if (!end_io_wq)
		return -ENOMEM;

	end_io_wq->private = bio->bi_private;
	end_io_wq->end_io = bio->bi_end_io;
	end_io_wq->info = info;
	end_io_wq->error = 0;
	end_io_wq->bio = bio;
	end_io_wq->metadata = metadata;

	bio->bi_private = end_io_wq;
	bio->bi_end_io = end_workqueue_bio;
	return 0;
}

unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
{
	unsigned long limit = min_t(unsigned long,
				    info->thread_pool_size,
				    info->fs_devices->open_devices);
	return 256 * limit;
}

static void run_one_async_start(struct btrfs_work *work)
{
	struct async_submit_bio *async;
	int ret;

	async = container_of(work, struct  async_submit_bio, work);
	ret = async->submit_bio_start(async->inode, async->bio,
				      async->mirror_num, async->bio_flags,
				      async->bio_offset);
	if (ret)
		async->error = ret;
}

static void run_one_async_done(struct btrfs_work *work)
{
	struct btrfs_fs_info *fs_info;
	struct async_submit_bio *async;
	int limit;

	async = container_of(work, struct  async_submit_bio, work);
	fs_info = BTRFS_I(async->inode)->root->fs_info;

	limit = btrfs_async_submit_limit(fs_info);
	limit = limit * 2 / 3;

	/*
	 * atomic_dec_return implies a barrier for waitqueue_active
	 */
	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
	    waitqueue_active(&fs_info->async_submit_wait))
		wake_up(&fs_info->async_submit_wait);

	/* If an error occurred we just want to clean up the bio and move on */
	if (async->error) {
		async->bio->bi_error = async->error;
		bio_endio(async->bio);
		return;
	}

	async->submit_bio_done(async->inode, async->bio, async->mirror_num,
			       async->bio_flags, async->bio_offset);
}

static void run_one_async_free(struct btrfs_work *work)
{
	struct async_submit_bio *async;

	async = container_of(work, struct  async_submit_bio, work);
	kfree(async);
}

int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
			struct bio *bio, int mirror_num,
			unsigned long bio_flags,
			u64 bio_offset,
			extent_submit_bio_hook_t *submit_bio_start,
			extent_submit_bio_hook_t *submit_bio_done)
{
	struct async_submit_bio *async;

	async = kmalloc(sizeof(*async), GFP_NOFS);
	if (!async)
		return -ENOMEM;

	async->inode = inode;
	async->bio = bio;
	async->mirror_num = mirror_num;
	async->submit_bio_start = submit_bio_start;
	async->submit_bio_done = submit_bio_done;

	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
			run_one_async_done, run_one_async_free);

	async->bio_flags = bio_flags;
	async->bio_offset = bio_offset;

	async->error = 0;

	atomic_inc(&fs_info->nr_async_submits);

	if (bio->bi_opf & REQ_SYNC)
		btrfs_set_work_high_priority(&async->work);

	btrfs_queue_work(fs_info->workers, &async->work);

	while (atomic_read(&fs_info->async_submit_draining) &&
	      atomic_read(&fs_info->nr_async_submits)) {
		wait_event(fs_info->async_submit_wait,
			   (atomic_read(&fs_info->nr_async_submits) == 0));
	}

	return 0;
}

static int btree_csum_one_bio(struct bio *bio)
{
	struct bio_vec *bvec;
	struct btrfs_root *root;
	int i, ret = 0;

	bio_for_each_segment_all(bvec, bio, i) {
		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
		if (ret)
			break;
	}

	return ret;
}

static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
				    int mirror_num, unsigned long bio_flags,
				    u64 bio_offset)
{
	/*
	 * when we're called for a write, we're already in the async
	 * submission context.  Just jump into btrfs_map_bio
	 */
	return btree_csum_one_bio(bio);
}

static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
				 int mirror_num, unsigned long bio_flags,
				 u64 bio_offset)
{
	int ret;

	/*
	 * when we're called for a write, we're already in the async
	 * submission context.  Just jump into btrfs_map_bio
	 */
	ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
	if (ret) {
		bio->bi_error = ret;
		bio_endio(bio);
	}
	return ret;
}

static int check_async_write(struct inode *inode, unsigned long bio_flags)
{
	if (bio_flags & EXTENT_BIO_TREE_LOG)
		return 0;
#ifdef CONFIG_X86
	if (static_cpu_has(X86_FEATURE_XMM4_2))
		return 0;
#endif
	return 1;
}

static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
				 int mirror_num, unsigned long bio_flags,
				 u64 bio_offset)
{
	int async = check_async_write(inode, bio_flags);
	int ret;

	if (bio_op(bio) != REQ_OP_WRITE) {
		/*
		 * called for a read, do the setup so that checksum validation
		 * can happen in the async kernel threads
		 */
		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
					  bio, BTRFS_WQ_ENDIO_METADATA);
		if (ret)
			goto out_w_error;
		ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
	} else if (!async) {
		ret = btree_csum_one_bio(bio);
		if (ret)
			goto out_w_error;
		ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
	} else {
		/*
		 * kthread helpers are used to submit writes so that
		 * checksumming can happen in parallel across all CPUs
		 */
		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
					  inode, bio, mirror_num, 0,
					  bio_offset,
					  __btree_submit_bio_start,
					  __btree_submit_bio_done);
	}

	if (ret)
		goto out_w_error;
	return 0;

out_w_error:
	bio->bi_error = ret;
	bio_endio(bio);
	return ret;
}

#ifdef CONFIG_MIGRATION
static int btree_migratepage(struct address_space *mapping,
			struct page *newpage, struct page *page,
			enum migrate_mode mode)
{
	/*
	 * we can't safely write a btree page from here,
	 * we haven't done the locking hook
	 */
	if (PageDirty(page))
		return -EAGAIN;
	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
	if (page_has_private(page) &&
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;
	return migrate_page(mapping, newpage, page, mode);
}
#endif


static int btree_writepages(struct address_space *mapping,
			    struct writeback_control *wbc)
{
	struct btrfs_fs_info *fs_info;
	int ret;

	if (wbc->sync_mode == WB_SYNC_NONE) {

		if (wbc->for_kupdate)
			return 0;

		fs_info = BTRFS_I(mapping->host)->root->fs_info;
		/* this is a bit racy, but that's ok */
		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
					     BTRFS_DIRTY_METADATA_THRESH);
		if (ret < 0)
			return 0;
	}
	return btree_write_cache_pages(mapping, wbc);
}

static int btree_readpage(struct file *file, struct page *page)
{
	struct extent_io_tree *tree;
	tree = &BTRFS_I(page->mapping->host)->io_tree;
	return extent_read_full_page(tree, page, btree_get_extent, 0);
}

static int btree_releasepage(struct page *page, gfp_t gfp_flags)
{
	if (PageWriteback(page) || PageDirty(page))
		return 0;

	return try_release_extent_buffer(page);
}

static void btree_invalidatepage(struct page *page, unsigned int offset,
				 unsigned int length)
{
	struct extent_io_tree *tree;
	tree = &BTRFS_I(page->mapping->host)->io_tree;
	extent_invalidatepage(tree, page, offset);
	btree_releasepage(page, GFP_NOFS);
	if (PagePrivate(page)) {
		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
			   "page private not zero on page %llu",
			   (unsigned long long)page_offset(page));
		ClearPagePrivate(page);
		set_page_private(page, 0);
		put_page(page);
	}
}

static int btree_set_page_dirty(struct page *page)
{
#ifdef DEBUG
	struct extent_buffer *eb;

	BUG_ON(!PagePrivate(page));
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
	BUG_ON(!atomic_read(&eb->refs));
	btrfs_assert_tree_locked(eb);
#endif
	return __set_page_dirty_nobuffers(page);
}

static const struct address_space_operations btree_aops = {
	.readpage	= btree_readpage,
	.writepages	= btree_writepages,
	.releasepage	= btree_releasepage,
	.invalidatepage = btree_invalidatepage,
#ifdef CONFIG_MIGRATION
	.migratepage	= btree_migratepage,
#endif
	.set_page_dirty = btree_set_page_dirty,
};

void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
{
	struct extent_buffer *buf = NULL;
	struct inode *btree_inode = root->fs_info->btree_inode;

	buf = btrfs_find_create_tree_block(root, bytenr);
	if (IS_ERR(buf))
		return;
	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
				 buf, WAIT_NONE, btree_get_extent, 0);
	free_extent_buffer(buf);
}

int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
			 int mirror_num, struct extent_buffer **eb)
{
	struct extent_buffer *buf = NULL;
	struct inode *btree_inode = root->fs_info->btree_inode;
	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
	int ret;

	buf = btrfs_find_create_tree_block(root, bytenr);
	if (IS_ERR(buf))
		return 0;

	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);

	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
				       btree_get_extent, mirror_num);
	if (ret) {
		free_extent_buffer(buf);
		return ret;
	}

	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
		free_extent_buffer(buf);
		return -EIO;
	} else if (extent_buffer_uptodate(buf)) {
		*eb = buf;
	} else {
		free_extent_buffer(buf);
	}
	return 0;
}

struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
					    u64 bytenr)
{
	return find_extent_buffer(fs_info, bytenr);
}

struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
						 u64 bytenr)
{
	if (btrfs_is_testing(root->fs_info))
		return alloc_test_extent_buffer(root->fs_info, bytenr,
				root->nodesize);
	return alloc_extent_buffer(root->fs_info, bytenr);
}


int btrfs_write_tree_block(struct extent_buffer *buf)
{
	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
					buf->start + buf->len - 1);
}

int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
{
	return filemap_fdatawait_range(buf->pages[0]->mapping,
				       buf->start, buf->start + buf->len - 1);
}

struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
				      u64 parent_transid)
{
	struct extent_buffer *buf = NULL;
	int ret;

	buf = btrfs_find_create_tree_block(root, bytenr);
	if (IS_ERR(buf))
		return buf;

	ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
	if (ret) {
		free_extent_buffer(buf);
		return ERR_PTR(ret);
	}
	return buf;

}

void clean_tree_block(struct btrfs_trans_handle *trans,
		      struct btrfs_fs_info *fs_info,
		      struct extent_buffer *buf)
{
	if (btrfs_header_generation(buf) ==
	    fs_info->running_transaction->transid) {
		btrfs_assert_tree_locked(buf);

		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
					     -buf->len,
					     fs_info->dirty_metadata_batch);
			/* ugh, clear_extent_buffer_dirty needs to lock the page */
			btrfs_set_lock_blocking(buf);
			clear_extent_buffer_dirty(buf);
		}
	}
}

static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
{
	struct btrfs_subvolume_writers *writers;
	int ret;

	writers = kmalloc(sizeof(*writers), GFP_NOFS);
	if (!writers)
		return ERR_PTR(-ENOMEM);

	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
	if (ret < 0) {
		kfree(writers);
		return ERR_PTR(ret);
	}

	init_waitqueue_head(&writers->wait);
	return writers;
}

static void
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
{
	percpu_counter_destroy(&writers->counter);
	kfree(writers);
}

static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
			 u64 objectid)
{
	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
	root->node = NULL;
	root->commit_root = NULL;
	root->sectorsize = sectorsize;
	root->nodesize = nodesize;
	root->stripesize = stripesize;
	root->state = 0;
	root->orphan_cleanup_state = 0;

	root->objectid = objectid;
	root->last_trans = 0;
	root->highest_objectid = 0;
	root->nr_delalloc_inodes = 0;
	root->nr_ordered_extents = 0;
	root->name = NULL;
	root->inode_tree = RB_ROOT;
	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
	root->block_rsv = NULL;
	root->orphan_block_rsv = NULL;

	INIT_LIST_HEAD(&root->dirty_list);
	INIT_LIST_HEAD(&root->root_list);
	INIT_LIST_HEAD(&root->delalloc_inodes);
	INIT_LIST_HEAD(&root->delalloc_root);
	INIT_LIST_HEAD(&root->ordered_extents);
	INIT_LIST_HEAD(&root->ordered_root);
	INIT_LIST_HEAD(&root->logged_list[0]);
	INIT_LIST_HEAD(&root->logged_list[1]);
	spin_lock_init(&root->orphan_lock);
	spin_lock_init(&root->inode_lock);
	spin_lock_init(&root->delalloc_lock);
	spin_lock_init(&root->ordered_extent_lock);
	spin_lock_init(&root->accounting_lock);
	spin_lock_init(&root->log_extents_lock[0]);
	spin_lock_init(&root->log_extents_lock[1]);
	mutex_init(&root->objectid_mutex);
	mutex_init(&root->log_mutex);
	mutex_init(&root->ordered_extent_mutex);
	mutex_init(&root->delalloc_mutex);
	init_waitqueue_head(&root->log_writer_wait);
	init_waitqueue_head(&root->log_commit_wait[0]);
	init_waitqueue_head(&root->log_commit_wait[1]);
	INIT_LIST_HEAD(&root->log_ctxs[0]);
	INIT_LIST_HEAD(&root->log_ctxs[1]);
	atomic_set(&root->log_commit[0], 0);
	atomic_set(&root->log_commit[1], 0);
	atomic_set(&root->log_writers, 0);
	atomic_set(&root->log_batch, 0);
	atomic_set(&root->orphan_inodes, 0);
	atomic_set(&root->refs, 1);
	atomic_set(&root->will_be_snapshoted, 0);
	atomic_set(&root->qgroup_meta_rsv, 0);
	root->log_transid = 0;
	root->log_transid_committed = -1;
	root->last_log_commit = 0;
	if (!dummy)
		extent_io_tree_init(&root->dirty_log_pages,
				     fs_info->btree_inode->i_mapping);

	memset(&root->root_key, 0, sizeof(root->root_key));
	memset(&root->root_item, 0, sizeof(root->root_item));
	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
	if (!dummy)
		root->defrag_trans_start = fs_info->generation;
	else
		root->defrag_trans_start = 0;
	root->root_key.objectid = objectid;
	root->anon_dev = 0;

	spin_lock_init(&root->root_item_lock);
}

static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
		gfp_t flags)
{
	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
	if (root)
		root->fs_info = fs_info;
	return root;
}

#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
/* Should only be used by the testing infrastructure */
struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
					  u32 sectorsize, u32 nodesize)
{
	struct btrfs_root *root;

	if (!fs_info)
		return ERR_PTR(-EINVAL);

	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);
	/* We don't use the stripesize in selftest, set it as sectorsize */
	__setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
			BTRFS_ROOT_TREE_OBJECTID);
	root->alloc_bytenr = 0;

	return root;
}
#endif

struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
				     struct btrfs_fs_info *fs_info,
				     u64 objectid)
{
	struct extent_buffer *leaf;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *root;
	struct btrfs_key key;
	int ret = 0;
	uuid_le uuid;

	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

	__setup_root(tree_root->nodesize, tree_root->sectorsize,
		tree_root->stripesize, root, fs_info, objectid);
	root->root_key.objectid = objectid;
	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
	root->root_key.offset = 0;

	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
	if (IS_ERR(leaf)) {
		ret = PTR_ERR(leaf);
		leaf = NULL;
		goto fail;
	}

	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
	btrfs_set_header_bytenr(leaf, leaf->start);
	btrfs_set_header_generation(leaf, trans->transid);
	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
	btrfs_set_header_owner(leaf, objectid);
	root->node = leaf;

	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
			    BTRFS_FSID_SIZE);
	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
			    btrfs_header_chunk_tree_uuid(leaf),
			    BTRFS_UUID_SIZE);
	btrfs_mark_buffer_dirty(leaf);

	root->commit_root = btrfs_root_node(root);
	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);

	root->root_item.flags = 0;
	root->root_item.byte_limit = 0;
	btrfs_set_root_bytenr(&root->root_item, leaf->start);
	btrfs_set_root_generation(&root->root_item, trans->transid);
	btrfs_set_root_level(&root->root_item, 0);
	btrfs_set_root_refs(&root->root_item, 1);
	btrfs_set_root_used(&root->root_item, leaf->len);
	btrfs_set_root_last_snapshot(&root->root_item, 0);
	btrfs_set_root_dirid(&root->root_item, 0);
	uuid_le_gen(&uuid);
	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
	root->root_item.drop_level = 0;

	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
	if (ret)
		goto fail;

	btrfs_tree_unlock(leaf);

	return root;

fail:
	if (leaf) {
		btrfs_tree_unlock(leaf);
		free_extent_buffer(root->commit_root);
		free_extent_buffer(leaf);
	}
	kfree(root);

	return ERR_PTR(ret);
}

static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
					 struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct extent_buffer *leaf;

	root = btrfs_alloc_root(fs_info, GFP_NOFS);
	if (!root)
		return ERR_PTR(-ENOMEM);

	__setup_root(tree_root->nodesize, tree_root->sectorsize,
		     tree_root->stripesize, root, fs_info,
		     BTRFS_TREE_LOG_OBJECTID);

	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;

	/*
	 * DON'T set REF_COWS for log trees
	 *
	 * log trees do not get reference counted because they go away
	 * before a real commit is actually done.  They do store pointers
	 * to file data extents, and those reference counts still get
	 * updated (along with back refs to the log tree).
	 */

	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
			NULL, 0, 0, 0);
	if (IS_ERR(leaf)) {
		kfree(root);
		return ERR_CAST(leaf);
	}

	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
	btrfs_set_header_bytenr(leaf, leaf->start);
	btrfs_set_header_generation(leaf, trans->transid);
	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
	root->node = leaf;

	write_extent_buffer(root->node, root->fs_info->fsid,
			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
	btrfs_mark_buffer_dirty(root->node);
	btrfs_tree_unlock(root->node);
	return root;
}

int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *log_root;

	log_root = alloc_log_tree(trans, fs_info);
	if (IS_ERR(log_root))
		return PTR_ERR(log_root);
	WARN_ON(fs_info->log_root_tree);
	fs_info->log_root_tree = log_root;
	return 0;
}

int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root)
{
	struct btrfs_root *log_root;
	struct btrfs_inode_item *inode_item;

	log_root = alloc_log_tree(trans, root->fs_info);
	if (IS_ERR(log_root))
		return PTR_ERR(log_root);

	log_root->last_trans = trans->transid;
	log_root->root_key.offset = root->root_key.objectid;

	inode_item = &log_root->root_item.inode;
	btrfs_set_stack_inode_generation(inode_item, 1);
	btrfs_set_stack_inode_size(inode_item, 3);
	btrfs_set_stack_inode_nlink(inode_item, 1);
	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);

	btrfs_set_root_node(&log_root->root_item, log_root->node);

	WARN_ON(root->log_root);
	root->log_root = log_root;
	root->log_transid = 0;
	root->log_transid_committed = -1;
	root->last_log_commit = 0;
	return 0;
}

static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
					       struct btrfs_key *key)
{
	struct btrfs_root *root;
	struct btrfs_fs_info *fs_info = tree_root->fs_info;
	struct btrfs_path *path;
	u64 generation;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return ERR_PTR(-ENOMEM);

	root = btrfs_alloc_root(fs_info, GFP_NOFS);
	if (!root) {
		ret = -ENOMEM;
		goto alloc_fail;
	}

	__setup_root(tree_root->nodesize, tree_root->sectorsize,
		tree_root->stripesize, root, fs_info, key->objectid);

	ret = btrfs_find_root(tree_root, key, path,
			      &root->root_item, &root->root_key);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		goto find_fail;
	}

	generation = btrfs_root_generation(&root->root_item);
	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
				     generation);
	if (IS_ERR(root->node)) {
		ret = PTR_ERR(root->node);
		goto find_fail;
	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
		ret = -EIO;
		free_extent_buffer(root->node);
		goto find_fail;
	}
	root->commit_root = btrfs_root_node(root);
out:
	btrfs_free_path(path);
	return root;

find_fail:
	kfree(root);
alloc_fail:
	root = ERR_PTR(ret);
	goto out;
}

struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
				      struct btrfs_key *location)
{
	struct btrfs_root *root;

	root = btrfs_read_tree_root(tree_root, location);
	if (IS_ERR(root))
		return root;

	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
		btrfs_check_and_init_root_item(&root->root_item);
	}

	return root;
}

int btrfs_init_fs_root(struct btrfs_root *root)
{
	int ret;
	struct btrfs_subvolume_writers *writers;

	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
					GFP_NOFS);
	if (!root->free_ino_pinned || !root->free_ino_ctl) {
		ret = -ENOMEM;
		goto fail;
	}

	writers = btrfs_alloc_subvolume_writers();
	if (IS_ERR(writers)) {
		ret = PTR_ERR(writers);
		goto fail;
	}
	root->subv_writers = writers;

	btrfs_init_free_ino_ctl(root);
	spin_lock_init(&root->ino_cache_lock);
	init_waitqueue_head(&root->ino_cache_wait);

	ret = get_anon_bdev(&root->anon_dev);
	if (ret)
		goto fail;

	mutex_lock(&root->objectid_mutex);
	ret = btrfs_find_highest_objectid(root,
					&root->highest_objectid);
	if (ret) {
		mutex_unlock(&root->objectid_mutex);
		goto fail;
	}

	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);

	mutex_unlock(&root->objectid_mutex);

	return 0;
fail:
	/* the caller is responsible to call free_fs_root */
	return ret;
}

struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
					u64 root_id)
{
	struct btrfs_root *root;

	spin_lock(&fs_info->fs_roots_radix_lock);
	root = radix_tree_lookup(&fs_info->fs_roots_radix,
				 (unsigned long)root_id);
	spin_unlock(&fs_info->fs_roots_radix_lock);
	return root;
}

int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
			 struct btrfs_root *root)
{
	int ret;

	ret = radix_tree_preload(GFP_NOFS);
	if (ret)
		return ret;

	spin_lock(&fs_info->fs_roots_radix_lock);
	ret = radix_tree_insert(&fs_info->fs_roots_radix,
				(unsigned long)root->root_key.objectid,
				root);
	if (ret == 0)
		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
	spin_unlock(&fs_info->fs_roots_radix_lock);
	radix_tree_preload_end();

	return ret;
}

struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
				     struct btrfs_key *location,
				     bool check_ref)
{
	struct btrfs_root *root;
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret;

	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
		return fs_info->tree_root;
	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
		return fs_info->extent_root;
	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
		return fs_info->chunk_root;
	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
		return fs_info->dev_root;
	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
		return fs_info->csum_root;
	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
		return fs_info->quota_root ? fs_info->quota_root :
					     ERR_PTR(-ENOENT);
	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
		return fs_info->uuid_root ? fs_info->uuid_root :
					    ERR_PTR(-ENOENT);
	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
		return fs_info->free_space_root ? fs_info->free_space_root :
						  ERR_PTR(-ENOENT);
again:
	root = btrfs_lookup_fs_root(fs_info, location->objectid);
	if (root) {
		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
			return ERR_PTR(-ENOENT);
		return root;
	}

	root = btrfs_read_fs_root(fs_info->tree_root, location);
	if (IS_ERR(root))
		return root;

	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
		ret = -ENOENT;
		goto fail;
	}

	ret = btrfs_init_fs_root(root);
	if (ret)
		goto fail;

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto fail;
	}
	key.objectid = BTRFS_ORPHAN_OBJECTID;
	key.type = BTRFS_ORPHAN_ITEM_KEY;
	key.offset = location->objectid;

	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
	btrfs_free_path(path);
	if (ret < 0)
		goto fail;
	if (ret == 0)
		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);

	ret = btrfs_insert_fs_root(fs_info, root);
	if (ret) {
		if (ret == -EEXIST) {
			free_fs_root(root);
			goto again;
		}
		goto fail;
	}
	return root;
fail:
	free_fs_root(root);
	return ERR_PTR(ret);
}

static int btrfs_congested_fn(void *congested_data, int bdi_bits)
{
	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
	int ret = 0;
	struct btrfs_device *device;
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
		if (!device->bdev)
			continue;
		bdi = blk_get_backing_dev_info(device->bdev);
		if (bdi_congested(bdi, bdi_bits)) {
			ret = 1;
			break;
		}
	}
	rcu_read_unlock();
	return ret;
}

static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
{
	int err;

	err = bdi_setup_and_register(bdi, "btrfs");
	if (err)
		return err;

	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
	bdi->congested_fn	= btrfs_congested_fn;
	bdi->congested_data	= info;
	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
	return 0;
}

/*
 * called by the kthread helper functions to finally call the bio end_io
 * functions.  This is where read checksum verification actually happens
 */
static void end_workqueue_fn(struct btrfs_work *work)
{
	struct bio *bio;
	struct btrfs_end_io_wq *end_io_wq;

	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
	bio = end_io_wq->bio;

	bio->bi_error = end_io_wq->error;
	bio->bi_private = end_io_wq->private;
	bio->bi_end_io = end_io_wq->end_io;
	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
	bio_endio(bio);
}

static int cleaner_kthread(void *arg)
{
	struct btrfs_root *root = arg;
	int again;
	struct btrfs_trans_handle *trans;

	do {
		again = 0;

		/* Make the cleaner go to sleep early. */
		if (btrfs_need_cleaner_sleep(root))
			goto sleep;

		/*
		 * Do not do anything if we might cause open_ctree() to block
		 * before we have finished mounting the filesystem.
		 */
		if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags))
			goto sleep;

		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
			goto sleep;

		/*
		 * Avoid the problem that we change the status of the fs
		 * during the above check and trylock.
		 */
		if (btrfs_need_cleaner_sleep(root)) {
			mutex_unlock(&root->fs_info->cleaner_mutex);
			goto sleep;
		}

		mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
		btrfs_run_delayed_iputs(root);
		mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);

		again = btrfs_clean_one_deleted_snapshot(root);
		mutex_unlock(&root->fs_info->cleaner_mutex);

		/*
		 * The defragger has dealt with the R/O remount and umount,
		 * needn't do anything special here.
		 */
		btrfs_run_defrag_inodes(root->fs_info);

		/*
		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
		 * with relocation (btrfs_relocate_chunk) and relocation
		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
		 * unused block groups.
		 */
		btrfs_delete_unused_bgs(root->fs_info);
sleep:
		if (!again) {
			set_current_state(TASK_INTERRUPTIBLE);
			if (!kthread_should_stop())
				schedule();
			__set_current_state(TASK_RUNNING);
		}
	} while (!kthread_should_stop());

	/*
	 * Transaction kthread is stopped before us and wakes us up.
	 * However we might have started a new transaction and COWed some
	 * tree blocks when deleting unused block groups for example. So
	 * make sure we commit the transaction we started to have a clean
	 * shutdown when evicting the btree inode - if it has dirty pages
	 * when we do the final iput() on it, eviction will trigger a
	 * writeback for it which will fail with null pointer dereferences
	 * since work queues and other resources were already released and
	 * destroyed by the time the iput/eviction/writeback is made.
	 */
	trans = btrfs_attach_transaction(root);
	if (IS_ERR(trans)) {
		if (PTR_ERR(trans) != -ENOENT)
			btrfs_err(root->fs_info,
				  "cleaner transaction attach returned %ld",
				  PTR_ERR(trans));
	} else {
		int ret;

		ret = btrfs_commit_transaction(trans, root);
		if (ret)
			btrfs_err(root->fs_info,
				  "cleaner open transaction commit returned %d",
				  ret);
	}

	return 0;
}

static int transaction_kthread(void *arg)
{
	struct btrfs_root *root = arg;
	struct btrfs_trans_handle *trans;
	struct btrfs_transaction *cur;
	u64 transid;
	unsigned long now;
	unsigned long delay;
	bool cannot_commit;

	do {
		cannot_commit = false;
		delay = HZ * root->fs_info->commit_interval;
		mutex_lock(&root->fs_info->transaction_kthread_mutex);

		spin_lock(&root->fs_info->trans_lock);
		cur = root->fs_info->running_transaction;
		if (!cur) {
			spin_unlock(&root->fs_info->trans_lock);
			goto sleep;
		}

		now = get_seconds();
		if (cur->state < TRANS_STATE_BLOCKED &&
		    (now < cur->start_time ||
		     now - cur->start_time < root->fs_info->commit_interval)) {
			spin_unlock(&root->fs_info->trans_lock);
			delay = HZ * 5;
			goto sleep;
		}
		transid = cur->transid;
		spin_unlock(&root->fs_info->trans_lock);

		/* If the file system is aborted, this will always fail. */
		trans = btrfs_attach_transaction(root);
		if (IS_ERR(trans)) {
			if (PTR_ERR(trans) != -ENOENT)
				cannot_commit = true;
			goto sleep;
		}
		if (transid == trans->transid) {
			btrfs_commit_transaction(trans, root);
		} else {
			btrfs_end_transaction(trans, root);
		}
sleep:
		wake_up_process(root->fs_info->cleaner_kthread);
		mutex_unlock(&root->fs_info->transaction_kthread_mutex);

		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
				      &root->fs_info->fs_state)))
			btrfs_cleanup_transaction(root);
		set_current_state(TASK_INTERRUPTIBLE);
		if (!kthread_should_stop() &&
				(!btrfs_transaction_blocked(root->fs_info) ||
				 cannot_commit))
			schedule_timeout(delay);
		__set_current_state(TASK_RUNNING);
	} while (!kthread_should_stop());
	return 0;
}

/*
 * this will find the highest generation in the array of
 * root backups.  The index of the highest array is returned,
 * or -1 if we can't find anything.
 *
 * We check to make sure the array is valid by comparing the
 * generation of the latest  root in the array with the generation
 * in the super block.  If they don't match we pitch it.
 */
static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
{
	u64 cur;
	int newest_index = -1;
	struct btrfs_root_backup *root_backup;
	int i;

	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
		root_backup = info->super_copy->super_roots + i;
		cur = btrfs_backup_tree_root_gen(root_backup);
		if (cur == newest_gen)
			newest_index = i;
	}

	/* check to see if we actually wrapped around */
	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
		root_backup = info->super_copy->super_roots;
		cur = btrfs_backup_tree_root_gen(root_backup);
		if (cur == newest_gen)
			newest_index = 0;
	}
	return newest_index;
}


/*
 * find the oldest backup so we know where to store new entries
 * in the backup array.  This will set the backup_root_index
 * field in the fs_info struct
 */
static void find_oldest_super_backup(struct btrfs_fs_info *info,
				     u64 newest_gen)
{
	int newest_index = -1;

	newest_index = find_newest_super_backup(info, newest_gen);
	/* if there was garbage in there, just move along */
	if (newest_index == -1) {
		info->backup_root_index = 0;
	} else {
		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
	}
}

/*
 * copy all the root pointers into the super backup array.
 * this will bump the backup pointer by one when it is
 * done
 */
static void backup_super_roots(struct btrfs_fs_info *info)
{
	int next_backup;
	struct btrfs_root_backup *root_backup;
	int last_backup;

	next_backup = info->backup_root_index;
	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
		BTRFS_NUM_BACKUP_ROOTS;

	/*
	 * just overwrite the last backup if we're at the same generation
	 * this happens only at umount
	 */
	root_backup = info->super_for_commit->super_roots + last_backup;
	if (btrfs_backup_tree_root_gen(root_backup) ==
	    btrfs_header_generation(info->tree_root->node))
		next_backup = last_backup;

	root_backup = info->super_for_commit->super_roots + next_backup;

	/*
	 * make sure all of our padding and empty slots get zero filled
	 * regardless of which ones we use today
	 */
	memset(root_backup, 0, sizeof(*root_backup));

	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;

	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
	btrfs_set_backup_tree_root_gen(root_backup,
			       btrfs_header_generation(info->tree_root->node));

	btrfs_set_backup_tree_root_level(root_backup,
			       btrfs_header_level(info->tree_root->node));

	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
	btrfs_set_backup_chunk_root_gen(root_backup,
			       btrfs_header_generation(info->chunk_root->node));
	btrfs_set_backup_chunk_root_level(root_backup,
			       btrfs_header_level(info->chunk_root->node));

	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
	btrfs_set_backup_extent_root_gen(root_backup,
			       btrfs_header_generation(info->extent_root->node));
	btrfs_set_backup_extent_root_level(root_backup,
			       btrfs_header_level(info->extent_root->node));

	/*
	 * we might commit during log recovery, which happens before we set
	 * the fs_root.  Make sure it is valid before we fill it in.
	 */
	if (info->fs_root && info->fs_root->node) {
		btrfs_set_backup_fs_root(root_backup,
					 info->fs_root->node->start);
		btrfs_set_backup_fs_root_gen(root_backup,
			       btrfs_header_generation(info->fs_root->node));
		btrfs_set_backup_fs_root_level(root_backup,
			       btrfs_header_level(info->fs_root->node));
	}

	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
	btrfs_set_backup_dev_root_gen(root_backup,
			       btrfs_header_generation(info->dev_root->node));
	btrfs_set_backup_dev_root_level(root_backup,
				       btrfs_header_level(info->dev_root->node));

	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
	btrfs_set_backup_csum_root_gen(root_backup,
			       btrfs_header_generation(info->csum_root->node));
	btrfs_set_backup_csum_root_level(root_backup,
			       btrfs_header_level(info->csum_root->node));

	btrfs_set_backup_total_bytes(root_backup,
			     btrfs_super_total_bytes(info->super_copy));
	btrfs_set_backup_bytes_used(root_backup,
			     btrfs_super_bytes_used(info->super_copy));
	btrfs_set_backup_num_devices(root_backup,
			     btrfs_super_num_devices(info->super_copy));

	/*
	 * if we don't copy this out to the super_copy, it won't get remembered
	 * for the next commit
	 */
	memcpy(&info->super_copy->super_roots,
	       &info->super_for_commit->super_roots,
	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
}

/*
 * this copies info out of the root backup array and back into
 * the in-memory super block.  It is meant to help iterate through
 * the array, so you send it the number of backups you've already
 * tried and the last backup index you used.
 *
 * this returns -1 when it has tried all the backups
 */
static noinline int next_root_backup(struct btrfs_fs_info *info,
				     struct btrfs_super_block *super,
				     int *num_backups_tried, int *backup_index)
{
	struct btrfs_root_backup *root_backup;
	int newest = *backup_index;

	if (*num_backups_tried == 0) {
		u64 gen = btrfs_super_generation(super);

		newest = find_newest_super_backup(info, gen);
		if (newest == -1)
			return -1;

		*backup_index = newest;
		*num_backups_tried = 1;
	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
		/* we've tried all the backups, all done */
		return -1;
	} else {
		/* jump to the next oldest backup */
		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
			BTRFS_NUM_BACKUP_ROOTS;
		*backup_index = newest;
		*num_backups_tried += 1;
	}
	root_backup = super->super_roots + newest;

	btrfs_set_super_generation(super,
				   btrfs_backup_tree_root_gen(root_backup));
	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
	btrfs_set_super_root_level(super,
				   btrfs_backup_tree_root_level(root_backup));
	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));

	/*
	 * fixme: the total bytes and num_devices need to match or we should
	 * need a fsck
	 */
	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
	return 0;
}

/* helper to cleanup workers */
static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
{
	btrfs_destroy_workqueue(fs_info->fixup_workers);
	btrfs_destroy_workqueue(fs_info->delalloc_workers);
	btrfs_destroy_workqueue(fs_info->workers);
	btrfs_destroy_workqueue(fs_info->endio_workers);
	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
	btrfs_destroy_workqueue(fs_info->rmw_workers);
	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
	btrfs_destroy_workqueue(fs_info->endio_write_workers);
	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
	btrfs_destroy_workqueue(fs_info->submit_workers);
	btrfs_destroy_workqueue(fs_info->delayed_workers);
	btrfs_destroy_workqueue(fs_info->caching_workers);
	btrfs_destroy_workqueue(fs_info->readahead_workers);
	btrfs_destroy_workqueue(fs_info->flush_workers);
	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
	btrfs_destroy_workqueue(fs_info->extent_workers);
}

static void free_root_extent_buffers(struct btrfs_root *root)
{
	if (root) {
		free_extent_buffer(root->node);
		free_extent_buffer(root->commit_root);
		root->node = NULL;
		root->commit_root = NULL;
	}
}

/* helper to cleanup tree roots */
static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
{
	free_root_extent_buffers(info->tree_root);

	free_root_extent_buffers(info->dev_root);
	free_root_extent_buffers(info->extent_root);
	free_root_extent_buffers(info->csum_root);
	free_root_extent_buffers(info->quota_root);
	free_root_extent_buffers(info->uuid_root);
	if (chunk_root)
		free_root_extent_buffers(info->chunk_root);
	free_root_extent_buffers(info->free_space_root);
}

void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
{
	int ret;
	struct btrfs_root *gang[8];
	int i;

	while (!list_empty(&fs_info->dead_roots)) {
		gang[0] = list_entry(fs_info->dead_roots.next,
				     struct btrfs_root, root_list);
		list_del(&gang[0]->root_list);

		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
		} else {
			free_extent_buffer(gang[0]->node);
			free_extent_buffer(gang[0]->commit_root);
			btrfs_put_fs_root(gang[0]);
		}
	}

	while (1) {
		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, 0,
					     ARRAY_SIZE(gang));
		if (!ret)
			break;
		for (i = 0; i < ret; i++)
			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
	}

	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
		btrfs_free_log_root_tree(NULL, fs_info);
		btrfs_destroy_pinned_extent(fs_info->tree_root,
					    fs_info->pinned_extents);
	}
}

static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
{
	mutex_init(&fs_info->scrub_lock);
	atomic_set(&fs_info->scrubs_running, 0);
	atomic_set(&fs_info->scrub_pause_req, 0);
	atomic_set(&fs_info->scrubs_paused, 0);
	atomic_set(&fs_info->scrub_cancel_req, 0);
	init_waitqueue_head(&fs_info->scrub_pause_wait);
	fs_info->scrub_workers_refcnt = 0;
}

static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
{
	spin_lock_init(&fs_info->balance_lock);
	mutex_init(&fs_info->balance_mutex);
	atomic_set(&fs_info->balance_running, 0);
	atomic_set(&fs_info->balance_pause_req, 0);
	atomic_set(&fs_info->balance_cancel_req, 0);
	fs_info->balance_ctl = NULL;
	init_waitqueue_head(&fs_info->balance_wait_q);
}

static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
				   struct btrfs_root *tree_root)
{
	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
	set_nlink(fs_info->btree_inode, 1);
	/*
	 * we set the i_size on the btree inode to the max possible int.
	 * the real end of the address space is determined by all of
	 * the devices in the system
	 */
	fs_info->btree_inode->i_size = OFFSET_MAX;
	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;

	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
			     fs_info->btree_inode->i_mapping);
	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);

	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;

	BTRFS_I(fs_info->btree_inode)->root = tree_root;
	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
	       sizeof(struct btrfs_key));
	set_bit(BTRFS_INODE_DUMMY,
		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
	btrfs_insert_inode_hash(fs_info->btree_inode);
}

static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
{
	fs_info->dev_replace.lock_owner = 0;
	atomic_set(&fs_info->dev_replace.nesting_level, 0);
	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
	rwlock_init(&fs_info->dev_replace.lock);
	atomic_set(&fs_info->dev_replace.read_locks, 0);
	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
	init_waitqueue_head(&fs_info->replace_wait);
	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
}

static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
{
	spin_lock_init(&fs_info->qgroup_lock);
	mutex_init(&fs_info->qgroup_ioctl_lock);
	fs_info->qgroup_tree = RB_ROOT;
	fs_info->qgroup_op_tree = RB_ROOT;
	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
	fs_info->qgroup_seq = 1;
	fs_info->qgroup_ulist = NULL;
	fs_info->qgroup_rescan_running = false;
	mutex_init(&fs_info->qgroup_rescan_lock);
}

static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
		struct btrfs_fs_devices *fs_devices)
{
	int max_active = fs_info->thread_pool_size;
	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;

	fs_info->workers =
		btrfs_alloc_workqueue(fs_info, "worker",
				      flags | WQ_HIGHPRI, max_active, 16);

	fs_info->delalloc_workers =
		btrfs_alloc_workqueue(fs_info, "delalloc",
				      flags, max_active, 2);

	fs_info->flush_workers =
		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
				      flags, max_active, 0);

	fs_info->caching_workers =
		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);

	/*
	 * a higher idle thresh on the submit workers makes it much more
	 * likely that bios will be send down in a sane order to the
	 * devices
	 */
	fs_info->submit_workers =
		btrfs_alloc_workqueue(fs_info, "submit", flags,
				      min_t(u64, fs_devices->num_devices,
					    max_active), 64);

	fs_info->fixup_workers =
		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);

	/*
	 * endios are largely parallel and should have a very
	 * low idle thresh
	 */
	fs_info->endio_workers =
		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
	fs_info->endio_meta_workers =
		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
				      max_active, 4);
	fs_info->endio_meta_write_workers =
		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
				      max_active, 2);
	fs_info->endio_raid56_workers =
		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
				      max_active, 4);
	fs_info->endio_repair_workers =
		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
	fs_info->rmw_workers =
		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
	fs_info->endio_write_workers =
		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
				      max_active, 2);
	fs_info->endio_freespace_worker =
		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
				      max_active, 0);
	fs_info->delayed_workers =
		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
				      max_active, 0);
	fs_info->readahead_workers =
		btrfs_alloc_workqueue(fs_info, "readahead", flags,
				      max_active, 2);
	fs_info->qgroup_rescan_workers =
		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
	fs_info->extent_workers =
		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
				      min_t(u64, fs_devices->num_devices,
					    max_active), 8);

	if (!(fs_info->workers && fs_info->delalloc_workers &&
	      fs_info->submit_workers && fs_info->flush_workers &&
	      fs_info->endio_workers && fs_info->endio_meta_workers &&
	      fs_info->endio_meta_write_workers &&
	      fs_info->endio_repair_workers &&
	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
	      fs_info->caching_workers && fs_info->readahead_workers &&
	      fs_info->fixup_workers && fs_info->delayed_workers &&
	      fs_info->extent_workers &&
	      fs_info->qgroup_rescan_workers)) {
		return -ENOMEM;
	}

	return 0;
}

static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
			    struct btrfs_fs_devices *fs_devices)
{
	int ret;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *log_tree_root;
	struct btrfs_super_block *disk_super = fs_info->super_copy;
	u64 bytenr = btrfs_super_log_root(disk_super);

	if (fs_devices->rw_devices == 0) {
		btrfs_warn(fs_info, "log replay required on RO media");
		return -EIO;
	}

	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
	if (!log_tree_root)
		return -ENOMEM;

	__setup_root(tree_root->nodesize, tree_root->sectorsize,
			tree_root->stripesize, log_tree_root, fs_info,
			BTRFS_TREE_LOG_OBJECTID);

	log_tree_root->node = read_tree_block(tree_root, bytenr,
			fs_info->generation + 1);
	if (IS_ERR(log_tree_root->node)) {
		btrfs_warn(fs_info, "failed to read log tree");
		ret = PTR_ERR(log_tree_root->node);
		kfree(log_tree_root);
		return ret;
	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
		btrfs_err(fs_info, "failed to read log tree");
		free_extent_buffer(log_tree_root->node);
		kfree(log_tree_root);
		return -EIO;
	}
	/* returns with log_tree_root freed on success */
	ret = btrfs_recover_log_trees(log_tree_root);
	if (ret) {
		btrfs_handle_fs_error(tree_root->fs_info, ret,
			    "Failed to recover log tree");
		free_extent_buffer(log_tree_root->node);
		kfree(log_tree_root);
		return ret;
	}

	if (fs_info->sb->s_flags & MS_RDONLY) {
		ret = btrfs_commit_super(tree_root);
		if (ret)
			return ret;
	}

	return 0;
}

static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
			    struct btrfs_root *tree_root)
{
	struct btrfs_root *root;
	struct btrfs_key location;
	int ret;

	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
	location.type = BTRFS_ROOT_ITEM_KEY;
	location.offset = 0;

	root = btrfs_read_tree_root(tree_root, &location);
	if (IS_ERR(root))
		return PTR_ERR(root);
	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
	fs_info->extent_root = root;

	location.objectid = BTRFS_DEV_TREE_OBJECTID;
	root = btrfs_read_tree_root(tree_root, &location);
	if (IS_ERR(root))
		return PTR_ERR(root);
	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
	fs_info->dev_root = root;
	btrfs_init_devices_late(fs_info);

	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
	root = btrfs_read_tree_root(tree_root, &location);
	if (IS_ERR(root))
		return PTR_ERR(root);
	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
	fs_info->csum_root = root;

	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
	root = btrfs_read_tree_root(tree_root, &location);
	if (!IS_ERR(root)) {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
		fs_info->quota_root = root;
	}

	location.objectid = BTRFS_UUID_TREE_OBJECTID;
	root = btrfs_read_tree_root(tree_root, &location);
	if (IS_ERR(root)) {
		ret = PTR_ERR(root);
		if (ret != -ENOENT)
			return ret;
	} else {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->uuid_root = root;
	}

	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
		root = btrfs_read_tree_root(tree_root, &location);
		if (IS_ERR(root))
			return PTR_ERR(root);
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->free_space_root = root;
	}

	return 0;
}

int open_ctree(struct super_block *sb,
	       struct btrfs_fs_devices *fs_devices,
	       char *options)
{
	u32 sectorsize;
	u32 nodesize;
	u32 stripesize;
	u64 generation;
	u64 features;
	struct btrfs_key location;
	struct buffer_head *bh;
	struct btrfs_super_block *disk_super;
	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
	struct btrfs_root *tree_root;
	struct btrfs_root *chunk_root;
	int ret;
	int err = -EINVAL;
	int num_backups_tried = 0;
	int backup_index = 0;
	int max_active;
	int clear_free_space_tree = 0;

	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
	if (!tree_root || !chunk_root) {
		err = -ENOMEM;
		goto fail;
	}

	ret = init_srcu_struct(&fs_info->subvol_srcu);
	if (ret) {
		err = ret;
		goto fail;
	}

	ret = setup_bdi(fs_info, &fs_info->bdi);
	if (ret) {
		err = ret;
		goto fail_srcu;
	}

	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
	if (ret) {
		err = ret;
		goto fail_bdi;
	}
	fs_info->dirty_metadata_batch = PAGE_SIZE *
					(1 + ilog2(nr_cpu_ids));

	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
	if (ret) {
		err = ret;
		goto fail_dirty_metadata_bytes;
	}

	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
	if (ret) {
		err = ret;
		goto fail_delalloc_bytes;
	}

	fs_info->btree_inode = new_inode(sb);
	if (!fs_info->btree_inode) {
		err = -ENOMEM;
		goto fail_bio_counter;
	}

	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);

	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
	INIT_LIST_HEAD(&fs_info->trans_list);
	INIT_LIST_HEAD(&fs_info->dead_roots);
	INIT_LIST_HEAD(&fs_info->delayed_iputs);
	INIT_LIST_HEAD(&fs_info->delalloc_roots);
	INIT_LIST_HEAD(&fs_info->caching_block_groups);
	spin_lock_init(&fs_info->delalloc_root_lock);
	spin_lock_init(&fs_info->trans_lock);
	spin_lock_init(&fs_info->fs_roots_radix_lock);
	spin_lock_init(&fs_info->delayed_iput_lock);
	spin_lock_init(&fs_info->defrag_inodes_lock);
	spin_lock_init(&fs_info->free_chunk_lock);
	spin_lock_init(&fs_info->tree_mod_seq_lock);
	spin_lock_init(&fs_info->super_lock);
	spin_lock_init(&fs_info->qgroup_op_lock);
	spin_lock_init(&fs_info->buffer_lock);
	spin_lock_init(&fs_info->unused_bgs_lock);
	rwlock_init(&fs_info->tree_mod_log_lock);
	mutex_init(&fs_info->unused_bg_unpin_mutex);
	mutex_init(&fs_info->delete_unused_bgs_mutex);
	mutex_init(&fs_info->reloc_mutex);
	mutex_init(&fs_info->delalloc_root_mutex);
	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
	seqlock_init(&fs_info->profiles_lock);

	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
	INIT_LIST_HEAD(&fs_info->space_info);
	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
	INIT_LIST_HEAD(&fs_info->unused_bgs);
	btrfs_mapping_init(&fs_info->mapping_tree);
	btrfs_init_block_rsv(&fs_info->global_block_rsv,
			     BTRFS_BLOCK_RSV_GLOBAL);
	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
			     BTRFS_BLOCK_RSV_DELALLOC);
	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
			     BTRFS_BLOCK_RSV_DELOPS);
	atomic_set(&fs_info->nr_async_submits, 0);
	atomic_set(&fs_info->async_delalloc_pages, 0);
	atomic_set(&fs_info->async_submit_draining, 0);
	atomic_set(&fs_info->nr_async_bios, 0);
	atomic_set(&fs_info->defrag_running, 0);
	atomic_set(&fs_info->qgroup_op_seq, 0);
	atomic_set(&fs_info->reada_works_cnt, 0);
	atomic64_set(&fs_info->tree_mod_seq, 0);
	fs_info->fs_frozen = 0;
	fs_info->sb = sb;
	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
	fs_info->metadata_ratio = 0;
	fs_info->defrag_inodes = RB_ROOT;
	fs_info->free_chunk_space = 0;
	fs_info->tree_mod_log = RB_ROOT;
	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
	/* readahead state */
	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
	spin_lock_init(&fs_info->reada_lock);

	fs_info->thread_pool_size = min_t(unsigned long,
					  num_online_cpus() + 2, 8);

	INIT_LIST_HEAD(&fs_info->ordered_roots);
	spin_lock_init(&fs_info->ordered_root_lock);
	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
					GFP_KERNEL);
	if (!fs_info->delayed_root) {
		err = -ENOMEM;
		goto fail_iput;
	}
	btrfs_init_delayed_root(fs_info->delayed_root);

	btrfs_init_scrub(fs_info);
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
	fs_info->check_integrity_print_mask = 0;
#endif
	btrfs_init_balance(fs_info);
	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);

	sb->s_blocksize = 4096;
	sb->s_blocksize_bits = blksize_bits(4096);
	sb->s_bdi = &fs_info->bdi;

	btrfs_init_btree_inode(fs_info, tree_root);

	spin_lock_init(&fs_info->block_group_cache_lock);
	fs_info->block_group_cache_tree = RB_ROOT;
	fs_info->first_logical_byte = (u64)-1;

	extent_io_tree_init(&fs_info->freed_extents[0],
			     fs_info->btree_inode->i_mapping);
	extent_io_tree_init(&fs_info->freed_extents[1],
			     fs_info->btree_inode->i_mapping);
	fs_info->pinned_extents = &fs_info->freed_extents[0];
	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);

	mutex_init(&fs_info->ordered_operations_mutex);
	mutex_init(&fs_info->tree_log_mutex);
	mutex_init(&fs_info->chunk_mutex);
	mutex_init(&fs_info->transaction_kthread_mutex);
	mutex_init(&fs_info->cleaner_mutex);
	mutex_init(&fs_info->volume_mutex);
	mutex_init(&fs_info->ro_block_group_mutex);
	init_rwsem(&fs_info->commit_root_sem);
	init_rwsem(&fs_info->cleanup_work_sem);
	init_rwsem(&fs_info->subvol_sem);
	sema_init(&fs_info->uuid_tree_rescan_sem, 1);

	btrfs_init_dev_replace_locks(fs_info);
	btrfs_init_qgroup(fs_info);

	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);

	init_waitqueue_head(&fs_info->transaction_throttle);
	init_waitqueue_head(&fs_info->transaction_wait);
	init_waitqueue_head(&fs_info->transaction_blocked_wait);
	init_waitqueue_head(&fs_info->async_submit_wait);

	INIT_LIST_HEAD(&fs_info->pinned_chunks);

	ret = btrfs_alloc_stripe_hash_table(fs_info);
	if (ret) {
		err = ret;
		goto fail_alloc;
	}

	__setup_root(4096, 4096, 4096, tree_root,
		     fs_info, BTRFS_ROOT_TREE_OBJECTID);

	invalidate_bdev(fs_devices->latest_bdev);

	/*
	 * Read super block and check the signature bytes only
	 */
	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
	if (IS_ERR(bh)) {
		err = PTR_ERR(bh);
		goto fail_alloc;
	}

	/*
	 * We want to check superblock checksum, the type is stored inside.
	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
	 */
	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
		btrfs_err(fs_info, "superblock checksum mismatch");
		err = -EINVAL;
		brelse(bh);
		goto fail_alloc;
	}

	/*
	 * super_copy is zeroed at allocation time and we never touch the
	 * following bytes up to INFO_SIZE, the checksum is calculated from
	 * the whole block of INFO_SIZE
	 */
	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
	memcpy(fs_info->super_for_commit, fs_info->super_copy,
	       sizeof(*fs_info->super_for_commit));
	brelse(bh);

	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);

	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
	if (ret) {
		btrfs_err(fs_info, "superblock contains fatal errors");
		err = -EINVAL;
		goto fail_alloc;
	}

	disk_super = fs_info->super_copy;
	if (!btrfs_super_root(disk_super))
		goto fail_alloc;

	/* check FS state, whether FS is broken. */
	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);

	/*
	 * run through our array of backup supers and setup
	 * our ring pointer to the oldest one
	 */
	generation = btrfs_super_generation(disk_super);
	find_oldest_super_backup(fs_info, generation);

	/*
	 * In the long term, we'll store the compression type in the super
	 * block, and it'll be used for per file compression control.
	 */
	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;

	ret = btrfs_parse_options(tree_root, options, sb->s_flags);
	if (ret) {
		err = ret;
		goto fail_alloc;
	}

	features = btrfs_super_incompat_flags(disk_super) &
		~BTRFS_FEATURE_INCOMPAT_SUPP;
	if (features) {
		btrfs_err(fs_info,
		    "cannot mount because of unsupported optional features (%llx)",
		    features);
		err = -EINVAL;
		goto fail_alloc;
	}

	features = btrfs_super_incompat_flags(disk_super);
	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;

	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
		btrfs_info(fs_info, "has skinny extents");

	/*
	 * flag our filesystem as having big metadata blocks if
	 * they are bigger than the page size
	 */
	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
			btrfs_info(fs_info,
				"flagging fs with big metadata feature");
		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
	}

	nodesize = btrfs_super_nodesize(disk_super);
	sectorsize = btrfs_super_sectorsize(disk_super);
	stripesize = sectorsize;
	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));

	/*
	 * mixed block groups end up with duplicate but slightly offset
	 * extent buffers for the same range.  It leads to corruptions
	 */
	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
	    (sectorsize != nodesize)) {
		btrfs_err(fs_info,
"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
			nodesize, sectorsize);
		goto fail_alloc;
	}

	/*
	 * Needn't use the lock because there is no other task which will
	 * update the flag.
	 */
	btrfs_set_super_incompat_flags(disk_super, features);

	features = btrfs_super_compat_ro_flags(disk_super) &
		~BTRFS_FEATURE_COMPAT_RO_SUPP;
	if (!(sb->s_flags & MS_RDONLY) && features) {
		btrfs_err(fs_info,
	"cannot mount read-write because of unsupported optional features (%llx)",
		       features);
		err = -EINVAL;
		goto fail_alloc;
	}

	max_active = fs_info->thread_pool_size;

	ret = btrfs_init_workqueues(fs_info, fs_devices);
	if (ret) {
		err = ret;
		goto fail_sb_buffer;
	}

	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
				    SZ_4M / PAGE_SIZE);

	tree_root->nodesize = nodesize;
	tree_root->sectorsize = sectorsize;
	tree_root->stripesize = stripesize;

	sb->s_blocksize = sectorsize;
	sb->s_blocksize_bits = blksize_bits(sectorsize);

	mutex_lock(&fs_info->chunk_mutex);
	ret = btrfs_read_sys_array(tree_root);
	mutex_unlock(&fs_info->chunk_mutex);
	if (ret) {
		btrfs_err(fs_info, "failed to read the system array: %d", ret);
		goto fail_sb_buffer;
	}

	generation = btrfs_super_chunk_root_generation(disk_super);

	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);

	chunk_root->node = read_tree_block(chunk_root,
					   btrfs_super_chunk_root(disk_super),
					   generation);
	if (IS_ERR(chunk_root->node) ||
	    !extent_buffer_uptodate(chunk_root->node)) {
		btrfs_err(fs_info, "failed to read chunk root");
		if (!IS_ERR(chunk_root->node))
			free_extent_buffer(chunk_root->node);
		chunk_root->node = NULL;
		goto fail_tree_roots;
	}
	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
	chunk_root->commit_root = btrfs_root_node(chunk_root);

	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);

	ret = btrfs_read_chunk_tree(chunk_root);
	if (ret) {
		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
		goto fail_tree_roots;
	}

	/*
	 * keep the device that is marked to be the target device for the
	 * dev_replace procedure
	 */
	btrfs_close_extra_devices(fs_devices, 0);

	if (!fs_devices->latest_bdev) {
		btrfs_err(fs_info, "failed to read devices");
		goto fail_tree_roots;
	}

retry_root_backup:
	generation = btrfs_super_generation(disk_super);

	tree_root->node = read_tree_block(tree_root,
					  btrfs_super_root(disk_super),
					  generation);
	if (IS_ERR(tree_root->node) ||
	    !extent_buffer_uptodate(tree_root->node)) {
		btrfs_warn(fs_info, "failed to read tree root");
		if (!IS_ERR(tree_root->node))
			free_extent_buffer(tree_root->node);
		tree_root->node = NULL;
		goto recovery_tree_root;
	}

	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
	tree_root->commit_root = btrfs_root_node(tree_root);
	btrfs_set_root_refs(&tree_root->root_item, 1);

	mutex_lock(&tree_root->objectid_mutex);
	ret = btrfs_find_highest_objectid(tree_root,
					&tree_root->highest_objectid);
	if (ret) {
		mutex_unlock(&tree_root->objectid_mutex);
		goto recovery_tree_root;
	}

	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);

	mutex_unlock(&tree_root->objectid_mutex);

	ret = btrfs_read_roots(fs_info, tree_root);
	if (ret)
		goto recovery_tree_root;

	fs_info->generation = generation;
	fs_info->last_trans_committed = generation;

	ret = btrfs_recover_balance(fs_info);
	if (ret) {
		btrfs_err(fs_info, "failed to recover balance: %d", ret);
		goto fail_block_groups;
	}

	ret = btrfs_init_dev_stats(fs_info);
	if (ret) {
		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
		goto fail_block_groups;
	}

	ret = btrfs_init_dev_replace(fs_info);
	if (ret) {
		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
		goto fail_block_groups;
	}

	btrfs_close_extra_devices(fs_devices, 1);

	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
	if (ret) {
		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
				ret);
		goto fail_block_groups;
	}

	ret = btrfs_sysfs_add_device(fs_devices);
	if (ret) {
		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
				ret);
		goto fail_fsdev_sysfs;
	}

	ret = btrfs_sysfs_add_mounted(fs_info);
	if (ret) {
		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
		goto fail_fsdev_sysfs;
	}

	ret = btrfs_init_space_info(fs_info);
	if (ret) {
		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
		goto fail_sysfs;
	}

	ret = btrfs_read_block_groups(fs_info->extent_root);
	if (ret) {
		btrfs_err(fs_info, "failed to read block groups: %d", ret);
		goto fail_sysfs;
	}
	fs_info->num_tolerated_disk_barrier_failures =
		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
	if (fs_info->fs_devices->missing_devices >
	     fs_info->num_tolerated_disk_barrier_failures &&
	    !(sb->s_flags & MS_RDONLY)) {
		btrfs_warn(fs_info,
"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
			fs_info->fs_devices->missing_devices,
			fs_info->num_tolerated_disk_barrier_failures);
		goto fail_sysfs;
	}

	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
					       "btrfs-cleaner");
	if (IS_ERR(fs_info->cleaner_kthread))
		goto fail_sysfs;

	fs_info->transaction_kthread = kthread_run(transaction_kthread,
						   tree_root,
						   "btrfs-transaction");
	if (IS_ERR(fs_info->transaction_kthread))
		goto fail_cleaner;

	if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
	    !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
	    !fs_info->fs_devices->rotating) {
		btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
		btrfs_set_opt(fs_info->mount_opt, SSD);
	}

	/*
	 * Mount does not set all options immediately, we can do it now and do
	 * not have to wait for transaction commit
	 */
	btrfs_apply_pending_changes(fs_info);

#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
	if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
		ret = btrfsic_mount(tree_root, fs_devices,
				    btrfs_test_opt(tree_root->fs_info,
					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
				    1 : 0,
				    fs_info->check_integrity_print_mask);
		if (ret)
			btrfs_warn(fs_info,
				"failed to initialize integrity check module: %d",
				ret);
	}
#endif
	ret = btrfs_read_qgroup_config(fs_info);
	if (ret)
		goto fail_trans_kthread;

	/* do not make disk changes in broken FS or nologreplay is given */
	if (btrfs_super_log_root(disk_super) != 0 &&
	    !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
		ret = btrfs_replay_log(fs_info, fs_devices);
		if (ret) {
			err = ret;
			goto fail_qgroup;
		}
	}

	ret = btrfs_find_orphan_roots(tree_root);
	if (ret)
		goto fail_qgroup;

	if (!(sb->s_flags & MS_RDONLY)) {
		ret = btrfs_cleanup_fs_roots(fs_info);
		if (ret)
			goto fail_qgroup;

		mutex_lock(&fs_info->cleaner_mutex);
		ret = btrfs_recover_relocation(tree_root);
		mutex_unlock(&fs_info->cleaner_mutex);
		if (ret < 0) {
			btrfs_warn(fs_info, "failed to recover relocation: %d",
					ret);
			err = -EINVAL;
			goto fail_qgroup;
		}
	}

	location.objectid = BTRFS_FS_TREE_OBJECTID;
	location.type = BTRFS_ROOT_ITEM_KEY;
	location.offset = 0;

	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
	if (IS_ERR(fs_info->fs_root)) {
		err = PTR_ERR(fs_info->fs_root);
		goto fail_qgroup;
	}

	if (sb->s_flags & MS_RDONLY)
		return 0;

	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		clear_free_space_tree = 1;
	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
		btrfs_warn(fs_info, "free space tree is invalid");
		clear_free_space_tree = 1;
	}

	if (clear_free_space_tree) {
		btrfs_info(fs_info, "clearing free space tree");
		ret = btrfs_clear_free_space_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				   "failed to clear free space tree: %d", ret);
			close_ctree(tree_root);
			return ret;
		}
	}

	if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		btrfs_info(fs_info, "creating free space tree");
		ret = btrfs_create_free_space_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				"failed to create free space tree: %d", ret);
			close_ctree(tree_root);
			return ret;
		}
	}

	down_read(&fs_info->cleanup_work_sem);
	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
		up_read(&fs_info->cleanup_work_sem);
		close_ctree(tree_root);
		return ret;
	}
	up_read(&fs_info->cleanup_work_sem);

	ret = btrfs_resume_balance_async(fs_info);
	if (ret) {
		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
		close_ctree(tree_root);
		return ret;
	}

	ret = btrfs_resume_dev_replace_async(fs_info);
	if (ret) {
		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
		close_ctree(tree_root);
		return ret;
	}

	btrfs_qgroup_rescan_resume(fs_info);

	if (!fs_info->uuid_root) {
		btrfs_info(fs_info, "creating UUID tree");
		ret = btrfs_create_uuid_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				"failed to create the UUID tree: %d", ret);
			close_ctree(tree_root);
			return ret;
		}
	} else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
		   fs_info->generation !=
				btrfs_super_uuid_tree_generation(disk_super)) {
		btrfs_info(fs_info, "checking UUID tree");
		ret = btrfs_check_uuid_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				"failed to check the UUID tree: %d", ret);
			close_ctree(tree_root);
			return ret;
		}
	} else {
		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
	}
	set_bit(BTRFS_FS_OPEN, &fs_info->flags);

	/*
	 * backuproot only affect mount behavior, and if open_ctree succeeded,
	 * no need to keep the flag
	 */
	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);

	return 0;

fail_qgroup:
	btrfs_free_qgroup_config(fs_info);
fail_trans_kthread:
	kthread_stop(fs_info->transaction_kthread);
	btrfs_cleanup_transaction(fs_info->tree_root);
	btrfs_free_fs_roots(fs_info);
fail_cleaner:
	kthread_stop(fs_info->cleaner_kthread);

	/*
	 * make sure we're done with the btree inode before we stop our
	 * kthreads
	 */
	filemap_write_and_wait(fs_info->btree_inode->i_mapping);

fail_sysfs:
	btrfs_sysfs_remove_mounted(fs_info);

fail_fsdev_sysfs:
	btrfs_sysfs_remove_fsid(fs_info->fs_devices);

fail_block_groups:
	btrfs_put_block_group_cache(fs_info);
	btrfs_free_block_groups(fs_info);

fail_tree_roots:
	free_root_pointers(fs_info, 1);
	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);

fail_sb_buffer:
	btrfs_stop_all_workers(fs_info);
fail_alloc:
fail_iput:
	btrfs_mapping_tree_free(&fs_info->mapping_tree);

	iput(fs_info->btree_inode);
fail_bio_counter:
	percpu_counter_destroy(&fs_info->bio_counter);
fail_delalloc_bytes:
	percpu_counter_destroy(&fs_info->delalloc_bytes);
fail_dirty_metadata_bytes:
	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
fail_bdi:
	bdi_destroy(&fs_info->bdi);
fail_srcu:
	cleanup_srcu_struct(&fs_info->subvol_srcu);
fail:
	btrfs_free_stripe_hash_table(fs_info);
	btrfs_close_devices(fs_info->fs_devices);
	return err;

recovery_tree_root:
	if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
		goto fail_tree_roots;

	free_root_pointers(fs_info, 0);

	/* don't use the log in recovery mode, it won't be valid */
	btrfs_set_super_log_root(disk_super, 0);

	/* we can't trust the free space cache either */
	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);

	ret = next_root_backup(fs_info, fs_info->super_copy,
			       &num_backups_tried, &backup_index);
	if (ret == -1)
		goto fail_block_groups;
	goto retry_root_backup;
}

static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
{
	if (uptodate) {
		set_buffer_uptodate(bh);
	} else {
		struct btrfs_device *device = (struct btrfs_device *)
			bh->b_private;

		btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
				"lost page write due to IO error on %s",
					  rcu_str_deref(device->name));
		/* note, we don't set_buffer_write_io_error because we have
		 * our own ways of dealing with the IO errors
		 */
		clear_buffer_uptodate(bh);
		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
	}
	unlock_buffer(bh);
	put_bh(bh);
}

int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
			struct buffer_head **bh_ret)
{
	struct buffer_head *bh;
	struct btrfs_super_block *super;
	u64 bytenr;

	bytenr = btrfs_sb_offset(copy_num);
	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
		return -EINVAL;

	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
	/*
	 * If we fail to read from the underlying devices, as of now
	 * the best option we have is to mark it EIO.
	 */
	if (!bh)
		return -EIO;

	super = (struct btrfs_super_block *)bh->b_data;
	if (btrfs_super_bytenr(super) != bytenr ||
		    btrfs_super_magic(super) != BTRFS_MAGIC) {
		brelse(bh);
		return -EINVAL;
	}

	*bh_ret = bh;
	return 0;
}


struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
{
	struct buffer_head *bh;
	struct buffer_head *latest = NULL;
	struct btrfs_super_block *super;
	int i;
	u64 transid = 0;
	int ret = -EINVAL;

	/* we would like to check all the supers, but that would make
	 * a btrfs mount succeed after a mkfs from a different FS.
	 * So, we need to add a special mount option to scan for
	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
	 */
	for (i = 0; i < 1; i++) {
		ret = btrfs_read_dev_one_super(bdev, i, &bh);
		if (ret)
			continue;

		super = (struct btrfs_super_block *)bh->b_data;

		if (!latest || btrfs_super_generation(super) > transid) {
			brelse(latest);
			latest = bh;
			transid = btrfs_super_generation(super);
		} else {
			brelse(bh);
		}
	}

	if (!latest)
		return ERR_PTR(ret);

	return latest;
}

/*
 * this should be called twice, once with wait == 0 and
 * once with wait == 1.  When wait == 0 is done, all the buffer heads
 * we write are pinned.
 *
 * They are released when wait == 1 is done.
 * max_mirrors must be the same for both runs, and it indicates how
 * many supers on this one device should be written.
 *
 * max_mirrors == 0 means to write them all.
 */
static int write_dev_supers(struct btrfs_device *device,
			    struct btrfs_super_block *sb,
			    int do_barriers, int wait, int max_mirrors)
{
	struct buffer_head *bh;
	int i;
	int ret;
	int errors = 0;
	u32 crc;
	u64 bytenr;

	if (max_mirrors == 0)
		max_mirrors = BTRFS_SUPER_MIRROR_MAX;

	for (i = 0; i < max_mirrors; i++) {
		bytenr = btrfs_sb_offset(i);
		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
		    device->commit_total_bytes)
			break;

		if (wait) {
			bh = __find_get_block(device->bdev, bytenr / 4096,
					      BTRFS_SUPER_INFO_SIZE);
			if (!bh) {
				errors++;
				continue;
			}
			wait_on_buffer(bh);
			if (!buffer_uptodate(bh))
				errors++;

			/* drop our reference */
			brelse(bh);

			/* drop the reference from the wait == 0 run */
			brelse(bh);
			continue;
		} else {
			btrfs_set_super_bytenr(sb, bytenr);

			crc = ~(u32)0;
			crc = btrfs_csum_data((char *)sb +
					      BTRFS_CSUM_SIZE, crc,
					      BTRFS_SUPER_INFO_SIZE -
					      BTRFS_CSUM_SIZE);
			btrfs_csum_final(crc, sb->csum);

			/*
			 * one reference for us, and we leave it for the
			 * caller
			 */
			bh = __getblk(device->bdev, bytenr / 4096,
				      BTRFS_SUPER_INFO_SIZE);
			if (!bh) {
				btrfs_err(device->dev_root->fs_info,
				    "couldn't get super buffer head for bytenr %llu",
				    bytenr);
				errors++;
				continue;
			}

			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);

			/* one reference for submit_bh */
			get_bh(bh);

			set_buffer_uptodate(bh);
			lock_buffer(bh);
			bh->b_end_io = btrfs_end_buffer_write_sync;
			bh->b_private = device;
		}

		/*
		 * we fua the first super.  The others we allow
		 * to go down lazy.
		 */
		if (i == 0)
			ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
		else
			ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
		if (ret)
			errors++;
	}
	return errors < i ? 0 : -1;
}

/*
 * endio for the write_dev_flush, this will wake anyone waiting
 * for the barrier when it is done
 */
static void btrfs_end_empty_barrier(struct bio *bio)
{
	if (bio->bi_private)
		complete(bio->bi_private);
	bio_put(bio);
}

/*
 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
 * sent down.  With wait == 1, it waits for the previous flush.
 *
 * any device where the flush fails with eopnotsupp are flagged as not-barrier
 * capable
 */
static int write_dev_flush(struct btrfs_device *device, int wait)
{
	struct bio *bio;
	int ret = 0;

	if (device->nobarriers)
		return 0;

	if (wait) {
		bio = device->flush_bio;
		if (!bio)
			return 0;

		wait_for_completion(&device->flush_wait);

		if (bio->bi_error) {
			ret = bio->bi_error;
			btrfs_dev_stat_inc_and_print(device,
				BTRFS_DEV_STAT_FLUSH_ERRS);
		}

		/* drop the reference from the wait == 0 run */
		bio_put(bio);
		device->flush_bio = NULL;

		return ret;
	}

	/*
	 * one reference for us, and we leave it for the
	 * caller
	 */
	device->flush_bio = NULL;
	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		return -ENOMEM;

	bio->bi_end_io = btrfs_end_empty_barrier;
	bio->bi_bdev = device->bdev;
	bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
	init_completion(&device->flush_wait);
	bio->bi_private = &device->flush_wait;
	device->flush_bio = bio;

	bio_get(bio);
	btrfsic_submit_bio(bio);

	return 0;
}

/*
 * send an empty flush down to each device in parallel,
 * then wait for them
 */
static int barrier_all_devices(struct btrfs_fs_info *info)
{
	struct list_head *head;
	struct btrfs_device *dev;
	int errors_send = 0;
	int errors_wait = 0;
	int ret;

	/* send down all the barriers */
	head = &info->fs_devices->devices;
	list_for_each_entry_rcu(dev, head, dev_list) {
		if (dev->missing)
			continue;
		if (!dev->bdev) {
			errors_send++;
			continue;
		}
		if (!dev->in_fs_metadata || !dev->writeable)
			continue;

		ret = write_dev_flush(dev, 0);
		if (ret)
			errors_send++;
	}

	/* wait for all the barriers */
	list_for_each_entry_rcu(dev, head, dev_list) {
		if (dev->missing)
			continue;
		if (!dev->bdev) {
			errors_wait++;
			continue;
		}
		if (!dev->in_fs_metadata || !dev->writeable)
			continue;

		ret = write_dev_flush(dev, 1);
		if (ret)
			errors_wait++;
	}
	if (errors_send > info->num_tolerated_disk_barrier_failures ||
	    errors_wait > info->num_tolerated_disk_barrier_failures)
		return -EIO;
	return 0;
}

int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
{
	int raid_type;
	int min_tolerated = INT_MAX;

	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
		min_tolerated = min(min_tolerated,
				    btrfs_raid_array[BTRFS_RAID_SINGLE].
				    tolerated_failures);

	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
		if (raid_type == BTRFS_RAID_SINGLE)
			continue;
		if (!(flags & btrfs_raid_group[raid_type]))
			continue;
		min_tolerated = min(min_tolerated,
				    btrfs_raid_array[raid_type].
				    tolerated_failures);
	}

	if (min_tolerated == INT_MAX) {
		pr_warn("BTRFS: unknown raid flag: %llu", flags);
		min_tolerated = 0;
	}

	return min_tolerated;
}

int btrfs_calc_num_tolerated_disk_barrier_failures(
	struct btrfs_fs_info *fs_info)
{
	struct btrfs_ioctl_space_info space;
	struct btrfs_space_info *sinfo;
	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
		       BTRFS_BLOCK_GROUP_SYSTEM,
		       BTRFS_BLOCK_GROUP_METADATA,
		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
	int i;
	int c;
	int num_tolerated_disk_barrier_failures =
		(int)fs_info->fs_devices->num_devices;

	for (i = 0; i < ARRAY_SIZE(types); i++) {
		struct btrfs_space_info *tmp;

		sinfo = NULL;
		rcu_read_lock();
		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
			if (tmp->flags == types[i]) {
				sinfo = tmp;
				break;
			}
		}
		rcu_read_unlock();

		if (!sinfo)
			continue;

		down_read(&sinfo->groups_sem);
		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
			u64 flags;

			if (list_empty(&sinfo->block_groups[c]))
				continue;

			btrfs_get_block_group_info(&sinfo->block_groups[c],
						   &space);
			if (space.total_bytes == 0 || space.used_bytes == 0)
				continue;
			flags = space.flags;

			num_tolerated_disk_barrier_failures = min(
				num_tolerated_disk_barrier_failures,
				btrfs_get_num_tolerated_disk_barrier_failures(
					flags));
		}
		up_read(&sinfo->groups_sem);
	}

	return num_tolerated_disk_barrier_failures;
}

static int write_all_supers(struct btrfs_root *root, int max_mirrors)
{
	struct list_head *head;
	struct btrfs_device *dev;
	struct btrfs_super_block *sb;
	struct btrfs_dev_item *dev_item;
	int ret;
	int do_barriers;
	int max_errors;
	int total_errors = 0;
	u64 flags;

	do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
	backup_super_roots(root->fs_info);

	sb = root->fs_info->super_for_commit;
	dev_item = &sb->dev_item;

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
	head = &root->fs_info->fs_devices->devices;
	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;

	if (do_barriers) {
		ret = barrier_all_devices(root->fs_info);
		if (ret) {
			mutex_unlock(
				&root->fs_info->fs_devices->device_list_mutex);
			btrfs_handle_fs_error(root->fs_info, ret,
				    "errors while submitting device barriers.");
			return ret;
		}
	}

	list_for_each_entry_rcu(dev, head, dev_list) {
		if (!dev->bdev) {
			total_errors++;
			continue;
		}
		if (!dev->in_fs_metadata || !dev->writeable)
			continue;

		btrfs_set_stack_device_generation(dev_item, 0);
		btrfs_set_stack_device_type(dev_item, dev->type);
		btrfs_set_stack_device_id(dev_item, dev->devid);
		btrfs_set_stack_device_total_bytes(dev_item,
						   dev->commit_total_bytes);
		btrfs_set_stack_device_bytes_used(dev_item,
						  dev->commit_bytes_used);
		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);

		flags = btrfs_super_flags(sb);
		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);

		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
		if (ret)
			total_errors++;
	}
	if (total_errors > max_errors) {
		btrfs_err(root->fs_info, "%d errors while writing supers",
		       total_errors);
		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

		/* FUA is masked off if unsupported and can't be the reason */
		btrfs_handle_fs_error(root->fs_info, -EIO,
			    "%d errors while writing supers", total_errors);
		return -EIO;
	}

	total_errors = 0;
	list_for_each_entry_rcu(dev, head, dev_list) {
		if (!dev->bdev)
			continue;
		if (!dev->in_fs_metadata || !dev->writeable)
			continue;

		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
		if (ret)
			total_errors++;
	}
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
	if (total_errors > max_errors) {
		btrfs_handle_fs_error(root->fs_info, -EIO,
			    "%d errors while writing supers", total_errors);
		return -EIO;
	}
	return 0;
}

int write_ctree_super(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root, int max_mirrors)
{
	return write_all_supers(root, max_mirrors);
}

/* Drop a fs root from the radix tree and free it. */
void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
				  struct btrfs_root *root)
{
	spin_lock(&fs_info->fs_roots_radix_lock);
	radix_tree_delete(&fs_info->fs_roots_radix,
			  (unsigned long)root->root_key.objectid);
	spin_unlock(&fs_info->fs_roots_radix_lock);

	if (btrfs_root_refs(&root->root_item) == 0)
		synchronize_srcu(&fs_info->subvol_srcu);

	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
		btrfs_free_log(NULL, root);
		if (root->reloc_root) {
			free_extent_buffer(root->reloc_root->node);
			free_extent_buffer(root->reloc_root->commit_root);
			btrfs_put_fs_root(root->reloc_root);
			root->reloc_root = NULL;
		}
	}

	if (root->free_ino_pinned)
		__btrfs_remove_free_space_cache(root->free_ino_pinned);
	if (root->free_ino_ctl)
		__btrfs_remove_free_space_cache(root->free_ino_ctl);
	free_fs_root(root);
}

static void free_fs_root(struct btrfs_root *root)
{
	iput(root->ino_cache_inode);
	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
	btrfs_free_block_rsv(root, root->orphan_block_rsv);
	root->orphan_block_rsv = NULL;
	if (root->anon_dev)
		free_anon_bdev(root->anon_dev);
	if (root->subv_writers)
		btrfs_free_subvolume_writers(root->subv_writers);
	free_extent_buffer(root->node);
	free_extent_buffer(root->commit_root);
	kfree(root->free_ino_ctl);
	kfree(root->free_ino_pinned);
	kfree(root->name);
	btrfs_put_fs_root(root);
}

void btrfs_free_fs_root(struct btrfs_root *root)
{
	free_fs_root(root);
}

int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
{
	u64 root_objectid = 0;
	struct btrfs_root *gang[8];
	int i = 0;
	int err = 0;
	unsigned int ret = 0;
	int index;

	while (1) {
		index = srcu_read_lock(&fs_info->subvol_srcu);
		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, root_objectid,
					     ARRAY_SIZE(gang));
		if (!ret) {
			srcu_read_unlock(&fs_info->subvol_srcu, index);
			break;
		}
		root_objectid = gang[ret - 1]->root_key.objectid + 1;

		for (i = 0; i < ret; i++) {
			/* Avoid to grab roots in dead_roots */
			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
				gang[i] = NULL;
				continue;
			}
			/* grab all the search result for later use */
			gang[i] = btrfs_grab_fs_root(gang[i]);
		}
		srcu_read_unlock(&fs_info->subvol_srcu, index);

		for (i = 0; i < ret; i++) {
			if (!gang[i])
				continue;
			root_objectid = gang[i]->root_key.objectid;
			err = btrfs_orphan_cleanup(gang[i]);
			if (err)
				break;
			btrfs_put_fs_root(gang[i]);
		}
		root_objectid++;
	}

	/* release the uncleaned roots due to error */
	for (; i < ret; i++) {
		if (gang[i])
			btrfs_put_fs_root(gang[i]);
	}
	return err;
}

int btrfs_commit_super(struct btrfs_root *root)
{
	struct btrfs_trans_handle *trans;

	mutex_lock(&root->fs_info->cleaner_mutex);
	btrfs_run_delayed_iputs(root);
	mutex_unlock(&root->fs_info->cleaner_mutex);
	wake_up_process(root->fs_info->cleaner_kthread);

	/* wait until ongoing cleanup work done */
	down_write(&root->fs_info->cleanup_work_sem);
	up_write(&root->fs_info->cleanup_work_sem);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans, root);
}

void close_ctree(struct btrfs_root *root)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	int ret;

	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);

	/* wait for the qgroup rescan worker to stop */
	btrfs_qgroup_wait_for_completion(fs_info, false);

	/* wait for the uuid_scan task to finish */
	down(&fs_info->uuid_tree_rescan_sem);
	/* avoid complains from lockdep et al., set sem back to initial state */
	up(&fs_info->uuid_tree_rescan_sem);

	/* pause restriper - we want to resume on mount */
	btrfs_pause_balance(fs_info);

	btrfs_dev_replace_suspend_for_unmount(fs_info);

	btrfs_scrub_cancel(fs_info);

	/* wait for any defraggers to finish */
	wait_event(fs_info->transaction_wait,
		   (atomic_read(&fs_info->defrag_running) == 0));

	/* clear out the rbtree of defraggable inodes */
	btrfs_cleanup_defrag_inodes(fs_info);

	cancel_work_sync(&fs_info->async_reclaim_work);

	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
		/*
		 * If the cleaner thread is stopped and there are
		 * block groups queued for removal, the deletion will be
		 * skipped when we quit the cleaner thread.
		 */
		btrfs_delete_unused_bgs(root->fs_info);

		ret = btrfs_commit_super(root);
		if (ret)
			btrfs_err(fs_info, "commit super ret %d", ret);
	}

	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
		btrfs_error_commit_super(root);

	kthread_stop(fs_info->transaction_kthread);
	kthread_stop(fs_info->cleaner_kthread);

	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);

	btrfs_free_qgroup_config(fs_info);

	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
		btrfs_info(fs_info, "at unmount delalloc count %lld",
		       percpu_counter_sum(&fs_info->delalloc_bytes));
	}

	btrfs_sysfs_remove_mounted(fs_info);
	btrfs_sysfs_remove_fsid(fs_info->fs_devices);

	btrfs_free_fs_roots(fs_info);

	btrfs_put_block_group_cache(fs_info);

	btrfs_free_block_groups(fs_info);

	/*
	 * we must make sure there is not any read request to
	 * submit after we stopping all workers.
	 */
	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
	btrfs_stop_all_workers(fs_info);

	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
	free_root_pointers(fs_info, 1);

	iput(fs_info->btree_inode);

#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
	if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
		btrfsic_unmount(root, fs_info->fs_devices);
#endif

	btrfs_close_devices(fs_info->fs_devices);
	btrfs_mapping_tree_free(&fs_info->mapping_tree);

	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
	percpu_counter_destroy(&fs_info->delalloc_bytes);
	percpu_counter_destroy(&fs_info->bio_counter);
	bdi_destroy(&fs_info->bdi);
	cleanup_srcu_struct(&fs_info->subvol_srcu);

	btrfs_free_stripe_hash_table(fs_info);

	__btrfs_free_block_rsv(root->orphan_block_rsv);
	root->orphan_block_rsv = NULL;

	lock_chunks(root);
	while (!list_empty(&fs_info->pinned_chunks)) {
		struct extent_map *em;

		em = list_first_entry(&fs_info->pinned_chunks,
				      struct extent_map, list);
		list_del_init(&em->list);
		free_extent_map(em);
	}
	unlock_chunks(root);
}

int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
			  int atomic)
{
	int ret;
	struct inode *btree_inode = buf->pages[0]->mapping->host;

	ret = extent_buffer_uptodate(buf);
	if (!ret)
		return ret;

	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
				    parent_transid, atomic);
	if (ret == -EAGAIN)
		return ret;
	return !ret;
}

void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
{
	struct btrfs_root *root;
	u64 transid = btrfs_header_generation(buf);
	int was_dirty;

#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
	/*
	 * This is a fast path so only do this check if we have sanity tests
	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
	 * outside of the sanity tests.
	 */
	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
		return;
#endif
	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
	btrfs_assert_tree_locked(buf);
	if (transid != root->fs_info->generation)
		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
			buf->start, transid, root->fs_info->generation);
	was_dirty = set_extent_buffer_dirty(buf);
	if (!was_dirty)
		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
				     buf->len,
				     root->fs_info->dirty_metadata_batch);
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
		btrfs_print_leaf(root, buf);
		ASSERT(0);
	}
#endif
}

static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
					int flush_delayed)
{
	/*
	 * looks as though older kernels can get into trouble with
	 * this code, they end up stuck in balance_dirty_pages forever
	 */
	int ret;

	if (current->flags & PF_MEMALLOC)
		return;

	if (flush_delayed)
		btrfs_balance_delayed_items(root);

	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
				     BTRFS_DIRTY_METADATA_THRESH);
	if (ret > 0) {
		balance_dirty_pages_ratelimited(
				   root->fs_info->btree_inode->i_mapping);
	}
}

void btrfs_btree_balance_dirty(struct btrfs_root *root)
{
	__btrfs_btree_balance_dirty(root, 1);
}

void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
{
	__btrfs_btree_balance_dirty(root, 0);
}

int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
{
	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
	return btree_read_extent_buffer_pages(root, buf, parent_transid);
}

static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
			      int read_only)
{
	struct btrfs_super_block *sb = fs_info->super_copy;
	u64 nodesize = btrfs_super_nodesize(sb);
	u64 sectorsize = btrfs_super_sectorsize(sb);
	int ret = 0;

	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
		btrfs_err(fs_info, "no valid FS found");
		ret = -EINVAL;
	}
	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
		btrfs_warn(fs_info, "unrecognized super flag: %llu",
				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}
	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}
	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "log_root level too big: %d >= %d",
				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}

	/*
	 * Check sectorsize and nodesize first, other check will need it.
	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
	 */
	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
		ret = -EINVAL;
	}
	/* Only PAGE SIZE is supported yet */
	if (sectorsize != PAGE_SIZE) {
		btrfs_err(fs_info,
			"sectorsize %llu not supported yet, only support %lu",
			sectorsize, PAGE_SIZE);
		ret = -EINVAL;
	}
	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
		ret = -EINVAL;
	}
	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
			  le32_to_cpu(sb->__unused_leafsize), nodesize);
		ret = -EINVAL;
	}

	/* Root alignment check */
	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
			   btrfs_super_root(sb));
		ret = -EINVAL;
	}
	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
			   btrfs_super_chunk_root(sb));
		ret = -EINVAL;
	}
	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "log_root block unaligned: %llu",
			   btrfs_super_log_root(sb));
		ret = -EINVAL;
	}

	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
		btrfs_err(fs_info,
			   "dev_item UUID does not match fsid: %pU != %pU",
			   fs_info->fsid, sb->dev_item.fsid);
		ret = -EINVAL;
	}

	/*
	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
	 * done later
	 */
	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
		btrfs_err(fs_info, "bytes_used is too small %llu",
			  btrfs_super_bytes_used(sb));
		ret = -EINVAL;
	}
	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
		btrfs_err(fs_info, "invalid stripesize %u",
			  btrfs_super_stripesize(sb));
		ret = -EINVAL;
	}
	if (btrfs_super_num_devices(sb) > (1UL << 31))
		btrfs_warn(fs_info, "suspicious number of devices: %llu",
			   btrfs_super_num_devices(sb));
	if (btrfs_super_num_devices(sb) == 0) {
		btrfs_err(fs_info, "number of devices is 0");
		ret = -EINVAL;
	}

	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
		btrfs_err(fs_info, "super offset mismatch %llu != %u",
			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
		ret = -EINVAL;
	}

	/*
	 * Obvious sys_chunk_array corruptions, it must hold at least one key
	 * and one chunk
	 */
	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
		btrfs_err(fs_info, "system chunk array too big %u > %u",
			  btrfs_super_sys_array_size(sb),
			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
		ret = -EINVAL;
	}
	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
			+ sizeof(struct btrfs_chunk)) {
		btrfs_err(fs_info, "system chunk array too small %u < %zu",
			  btrfs_super_sys_array_size(sb),
			  sizeof(struct btrfs_disk_key)
			  + sizeof(struct btrfs_chunk));
		ret = -EINVAL;
	}

	/*
	 * The generation is a global counter, we'll trust it more than the others
	 * but it's still possible that it's the one that's wrong.
	 */
	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
		btrfs_warn(fs_info,
			"suspicious: generation < chunk_root_generation: %llu < %llu",
			btrfs_super_generation(sb),
			btrfs_super_chunk_root_generation(sb));
	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
	    && btrfs_super_cache_generation(sb) != (u64)-1)
		btrfs_warn(fs_info,
			"suspicious: generation < cache_generation: %llu < %llu",
			btrfs_super_generation(sb),
			btrfs_super_cache_generation(sb));

	return ret;
}

static void btrfs_error_commit_super(struct btrfs_root *root)
{
	mutex_lock(&root->fs_info->cleaner_mutex);
	btrfs_run_delayed_iputs(root);
	mutex_unlock(&root->fs_info->cleaner_mutex);

	down_write(&root->fs_info->cleanup_work_sem);
	up_write(&root->fs_info->cleanup_work_sem);

	/* cleanup FS via transaction */
	btrfs_cleanup_transaction(root);
}

static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
{
	struct btrfs_ordered_extent *ordered;

	spin_lock(&root->ordered_extent_lock);
	/*
	 * This will just short circuit the ordered completion stuff which will
	 * make sure the ordered extent gets properly cleaned up.
	 */
	list_for_each_entry(ordered, &root->ordered_extents,
			    root_extent_list)
		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
	spin_unlock(&root->ordered_extent_lock);
}

static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	spin_lock(&fs_info->ordered_root_lock);
	list_splice_init(&fs_info->ordered_roots, &splice);
	while (!list_empty(&splice)) {
		root = list_first_entry(&splice, struct btrfs_root,
					ordered_root);
		list_move_tail(&root->ordered_root,
			       &fs_info->ordered_roots);

		spin_unlock(&fs_info->ordered_root_lock);
		btrfs_destroy_ordered_extents(root);

		cond_resched();
		spin_lock(&fs_info->ordered_root_lock);
	}
	spin_unlock(&fs_info->ordered_root_lock);
}

static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
				      struct btrfs_root *root)
{
	struct rb_node *node;
	struct btrfs_delayed_ref_root *delayed_refs;
	struct btrfs_delayed_ref_node *ref;
	int ret = 0;

	delayed_refs = &trans->delayed_refs;

	spin_lock(&delayed_refs->lock);
	if (atomic_read(&delayed_refs->num_entries) == 0) {
		spin_unlock(&delayed_refs->lock);
		btrfs_info(root->fs_info, "delayed_refs has NO entry");
		return ret;
	}

	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
		struct btrfs_delayed_ref_head *head;
		struct btrfs_delayed_ref_node *tmp;
		bool pin_bytes = false;

		head = rb_entry(node, struct btrfs_delayed_ref_head,
				href_node);
		if (!mutex_trylock(&head->mutex)) {
			atomic_inc(&head->node.refs);
			spin_unlock(&delayed_refs->lock);

			mutex_lock(&head->mutex);
			mutex_unlock(&head->mutex);
			btrfs_put_delayed_ref(&head->node);
			spin_lock(&delayed_refs->lock);
			continue;
		}
		spin_lock(&head->lock);
		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
						 list) {
			ref->in_tree = 0;
			list_del(&ref->list);
			atomic_dec(&delayed_refs->num_entries);
			btrfs_put_delayed_ref(ref);
		}
		if (head->must_insert_reserved)
			pin_bytes = true;
		btrfs_free_delayed_extent_op(head->extent_op);
		delayed_refs->num_heads--;
		if (head->processing == 0)
			delayed_refs->num_heads_ready--;
		atomic_dec(&delayed_refs->num_entries);
		head->node.in_tree = 0;
		rb_erase(&head->href_node, &delayed_refs->href_root);
		spin_unlock(&head->lock);
		spin_unlock(&delayed_refs->lock);
		mutex_unlock(&head->mutex);

		if (pin_bytes)
			btrfs_pin_extent(root, head->node.bytenr,
					 head->node.num_bytes, 1);
		btrfs_put_delayed_ref(&head->node);
		cond_resched();
		spin_lock(&delayed_refs->lock);
	}

	spin_unlock(&delayed_refs->lock);

	return ret;
}

static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
{
	struct btrfs_inode *btrfs_inode;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	spin_lock(&root->delalloc_lock);
	list_splice_init(&root->delalloc_inodes, &splice);

	while (!list_empty(&splice)) {
		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
					       delalloc_inodes);

		list_del_init(&btrfs_inode->delalloc_inodes);
		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
			  &btrfs_inode->runtime_flags);
		spin_unlock(&root->delalloc_lock);

		btrfs_invalidate_inodes(btrfs_inode->root);

		spin_lock(&root->delalloc_lock);
	}

	spin_unlock(&root->delalloc_lock);
}

static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	spin_lock(&fs_info->delalloc_root_lock);
	list_splice_init(&fs_info->delalloc_roots, &splice);
	while (!list_empty(&splice)) {
		root = list_first_entry(&splice, struct btrfs_root,
					 delalloc_root);
		list_del_init(&root->delalloc_root);
		root = btrfs_grab_fs_root(root);
		BUG_ON(!root);
		spin_unlock(&fs_info->delalloc_root_lock);

		btrfs_destroy_delalloc_inodes(root);
		btrfs_put_fs_root(root);

		spin_lock(&fs_info->delalloc_root_lock);
	}
	spin_unlock(&fs_info->delalloc_root_lock);
}

static int btrfs_destroy_marked_extents(struct btrfs_root *root,
					struct extent_io_tree *dirty_pages,
					int mark)
{
	int ret;
	struct extent_buffer *eb;
	u64 start = 0;
	u64 end;

	while (1) {
		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
					    mark, NULL);
		if (ret)
			break;

		clear_extent_bits(dirty_pages, start, end, mark);
		while (start <= end) {
			eb = btrfs_find_tree_block(root->fs_info, start);
			start += root->nodesize;
			if (!eb)
				continue;
			wait_on_extent_buffer_writeback(eb);

			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
					       &eb->bflags))
				clear_extent_buffer_dirty(eb);
			free_extent_buffer_stale(eb);
		}
	}

	return ret;
}

static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
				       struct extent_io_tree *pinned_extents)
{
	struct extent_io_tree *unpin;
	u64 start;
	u64 end;
	int ret;
	bool loop = true;

	unpin = pinned_extents;
again:
	while (1) {
		ret = find_first_extent_bit(unpin, 0, &start, &end,
					    EXTENT_DIRTY, NULL);
		if (ret)
			break;

		clear_extent_dirty(unpin, start, end);
		btrfs_error_unpin_extent_range(root, start, end);
		cond_resched();
	}

	if (loop) {
		if (unpin == &root->fs_info->freed_extents[0])
			unpin = &root->fs_info->freed_extents[1];
		else
			unpin = &root->fs_info->freed_extents[0];
		loop = false;
		goto again;
	}

	return 0;
}

static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
{
	struct inode *inode;

	inode = cache->io_ctl.inode;
	if (inode) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		cache->io_ctl.inode = NULL;
		iput(inode);
	}
	btrfs_put_block_group(cache);
}

void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
			     struct btrfs_root *root)
{
	struct btrfs_block_group_cache *cache;

	spin_lock(&cur_trans->dirty_bgs_lock);
	while (!list_empty(&cur_trans->dirty_bgs)) {
		cache = list_first_entry(&cur_trans->dirty_bgs,
					 struct btrfs_block_group_cache,
					 dirty_list);
		if (!cache) {
			btrfs_err(root->fs_info,
				  "orphan block group dirty_bgs list");
			spin_unlock(&cur_trans->dirty_bgs_lock);
			return;
		}

		if (!list_empty(&cache->io_list)) {
			spin_unlock(&cur_trans->dirty_bgs_lock);
			list_del_init(&cache->io_list);
			btrfs_cleanup_bg_io(cache);
			spin_lock(&cur_trans->dirty_bgs_lock);
		}

		list_del_init(&cache->dirty_list);
		spin_lock(&cache->lock);
		cache->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&cache->lock);

		spin_unlock(&cur_trans->dirty_bgs_lock);
		btrfs_put_block_group(cache);
		spin_lock(&cur_trans->dirty_bgs_lock);
	}
	spin_unlock(&cur_trans->dirty_bgs_lock);

	while (!list_empty(&cur_trans->io_bgs)) {
		cache = list_first_entry(&cur_trans->io_bgs,
					 struct btrfs_block_group_cache,
					 io_list);
		if (!cache) {
			btrfs_err(root->fs_info,
				  "orphan block group on io_bgs list");
			return;
		}

		list_del_init(&cache->io_list);
		spin_lock(&cache->lock);
		cache->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&cache->lock);
		btrfs_cleanup_bg_io(cache);
	}
}

void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
				   struct btrfs_root *root)
{
	btrfs_cleanup_dirty_bgs(cur_trans, root);
	ASSERT(list_empty(&cur_trans->dirty_bgs));
	ASSERT(list_empty(&cur_trans->io_bgs));

	btrfs_destroy_delayed_refs(cur_trans, root);

	cur_trans->state = TRANS_STATE_COMMIT_START;
	wake_up(&root->fs_info->transaction_blocked_wait);

	cur_trans->state = TRANS_STATE_UNBLOCKED;
	wake_up(&root->fs_info->transaction_wait);

	btrfs_destroy_delayed_inodes(root);
	btrfs_assert_delayed_root_empty(root);

	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
				     EXTENT_DIRTY);
	btrfs_destroy_pinned_extent(root,
				    root->fs_info->pinned_extents);

	cur_trans->state =TRANS_STATE_COMPLETED;
	wake_up(&cur_trans->commit_wait);

	/*
	memset(cur_trans, 0, sizeof(*cur_trans));
	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
	*/
}

static int btrfs_cleanup_transaction(struct btrfs_root *root)
{
	struct btrfs_transaction *t;

	mutex_lock(&root->fs_info->transaction_kthread_mutex);

	spin_lock(&root->fs_info->trans_lock);
	while (!list_empty(&root->fs_info->trans_list)) {
		t = list_first_entry(&root->fs_info->trans_list,
				     struct btrfs_transaction, list);
		if (t->state >= TRANS_STATE_COMMIT_START) {
			atomic_inc(&t->use_count);
			spin_unlock(&root->fs_info->trans_lock);
			btrfs_wait_for_commit(root, t->transid);
			btrfs_put_transaction(t);
			spin_lock(&root->fs_info->trans_lock);
			continue;
		}
		if (t == root->fs_info->running_transaction) {
			t->state = TRANS_STATE_COMMIT_DOING;
			spin_unlock(&root->fs_info->trans_lock);
			/*
			 * We wait for 0 num_writers since we don't hold a trans
			 * handle open currently for this transaction.
			 */
			wait_event(t->writer_wait,
				   atomic_read(&t->num_writers) == 0);
		} else {
			spin_unlock(&root->fs_info->trans_lock);
		}
		btrfs_cleanup_one_transaction(t, root);

		spin_lock(&root->fs_info->trans_lock);
		if (t == root->fs_info->running_transaction)
			root->fs_info->running_transaction = NULL;
		list_del_init(&t->list);
		spin_unlock(&root->fs_info->trans_lock);

		btrfs_put_transaction(t);
		trace_btrfs_transaction_commit(root);
		spin_lock(&root->fs_info->trans_lock);
	}
	spin_unlock(&root->fs_info->trans_lock);
	btrfs_destroy_all_ordered_extents(root->fs_info);
	btrfs_destroy_delayed_inodes(root);
	btrfs_assert_delayed_root_empty(root);
	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
	btrfs_destroy_all_delalloc_inodes(root->fs_info);
	mutex_unlock(&root->fs_info->transaction_kthread_mutex);

	return 0;
}

static const struct extent_io_ops btree_extent_io_ops = {
	.readpage_end_io_hook = btree_readpage_end_io_hook,
	.readpage_io_failed_hook = btree_io_failed_hook,
	.submit_bio_hook = btree_submit_bio_hook,
	/* note we're sharing with inode.c for the merge bio hook */
	.merge_bio_hook = btrfs_merge_bio_hook,
};