sch_tbf.c 13.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
/*
 * net/sched/sch_tbf.c	Token Bucket Filter queue.
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *		Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
 *						 original idea by Martin Devera
 *
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <net/netlink.h>
#include <net/sch_generic.h>
#include <net/pkt_sched.h>


/*	Simple Token Bucket Filter.
	=======================================

	SOURCE.
	-------

	None.

	Description.
	------------

	A data flow obeys TBF with rate R and depth B, if for any
	time interval t_i...t_f the number of transmitted bits
	does not exceed B + R*(t_f-t_i).

	Packetized version of this definition:
	The sequence of packets of sizes s_i served at moments t_i
	obeys TBF, if for any i<=k:

	s_i+....+s_k <= B + R*(t_k - t_i)

	Algorithm.
	----------

	Let N(t_i) be B/R initially and N(t) grow continuously with time as:

	N(t+delta) = min{B/R, N(t) + delta}

	If the first packet in queue has length S, it may be
	transmitted only at the time t_* when S/R <= N(t_*),
	and in this case N(t) jumps:

	N(t_* + 0) = N(t_* - 0) - S/R.



	Actually, QoS requires two TBF to be applied to a data stream.
	One of them controls steady state burst size, another
	one with rate P (peak rate) and depth M (equal to link MTU)
	limits bursts at a smaller time scale.

	It is easy to see that P>R, and B>M. If P is infinity, this double
	TBF is equivalent to a single one.

	When TBF works in reshaping mode, latency is estimated as:

	lat = max ((L-B)/R, (L-M)/P)


	NOTES.
	------

	If TBF throttles, it starts a watchdog timer, which will wake it up
	when it is ready to transmit.
	Note that the minimal timer resolution is 1/HZ.
	If no new packets arrive during this period,
	or if the device is not awaken by EOI for some previous packet,
	TBF can stop its activity for 1/HZ.


	This means, that with depth B, the maximal rate is

	R_crit = B*HZ

	F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.

	Note that the peak rate TBF is much more tough: with MTU 1500
	P_crit = 150Kbytes/sec. So, if you need greater peak
	rates, use alpha with HZ=1000 :-)

	With classful TBF, limit is just kept for backwards compatibility.
	It is passed to the default bfifo qdisc - if the inner qdisc is
	changed the limit is not effective anymore.
*/

struct tbf_sched_data {
/* Parameters */
	u32		limit;		/* Maximal length of backlog: bytes */
	u32		max_size;
	s64		buffer;		/* Token bucket depth/rate: MUST BE >= MTU/B */
	s64		mtu;
	struct psched_ratecfg rate;
	struct psched_ratecfg peak;

/* Variables */
	s64	tokens;			/* Current number of B tokens */
	s64	ptokens;		/* Current number of P tokens */
	s64	t_c;			/* Time check-point */
	struct Qdisc	*qdisc;		/* Inner qdisc, default - bfifo queue */
	struct qdisc_watchdog watchdog;	/* Watchdog timer */
};


/* Time to Length, convert time in ns to length in bytes
 * to determinate how many bytes can be sent in given time.
 */
static u64 psched_ns_t2l(const struct psched_ratecfg *r,
			 u64 time_in_ns)
{
	/* The formula is :
	 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
	 */
	u64 len = time_in_ns * r->rate_bytes_ps;

	do_div(len, NSEC_PER_SEC);

	if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
		do_div(len, 53);
		len = len * 48;
	}

	if (len > r->overhead)
		len -= r->overhead;
	else
		len = 0;

	return len;
}

/*
 * Return length of individual segments of a gso packet,
 * including all headers (MAC, IP, TCP/UDP)
 */
static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
{
	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
	return hdr_len + skb_gso_transport_seglen(skb);
}

/* GSO packet is too big, segment it so that tbf can transmit
 * each segment in time
 */
static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch,
		       struct sk_buff **to_free)
{
	struct tbf_sched_data *q = qdisc_priv(sch);
	struct sk_buff *segs, *nskb;
	netdev_features_t features = netif_skb_features(skb);
	unsigned int len = 0, prev_len = qdisc_pkt_len(skb);
	int ret, nb;

	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);

	if (IS_ERR_OR_NULL(segs))
		return qdisc_drop(skb, sch, to_free);

	nb = 0;
	while (segs) {
		nskb = segs->next;
		segs->next = NULL;
		qdisc_skb_cb(segs)->pkt_len = segs->len;
		len += segs->len;
		ret = qdisc_enqueue(segs, q->qdisc, to_free);
		if (ret != NET_XMIT_SUCCESS) {
			if (net_xmit_drop_count(ret))
				qdisc_qstats_drop(sch);
		} else {
			nb++;
		}
		segs = nskb;
	}
	sch->q.qlen += nb;
	if (nb > 1)
		qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
	consume_skb(skb);
	return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
}

static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
		       struct sk_buff **to_free)
{
	struct tbf_sched_data *q = qdisc_priv(sch);
	int ret;

	if (qdisc_pkt_len(skb) > q->max_size) {
		if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size)
			return tbf_segment(skb, sch, to_free);
		return qdisc_drop(skb, sch, to_free);
	}
	ret = qdisc_enqueue(skb, q->qdisc, to_free);
	if (ret != NET_XMIT_SUCCESS) {
		if (net_xmit_drop_count(ret))
			qdisc_qstats_drop(sch);
		return ret;
	}

	qdisc_qstats_backlog_inc(sch, skb);
	sch->q.qlen++;
	return NET_XMIT_SUCCESS;
}

static bool tbf_peak_present(const struct tbf_sched_data *q)
{
	return q->peak.rate_bytes_ps;
}

static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
{
	struct tbf_sched_data *q = qdisc_priv(sch);
	struct sk_buff *skb;

	skb = q->qdisc->ops->peek(q->qdisc);

	if (skb) {
		s64 now;
		s64 toks;
		s64 ptoks = 0;
		unsigned int len = qdisc_pkt_len(skb);

		now = ktime_get_ns();
		toks = min_t(s64, now - q->t_c, q->buffer);

		if (tbf_peak_present(q)) {
			ptoks = toks + q->ptokens;
			if (ptoks > q->mtu)
				ptoks = q->mtu;
			ptoks -= (s64) psched_l2t_ns(&q->peak, len);
		}
		toks += q->tokens;
		if (toks > q->buffer)
			toks = q->buffer;
		toks -= (s64) psched_l2t_ns(&q->rate, len);

		if ((toks|ptoks) >= 0) {
			skb = qdisc_dequeue_peeked(q->qdisc);
			if (unlikely(!skb))
				return NULL;

			q->t_c = now;
			q->tokens = toks;
			q->ptokens = ptoks;
			qdisc_qstats_backlog_dec(sch, skb);
			sch->q.qlen--;
			qdisc_bstats_update(sch, skb);
			return skb;
		}

		qdisc_watchdog_schedule_ns(&q->watchdog,
					   now + max_t(long, -toks, -ptoks));

		/* Maybe we have a shorter packet in the queue,
		   which can be sent now. It sounds cool,
		   but, however, this is wrong in principle.
		   We MUST NOT reorder packets under these circumstances.

		   Really, if we split the flow into independent
		   subflows, it would be a very good solution.
		   This is the main idea of all FQ algorithms
		   (cf. CSZ, HPFQ, HFSC)
		 */

		qdisc_qstats_overlimit(sch);
	}
	return NULL;
}

static void tbf_reset(struct Qdisc *sch)
{
	struct tbf_sched_data *q = qdisc_priv(sch);

	qdisc_reset(q->qdisc);
	sch->qstats.backlog = 0;
	sch->q.qlen = 0;
	q->t_c = ktime_get_ns();
	q->tokens = q->buffer;
	q->ptokens = q->mtu;
	qdisc_watchdog_cancel(&q->watchdog);
}

static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
	[TCA_TBF_PARMS]	= { .len = sizeof(struct tc_tbf_qopt) },
	[TCA_TBF_RTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
	[TCA_TBF_PTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
	[TCA_TBF_RATE64]	= { .type = NLA_U64 },
	[TCA_TBF_PRATE64]	= { .type = NLA_U64 },
	[TCA_TBF_BURST] = { .type = NLA_U32 },
	[TCA_TBF_PBURST] = { .type = NLA_U32 },
};

static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
{
	int err;
	struct tbf_sched_data *q = qdisc_priv(sch);
	struct nlattr *tb[TCA_TBF_MAX + 1];
	struct tc_tbf_qopt *qopt;
	struct Qdisc *child = NULL;
	struct psched_ratecfg rate;
	struct psched_ratecfg peak;
	u64 max_size;
	s64 buffer, mtu;
	u64 rate64 = 0, prate64 = 0;

	err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy);
	if (err < 0)
		return err;

	err = -EINVAL;
	if (tb[TCA_TBF_PARMS] == NULL)
		goto done;

	qopt = nla_data(tb[TCA_TBF_PARMS]);
	if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
		qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
					      tb[TCA_TBF_RTAB]));

	if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
			qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
						      tb[TCA_TBF_PTAB]));

	buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
	mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);

	if (tb[TCA_TBF_RATE64])
		rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
	psched_ratecfg_precompute(&rate, &qopt->rate, rate64);

	if (tb[TCA_TBF_BURST]) {
		max_size = nla_get_u32(tb[TCA_TBF_BURST]);
		buffer = psched_l2t_ns(&rate, max_size);
	} else {
		max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
	}

	if (qopt->peakrate.rate) {
		if (tb[TCA_TBF_PRATE64])
			prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
		psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
		if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
			pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
					peak.rate_bytes_ps, rate.rate_bytes_ps);
			err = -EINVAL;
			goto done;
		}

		if (tb[TCA_TBF_PBURST]) {
			u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
			max_size = min_t(u32, max_size, pburst);
			mtu = psched_l2t_ns(&peak, pburst);
		} else {
			max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
		}
	} else {
		memset(&peak, 0, sizeof(peak));
	}

	if (max_size < psched_mtu(qdisc_dev(sch)))
		pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
				    max_size, qdisc_dev(sch)->name,
				    psched_mtu(qdisc_dev(sch)));

	if (!max_size) {
		err = -EINVAL;
		goto done;
	}

	if (q->qdisc != &noop_qdisc) {
		err = fifo_set_limit(q->qdisc, qopt->limit);
		if (err)
			goto done;
	} else if (qopt->limit > 0) {
		child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
		if (IS_ERR(child)) {
			err = PTR_ERR(child);
			goto done;
		}
	}

	sch_tree_lock(sch);
	if (child) {
		qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen,
					  q->qdisc->qstats.backlog);
		qdisc_destroy(q->qdisc);
		q->qdisc = child;
	}
	q->limit = qopt->limit;
	if (tb[TCA_TBF_PBURST])
		q->mtu = mtu;
	else
		q->mtu = PSCHED_TICKS2NS(qopt->mtu);
	q->max_size = max_size;
	if (tb[TCA_TBF_BURST])
		q->buffer = buffer;
	else
		q->buffer = PSCHED_TICKS2NS(qopt->buffer);
	q->tokens = q->buffer;
	q->ptokens = q->mtu;

	memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
	memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));

	sch_tree_unlock(sch);
	err = 0;
done:
	return err;
}

static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
{
	struct tbf_sched_data *q = qdisc_priv(sch);

	if (opt == NULL)
		return -EINVAL;

	q->t_c = ktime_get_ns();
	qdisc_watchdog_init(&q->watchdog, sch);
	q->qdisc = &noop_qdisc;

	return tbf_change(sch, opt);
}

static void tbf_destroy(struct Qdisc *sch)
{
	struct tbf_sched_data *q = qdisc_priv(sch);

	qdisc_watchdog_cancel(&q->watchdog);
	qdisc_destroy(q->qdisc);
}

static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
{
	struct tbf_sched_data *q = qdisc_priv(sch);
	struct nlattr *nest;
	struct tc_tbf_qopt opt;

	sch->qstats.backlog = q->qdisc->qstats.backlog;
	nest = nla_nest_start(skb, TCA_OPTIONS);
	if (nest == NULL)
		goto nla_put_failure;

	opt.limit = q->limit;
	psched_ratecfg_getrate(&opt.rate, &q->rate);
	if (tbf_peak_present(q))
		psched_ratecfg_getrate(&opt.peakrate, &q->peak);
	else
		memset(&opt.peakrate, 0, sizeof(opt.peakrate));
	opt.mtu = PSCHED_NS2TICKS(q->mtu);
	opt.buffer = PSCHED_NS2TICKS(q->buffer);
	if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
		goto nla_put_failure;
	if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
	    nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps,
			      TCA_TBF_PAD))
		goto nla_put_failure;
	if (tbf_peak_present(q) &&
	    q->peak.rate_bytes_ps >= (1ULL << 32) &&
	    nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps,
			      TCA_TBF_PAD))
		goto nla_put_failure;

	return nla_nest_end(skb, nest);

nla_put_failure:
	nla_nest_cancel(skb, nest);
	return -1;
}

static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
			  struct sk_buff *skb, struct tcmsg *tcm)
{
	struct tbf_sched_data *q = qdisc_priv(sch);

	tcm->tcm_handle |= TC_H_MIN(1);
	tcm->tcm_info = q->qdisc->handle;

	return 0;
}

static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
		     struct Qdisc **old)
{
	struct tbf_sched_data *q = qdisc_priv(sch);

	if (new == NULL)
		new = &noop_qdisc;

	*old = qdisc_replace(sch, new, &q->qdisc);
	return 0;
}

static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
{
	struct tbf_sched_data *q = qdisc_priv(sch);
	return q->qdisc;
}

static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
{
	return 1;
}

static void tbf_put(struct Qdisc *sch, unsigned long arg)
{
}

static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
{
	if (!walker->stop) {
		if (walker->count >= walker->skip)
			if (walker->fn(sch, 1, walker) < 0) {
				walker->stop = 1;
				return;
			}
		walker->count++;
	}
}

static const struct Qdisc_class_ops tbf_class_ops = {
	.graft		=	tbf_graft,
	.leaf		=	tbf_leaf,
	.get		=	tbf_get,
	.put		=	tbf_put,
	.walk		=	tbf_walk,
	.dump		=	tbf_dump_class,
};

static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
	.next		=	NULL,
	.cl_ops		=	&tbf_class_ops,
	.id		=	"tbf",
	.priv_size	=	sizeof(struct tbf_sched_data),
	.enqueue	=	tbf_enqueue,
	.dequeue	=	tbf_dequeue,
	.peek		=	qdisc_peek_dequeued,
	.init		=	tbf_init,
	.reset		=	tbf_reset,
	.destroy	=	tbf_destroy,
	.change		=	tbf_change,
	.dump		=	tbf_dump,
	.owner		=	THIS_MODULE,
};

static int __init tbf_module_init(void)
{
	return register_qdisc(&tbf_qdisc_ops);
}

static void __exit tbf_module_exit(void)
{
	unregister_qdisc(&tbf_qdisc_ops);
}
module_init(tbf_module_init)
module_exit(tbf_module_exit)
MODULE_LICENSE("GPL");